
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

276

Manuscript received July 5, 2009
Manuscript revised July 20, 2009

Parallel Algorithm for Solving Large System of Simultaneous
Linear Equations

K. RAJALAKSHMI

Sri Parasakthi College for Women, Courtallam – 627 802, Tirunelveli Dist. Tamil Nadu, India

1. Introduction

Solving systems of linear equation is probably one of
the most visible applications of Linear Algebra. System of
linear equations appear in almost every branch of Science
and Engineering. Many scientific and engineering
problems can take the form of a system of linear equations.

System of linear equations have many applications
such as Digital Signal Processing, Geometry, Networks,
Temperature Distribution, Heat Distribution , Chemistry,
Linear Programming, Games, Estimation, Weather
Forecasting , Economics, Image Processing, Video
Conferencing, Oceanography and many Statistical analysis
(example in Econometrics, Biostatistics and Experimental
Design).

Java is a popular language and has support for a
parallel execution that is integrated into the language.
Hence it is interesting to investigate the usefulness of Java
for executing scientific programs in parallel. I have
described two methods of linear equations which can be
solved in parallel using the thread mechanism of Java.

We consider implementations of the linear equation
methods and compare the result of performance. As
platform, we use a windows XP system.
The rest of the paper is organized as follows: section I
Solving linear equations by Gauss Elimination method ,
both sequential and parallel programming and
Comparison of the results in sequential execution and
parallel execution of program. Section II Solving linear
equations by Gauss Jordan method both sequential and
parallel programming and Comparison of the results in
sequential execution and parallel execution of program.
Section III Conclusion.

2. Gauss Elimination Method

This method is based on the elimination of the unknowns
by combining equations such that the n equations in n
unknowns are reduced to an equivalent upper triangular
system which could be solved by back substitution.
Consider the n linear equations in n unknowns

a11x1 + a12x2 + … + a1nxn = a1,n+1
a21x1 + a22x2 + … + a2nxn = a2,n+1
a31x1 + a32x2 + … + a3nxn = a3,n+1
 … … … … …
an1x1 + an2x2 + … +annxn = an,n+1

Where aij and ai,j+1 are known constant and xi’s are
unknowns.
The system (1) is equivalent to

AX = B
a11 a12 a13 … a1n x1 a1,n+1
a21 a22 a23 … a2n x2 a2,n+1
a31 a32 a33 … a3n x3 = a3,n+1
 … … … … … ... …
an1 an2 an3 … ann xn an,n+1

Step 1 : Store the coefficients in an augmented matrix.
The superscript on aij means that this is the first time that a
number is stored in location (i, j).

a11 a12 a13 … a1n │ a1,n+1
a21 a22 a23 … a2n │ a2,n+1
a31 a32 a33 … a3n │ a3,n+1
… … … … … │ …
an1 an2 an3 … ann │ an,n+1

Step 2 : If necessary, switch rows so that a11 ≠ 0 , then
eliminate x1 in row2 through n . In this process mi1 is the
multiple of row1 that is subtracted from row i .
 for i = 2 to n
 mi1 = ai1 / a11
 ai1 = 0
 for j = 2 to n+1
 aij = aij – mi1 * a1j
 end for
 end for
The new elements are written aij to indicate that this is the
second time that a number has been stored in the matrix at
location (i , j) . The result after step 2 is

a11 a12 a13 … a1n │ a1,n+1
0 a22 a23 … a2n │ a2,n+1
0 a32 a33 … a3n │ a3,n+1
… … … … … │ …
0 an2 an3 … ann │ an,n+1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

277

Step 3 : If necessary , switch the second row with some
row below it so that a22 ≠ 0 , then eliminate x2 in row 3
through n. In this process ui2 is the multiple of row 2 that
is subtracted from row i .
 for i = 3 to n
 ui2 = ai2 / a22
 ai2 = 0
 for j = 3 to n+1
 aij = aij – ui2 * a2j
 end for
 end for
The new elements are written aij’ indicate that this is the
third time that a number has been stored in the matrix at
location (i , j) . The after step 3 is

a11 a12 a13 … a1n │ a1,n+1
0 a22 a23 … a2n │ a2,n+1
0 0 a33 … a3n │ a3,n+1
 … … … … … │ …
0 0 an3 … ann │ an,n+1

Step k+1 : This is the general step. If necessary, switch
row k with some row beneath it so that akk != 0; then
eliminate xk in rows k+1 through n . Here uik is the
multiple of row k that is subtracted from row i .
 for i = k +1 to n
 uik = aik / akk
 aik = 0
 for j = k + 1 to n+1
 aij = aij – uik * akj
 end for
 end for
The final result after xn-1 has been eliminated from row n
is

a11 a12 a13 … a1n │ a1,n+1
 0 a22 a23 … a2n │ a2,n+1
 0 0 a33 … a3n │ a3,n+1
 … … … … … │ …
0 0 0 … ann │ an,n+1

The upper trianglarization process is now complete xn =
an,n+1 / an

 for i = n to 1 step -1
 sum = 0
 for j = i+1 to n
 sum = sum + aij * xj
 end for
 xi = (ai,n+1 - sum)/aii
 end for
Perform the back substitution , get the values of xn, xn-1,
xn-2, . . . x1.

