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1. Introduction 

Solving  systems of linear equation is probably one of 
the most visible applications of Linear Algebra. System of 
linear equations appear in almost every branch of Science 
and Engineering. Many scientific and engineering 
problems can take the form of a system of linear equations. 

System of linear equations have many applications 
such as Digital Signal Processing,   Geometry,   Networks,   
Temperature Distribution, Heat Distribution , Chemistry, 
Linear Programming, Games, Estimation, Weather 
Forecasting , Economics, Image Processing, Video 
Conferencing, Oceanography and many Statistical analysis 
(example in Econometrics, Biostatistics and Experimental 
Design). 

Java is a popular language and has support for a 
parallel execution that is integrated into the language. 
Hence it is interesting to investigate the usefulness of Java 
for  executing scientific programs in parallel. I have 
described two methods of linear equations which can be 
solved in parallel using the thread mechanism of Java. 

We consider implementations of the linear equation 
methods and compare the result of performance. As 
platform, we use a windows XP system.  
The rest of the paper is organized as follows: section I  
Solving linear equations by Gauss Elimination method , 
both sequential  and  parallel  programming and 
Comparison of the results in sequential execution and  
parallel execution of program.  Section II  Solving linear 
equations by Gauss Jordan method  both sequential and  
parallel programming and Comparison of  the results in 
sequential execution and parallel execution of program.  
Section III Conclusion. 

2. Gauss Elimination Method 

This method is based on the elimination of the unknowns 
by combining equations such that the n equations in n 
unknowns are reduced to an equivalent upper triangular 
system  which could be solved by back substitution. 
Consider the n linear equations in n unknowns 
 

 

a11x1 + a12x2 + … + a1nxn = a1,n+1 
a21x1 + a22x2 + … + a2nxn = a2,n+1 
a31x1 + a32x2 + … + a3nxn = a3,n+1 
 …         …       …     …         … 
an1x1 +  an2x2 +  …  +annxn = an,n+1 

Where aij  and ai,j+1 are known constant and xi’s are 
unknowns. 
The system (1) is equivalent to  

AX = B 
a11   a12    a13  …  a1n        x1           a1,n+1  
a21   a22   a23  …  a2n         x2           a2,n+1  
a31   a32   a33  …  a3n        x3     =    a3,n+1  
 …   …   …  …   …       ...             …     
an1   an2   an3  …    ann       xn            an,n+1  

 
Step 1 :  Store the coefficients in an augmented matrix. 
The superscript on aij means that this is the first time that a 
number is stored in location (i, j). 
 

a11   a12    a13  …  a1n    │     a1,n+1  
a21   a22   a23  …  a2n     │     a2,n+1     
a31   a32   a33  …  a3n    │     a3,n+1   
…   …   …   …   …    │      …     
an1   an2   an3  …    ann    │     an,n+1  

 
Step 2 : If necessary, switch rows so that a11 ≠ 0 , then 
eliminate x1  in row2 through n . In this  process mi1 is the 
multiple of row1 that is subtracted from row i . 
                     for i = 2 to n 
                                mi1 = ai1 / a11 
                                ai1  = 0 
                                for j = 2 to n+1 
                                           aij  = aij – mi1 * a1j 
                                end for 
                     end for 
The new elements are written aij to indicate that this is the 
second time that a number has been stored in the matrix at 
location ( i , j ) . The result after step 2 is 
 

a11   a12    a13  …  a1n    │  a1,n+1  
0    a22   a23  …  a2n     │  a2,n+1     
0    a32   a33  …  a3n    │  a3,n+1   
…   …   …   …   …   │   …     
0    an2   an3  …    ann    │  an,n+1  
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Step 3 : If necessary , switch the second row with some 
row below it so that a22 ≠ 0 , then eliminate x2 in row 3 
through n. In this process ui2 is the multiple of row 2 that 
is subtracted from row i . 
                     for i = 3 to n 
                                ui2 = ai2 / a22 
                                ai2  = 0 
                                for j = 3 to n+1 
                                           aij  = aij – ui2 * a2j 
                                end for 
                     end for 
The new elements are written aij’  indicate that this is the 
third time   that a number has been stored in the matrix at 
location ( i , j ) . The after step 3 is 
 

a11  a12    a13  …   a1n   │  a1,n+1  
0    a22   a23  …   a2n    │  a2,n+1    
0     0    a33   …  a3n   │  a3,n+1  
 …  …  …   …   …    │   …     
0     0   an3   …    ann    │  an,n+1  

 
Step k+1 : This is the general step. If necessary, switch 
row k with some row beneath it so that akk != 0; then 
eliminate xk in rows k+1 through n . Here uik is the 
multiple of row k that is subtracted from row i . 
                         for  i  =  k +1  to  n 
                                uik = aik / akk 
                                aik  = 0 
                                for  j  =  k + 1  to  n+1 
                                           aij  = aij – uik * akj 
                                end for 
                     end for 
The final result after xn-1 has been eliminated from row n 
is 
 

a11   a12    a13  …  a1n    │  a1,n+1  
 0    a22   a23  …  a2n     │  a2,n+1     
 0    0     a33  …  a3n    │  a3,n+1   
 …  …   …   …   …   │   …     
0     0      0    …    ann   │  an,n+1  

 
The upper trianglarization  process is now complete xn = 
an,n+1 / an 

 
 for i = n to 1 step -1 
         sum = 0 
         for j = i+1 to n   
                  sum = sum + aij * xj 
              end for 
             xi = ( ai,n+1  - sum )/aii 
 end for      
Perform the back substitution , get the values of xn, xn-1, 
xn-2, . . . x1. 
 

 
Sequential Algorithm – Gauss Elimination Method 
Input :  Given Matrix a[1 : n, 1: n+1] 
Output : x[1 : n] 
1. for k = 1 to n-1 
2. for i = k+1 to n 
3. u = aik/akk 
4. for j = k to n+1 
5. aij = aij – u * akj  
6. next j 
7. next i 
8. next k 
9. xn = an,n+1/ann 
10.  for i = n to 1 step -1 
11.  sum = 0 
12.  for j = i+1 to n  
13.  sum = sum + aij * xj 
14.  next j 
15.  xi = ( ai,n+1  - sum )/aii 
16.  next i 
17.  end 
 
Parallel Algorithm for Gauss Elimination Method 
In the Parallel execution using the Multi thread 
mechanism . If the size of the linear equation is n, n 
processors are used. Each thread represent  one processor. 
In the Parallel execution processing time is less compared 
to sequential execution. 
for k = 1 to n-1 
           for i = k+1 to n do in parallel 
 u = aik/akk 
for j = k to n+1 do in parallel 
aij = aij – u * akj  
end parallel 
end parallel 
next k 
In the Gauss elimination method lower triangular matrix 
elements are zero which are calculated in parallel. 
 
Parallel Algorithm – Gauss Elimination Method 
Input :  Given Matrix a[1 : n, 1 : n+1] 
Output : x[1 : n] 
1. for k = 1 to n-1 
2.  for i = k+1 to n do in parallel 
3.  u = aik/akk 
4. for j = k to n+1 do in parallel 
5. aij = aij – u * akj  
6. end parallel 
7. end parallel 
8. next k 
9. xn = an,n+1/ann 
10.  for i = n to 1 step -1 
11.  sum = 0 
12.  for j = i+1 to n  
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13.  sum = sum + aij * xj 
14.  next j 
15.  xi = ( ai,n+1  - sum )/aii 
16.  next i 
17.  end 

 
Compare the Execution Time in Gauss Elimination 

Method 
Size of the 
Equations 

Execution Time 
(ms) in 
Sequential  

Execution Time 
(ms) in Parallel 

5 15 2 
10 26 3 
15 29 5 
20 45 7 

3. Gauss Jordan Method 

This method based on the elimination of the unknowns  
by combining equations such that the n equations in n 
unknowns are reduced to an equivalent upper triangular 
system  which could be solved by back substitution. 
Consider the n linear equations in n unknowns 
 

a11x1 + a12x2 + … + a1nxn = a1,n+1 
a21x1 + a22x2 + … + a2nxn = a2,n+1 
a31x1 + a32x2 + … + a3nxn = a3,n+1 
 …         …       …     …         … 
an1x1 +  an2x2 +  …  +annxn = an,n+1 

 
where aij  and ai,j+1 are known constant and xi’s are 
unknowns. 
The system (1) is equivalent to  
                                             AX = B 
a11   a12     a13  …  a1n        x1           a1,n+1  
a21   a22   a23  …  a2n         x2           a2,n+1     
a31   a32   a33  …  a3n        x3     =    a3,n+1   
 …   …   …  …   …       ...             …     
an1   an2   an3  …    ann       xn            an,n+1  
 
Step 1 :  Store the coefficients in an augmented matrix. 
The superscript on aij means that this is the first time that a 
number is stored in location (i, j). 
 
a11   a12    a13  …  a1n    │     a1,n+1  
a21   a22   a23  …  a2n     │     a2,n+1     
a31   a32   a33  …  a3n    │     a3,n+1   
 …   …   …  …   …    │      …     
an1   an2   an3  …    ann    │     an,n+1 
 
step 2 : If necessary . switch rows so that a11  ≠ 0, then 
eliminate x1  in row2 through n . In this  process mi1 is the 
multiple of row1 that is subtracted from row i . 