Sequential Algorithm – Gauss Elimination Method
Input : Given Matrix a[1 : n, 1: n+1]
Output : x[1 : n]
1. for k = 1 to n-1
2. for i = k+1 to n
3. u = aik/akk
4. for j = k to n+1
5. aij = aij – u * akj
6. next j
7. next i
8. next k
9. xn = an,n+1/ann
10. for i = n to 1 step -1
11. sum = 0
12. for j = i+1 to n
13. sum = sum + aij * xj
14. next j
15. xi = (ai,n+1 - sum)/aii
16. next i
17. end

Parallel Algorithm for Gauss Elimination Method
In the Parallel execution using the Multi thread
mechanism . If the size of the linear equation is n, n
processors are used. Each thread represent one processor.
In the Parallel execution processing time is less compared
to sequential execution.
for k = 1 to n-1
 for i = k+1 to n do in parallel
 u = aik/akk
for j = k to n+1 do in parallel
aij = aij – u * akj
end parallel
end parallel
next k
In the Gauss elimination method lower triangular matrix
elements are zero which are calculated in parallel.

Parallel Algorithm – Gauss Elimination Method
Input : Given Matrix a[1 : n, 1 : n+1]
Output : x[1 : n]
1. for k = 1 to n-1
2. for i = k+1 to n do in parallel
3. u = aik/akk
4. for j = k to n+1 do in parallel
5. aij = aij – u * akj
6. end parallel
7. end parallel
8. next k
9. xn = an,n+1/ann
10. for i = n to 1 step -1
11. sum = 0
12. for j = i+1 to n

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

278

13. sum = sum + aij * xj
14. next j
15. xi = (ai,n+1 - sum)/aii
16. next i
17. end

Compare the Execution Time in Gauss Elimination

Method
Size of the
Equations

Execution Time
(ms) in
Sequential

Execution Time
(ms) in Parallel

5 15 2
10 26 3
15 29 5
20 45 7

3. Gauss Jordan Method

This method based on the elimination of the unknowns
by combining equations such that the n equations in n
unknowns are reduced to an equivalent upper triangular
system which could be solved by back substitution.
Consider the n linear equations in n unknowns

a11x1 + a12x2 + … + a1nxn = a1,n+1
a21x1 + a22x2 + … + a2nxn = a2,n+1
a31x1 + a32x2 + … + a3nxn = a3,n+1
 … … … … …
an1x1 + an2x2 + … +annxn = an,n+1

where aij and ai,j+1 are known constant and xi’s are
unknowns.
The system (1) is equivalent to
 AX = B
a11 a12 a13 … a1n x1 a1,n+1
a21 a22 a23 … a2n x2 a2,n+1
a31 a32 a33 … a3n x3 = a3,n+1
 … … … … … ... …
an1 an2 an3 … ann xn an,n+1

Step 1 : Store the coefficients in an augmented matrix.
The superscript on aij means that this is the first time that a
number is stored in location (i, j).

a11 a12 a13 … a1n │ a1,n+1
a21 a22 a23 … a2n │ a2,n+1
a31 a32 a33 … a3n │ a3,n+1
 … … … … … │ …
an1 an2 an3 … ann │ an,n+1

step 2 : If necessary . switch rows so that a11 ≠ 0, then
eliminate x1 in row2 through n . In this process mi1 is the
multiple of row1 that is subtracted from row i .

 for i = 2 to n
 ui1 ai1 / a11
 ai1 = 0
 for j = 2 to n+1
 aij = aij – ui1 * a1j
 end for
 end for
The new elements are written aij to indicate that this is the
second time that a number has been stored in the matrix at
location (i , j) . The result after step 2 is

a11 a12 a13 … a1n │ a1,n+1
0 a22 a23 … a2n │ a2,n+1
0 a32 a33 … a3n │ a3,n+1
… … … … … │ …
0 an2 an3 … ann │ an,n+1

step 3 : If necessary , switch the second row with some
row below and above it so that a22 ≠ 0 , then eliminate x2
in row 3 through n and also eliminates row 1. In this
process ui2 is the multiple of row 2 that is subtracted from
row i .
 for i = 3 to n
 for j = i-2 to n+1
 if (i ≠ j) then
 ui2 = ai2 / a22
 aij = aij – ui2 * a2j