                    
  for i = 2   to  n 
                                ui1 ai1 / a11 
                                ai1  = 0 
                                for j = 2 to n+1 
                                           aij  = aij – ui1 * a1j 
                                end for 
                     end for 
The new elements are written aij to indicate that this is the 
second time that a number has been stored in the matrix at 
location ( i , j ) . The result after step 2 is 
 

a11   a12    a13  …  a1n    │  a1,n+1  
0    a22   a23  …  a2n     │  a2,n+1     
0    a32   a33  …  a3n    │  a3,n+1   
…   …   …  …   …    │   …     
0    an2   an3  …    ann   │  an,n+1  

 
step 3 : If necessary , switch the second row with some 
row below and above it so that a22 ≠ 0 , then eliminate x2 
in row 3 through n and also eliminates row 1. In this 
process ui2 is the multiple of row 2 that is subtracted from 
row i . 
                     for i = 3 to n 
                               for j  =  i-2  to  n+1 
                                       if ( i ≠  j ) then 
                                             ui2 = ai2 / a22 
                                              aij  = aij – ui2 * a2j 

                                                              end if  
                                end for 
                     end for 
The new elements are written aij’  indicate that this is the 
third time   that a number has been stored in the matrix at 
location ( i , j ) . The after step 3 is 
 
a11   0      a13  …  a1n     │  a1,n+1  
0     a22  a23  …  a2n      │  a2,n+1     
0     0    a33  …   a3n    │  a3,n+1   
…   …   …  …   …    │   …     
 0     0    an3   …   ann    │  an,n+1  
 
step k+1 : This is the general step. If necessary, switch 
row k with some row beneath it so that akk ≠  0; then 
eliminate xk in rows  1 . . . k-1 and k+1 through n  except 
k . Here uik is the multiple of row k that is subtracted from 
row i . 
                         for  i  =  k +1  to  n 
                                for j  =  i+1   to   n+1 
                                        if ( i ≠  j ) then 
                                                uik = aik / akk 
                                                aij  = aij – uik * akj 

                                                               end if 
                                end for 
                     end for 
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The final result after xn has been eliminated from row n is 
 

a11    0       0   …    0    │  a1,n+1  
0     a22     0   …    0     │  a2,n+1     
0      0     a33  …    0    │  a3,n+1   
…    …    …  …   …   │   …     
0      0      0   …    ann   │  an,n+1  

 
The diagonal  matrix  is now complete , get the values of 
xn, xn-1, xn-2, . . . x1. 
 
Sequential Algorithm – Gauss Jordan Method 
Input :  Given Matrix a[1 : n, 1 : n+1] 
Output : x[1 : n] 
1. for i = 1 to n 
2. for j = 1 to n+1 
3. if ( i ≠ j ) then 
4. u = aik/akk 
5. for k = 1 to n+1 
6. ajk = ajk – u * aik 
7. end if 
8. next k 
9. next j 
10.  next i 
11.  for i = 1 to n 
12.  xi = ai,n+1/aii 
13.  end  
 
Parallel Algorithm for  Gauss Jordan Method 
In the Gauss Jordan Method, if the size of the linear 
equations is n, n processors are used. In the Multi thread 
mechanism, Each thread represent one processor. 
for i = 1 to n do in parallel 
for j = 1 to n+1 do in parallel 
if ( i ≠ j ) then 
u = aik/akk 
for k = 1 to n+1 
ajk = ajk – u * aik 
end if 
next k 
end parallel 
end parallel 
 
Parallel Algorithm – Gauss Jordan Method 
Input :  Given Matrix a[1 : n, 1 : n+1] 
Output : x[1 : n] 
1. for i = 1 to n do in parallel 
2. for j = 1 to n+1 do in parallel 
3. if ( i ≠  j ) then 
4. u = aik/akk 
5. for k = 1 to n+1 
6. ajk = ajk – u * aik 
7. end if 
8. next k 

9.  end parallel 
10.  end parallel 
11.  for i = 1 to n 
12.   xi = ai,n+1/aii 
13.  end 
 

Compare the Execution Time in Gauss Jordan Method 
Size of the 
Equations 

Execution Time 
(ms) in 
Sequential  

Execution Time 
(ms) in Parallel  

5 16 3 
10 27 5 
15 31 6 
20 47 8 
 
Conclusion 

The solving system of linear equation method described 
in this paper deals with sequential algorithm and parallel 
algorithm.  Parallel algorithm has good speedups and less 
time complexity than sequential algorithm. Similarly 
Gauss Elimination method is better than Gauss Jordan 
method. 
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