 end if
 end for
 end for
The new elements are written aij’ indicate that this is the
third time that a number has been stored in the matrix at
location (i , j) . The after step 3 is

a11 0 a13 … a1n │ a1,n+1
0 a22 a23 … a2n │ a2,n+1
0 0 a33 … a3n │ a3,n+1
… … … … … │ …
 0 0 an3 … ann │ an,n+1

step k+1 : This is the general step. If necessary, switch
row k with some row beneath it so that akk ≠ 0; then
eliminate xk in rows 1 . . . k-1 and k+1 through n except
k . Here uik is the multiple of row k that is subtracted from
row i .
 for i = k +1 to n
 for j = i+1 to n+1
 if (i ≠ j) then
 uik = aik / akk
 aij = aij – uik * akj

 end if
 end for
 end for

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.7, July 2009

279

The final result after xn has been eliminated from row n is

a11 0 0 … 0 │ a1,n+1
0 a22 0 … 0 │ a2,n+1
0 0 a33 … 0 │ a3,n+1
… … … … … │ …
0 0 0 … ann │ an,n+1

The diagonal matrix is now complete , get the values of
xn, xn-1, xn-2, . . . x1.

Sequential Algorithm – Gauss Jordan Method
Input : Given Matrix a[1 : n, 1 : n+1]
Output : x[1 : n]
1. for i = 1 to n
2. for j = 1 to n+1
3. if (i ≠ j) then
4. u = aik/akk
5. for k = 1 to n+1
6. ajk = ajk – u * aik
7. end if
8. next k
9. next j
10. next i
11. for i = 1 to n
12. xi = ai,n+1/aii
13. end

Parallel Algorithm for Gauss Jordan Method
In the Gauss Jordan Method, if the size of the linear
equations is n, n processors are used. In the Multi thread
mechanism, Each thread represent one processor.
for i = 1 to n do in parallel
for j = 1 to n+1 do in parallel
if (i ≠ j) then
u = aik/akk
for k = 1 to n+1
ajk = ajk – u * aik
end if
next k
end parallel
end parallel

Parallel Algorithm – Gauss Jordan Method
Input : Given Matrix a[1 : n, 1 : n+1]
Output : x[1 : n]
1. for i = 1 to n do in parallel
2. for j = 1 to n+1 do in parallel
3. if (i ≠ j) then
4. u = aik/akk
5. for k = 1 to n+1
6. ajk = ajk – u * aik
7. end if
8. next k

9. end parallel
10. end parallel
11. for i = 1 to n
12. xi = ai,n+1/aii
13. end

Compare the Execution Time in Gauss Jordan Method
Size of the
Equations

Execution Time
(ms) in
Sequential

Execution Time
(ms) in Parallel

5 16 3
10 27 5
15 31 6
20 47 8

Conclusion

The solving system of linear equation method described
in this paper deals with sequential algorithm and parallel
algorithm. Parallel algorithm has good speedups and less
time complexity than sequential algorithm. Similarly
Gauss Elimination method is better than Gauss Jordan
method.

Acknowledgments

I would like to record my heartful thanks to Dr. C. Xavier,
my guide in rendering full support for the submission of
the paper.

References
[1] John H. Mathews and Kurtis D. Fink, Numerical Methods

using MATLAB, Fourth Edition, Pearson Education
(Singapore) Private Limited (2005).

[2] S.R.K. Iyengar and R.K. Jain, Mathematical Methods,
Narosa Publishing House Private. Limited (2006).

[3] M.K.Jain, S.R.K. Iyengar and R.K. jain , Numerical
Methods for Scientific and Engineering Computation, Third
Edition, New age International (P) Limited. (1995).

[4] Jaan Kiusalaas , Numerical methods in Engineering ith
Python, Cambridge University Press.

[5] C.Xavier and S.S. Iyengar , Introduction to Parallel
Algorithms, A Wiley Inter-Science publication (1998).

[6] Doug Lea , Concurrent programming in Java – Design
Principles and Patterns, Second Edition, Addison-Wesley
(2000).

[7] Paul Hyde , Java Thread Programming – The Authoritative
Solution , A Division of Macmillan Computer Publishing
(1999).

[8] Michael J. Quinn , Parallel Computing – Theory and
Practice, Second Edition, Tata McGraw-Hill Publishing
Company Limited .

[9] Michael J. Quinn, Designing Efficient Algorithms for
Parallel Computers, McGraw-Hill Book Company (1987).

[10] http://www.tandf.co.uk/journals/titles/10637192.html
[11] http://www.cs.emu.edu/~guyb/papers/BM04.pdf

