
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

1

Manuscript received August 5, 2009

Manuscript revised August 20, 2009

Formal Verification of Ring-based Leader Election Protocol using

Predicate Diagrams

Cecilia E. Nugraheni

Computer Science Dept., Parahyangan Catholic University, Bandung, Indonesia.

Summary
Leader election is an important protocol in distributed computing.

The objective of the protocol is to decide which process among

all contributing processes in the system should be offer a

particular functionality after a system crash long enough. There

are two basic properties that the leader election implementation

needs to obey: (1) safety: it is never the case that there are two or

more leaders at the same time and (2) liveness: in a stable

situation (i.e. processes stop dying for a while), a leader will

eventually be elected.

In this paper we considered a ring-based leader election protocol

proposed by Chang and Roberts. We have proven or verified that

this protocol satisfies the both properties. The proof is done by

viewing the distributed systems as parameterized systems and

using a class diagram called predicate diagrams* to do the

verification. We use TLA* for formalization and use TLA+ style

for writing specifications.

Key words:
Leader election protocol, distributed systems, verification, TLA*

TLA+, predicate diagrams*.

1. Introduction

A distributed system is a collection of independent

computers that appears to its users as a single coherent

system [1]. The simple examples of distributed systems

are World-Wide Web - which is the collection of Web

servers that jointly provide the distributed database of

hypertext and multimedia documents - and the computers

of a local network that provide a uniform view of a

distributed file system and the collection of computers on

the Internet that implement the Domain Name Service

(DNS) [2].

There are a number of economic and technical reasons -

including cost, performance, scalability, and reliability -

that make distributed systems more attractive than

centralized systems. Unfortunately, realistic distributed

systems are subject to failures. These failures are usually

caused by the problems with the connections (network

failures) and mechanical device (drive failures). A

distributed system is said to be a self-stabilizing system if it

be started in any possible global state after a failure occurs

by itself. This property makes this kind of system tolerant to

faults which means that it can recover by itself after

processors crash long enough.

In distributed systems, it is common that more than one

components offer the same functionality. However,

whenever a failure happens, only one of them is allow to

offer a particular function. As a consequence, a component

must be elected. This elected component is called the

leader.

The leader election problem is a well-known and

extensively studied problem [3]. The objective of the

protocol is for the processes among themselves to establish

the leader [3]. There are two basic properties that the leader

election implementation needs to obey: (1) safety: it is

never the case that there are two or more leaders at the same

time and (2) liveness: in a stable situation (i.e. processes

stop dying for a while), a leader will eventually be elected

[3].

Self-stabilizing systems were introduced in the seminal

paper of Dijkstra [4]. In that paper, Dijkstra presented

three semi-uniform, self-stabilizing, ring-based protocols

for mutual exclusion. Following this work, many leader

election protocols have been developed. Each of them

considered a certain aspect of distributed systems, such as

network topology (ring [5,6,7], mesh, complete network

[8,9,10], and so on), communication mechanism

(asynchronous or synchronous), available topology

information at processes [11] and so forth.

In this paper we are interested in verification of a ring-based

leader election protocol proposed by Chang and Roberts [6].

We assume a finite number of similar components. Which

has a fixed unique identity and a total ordering exists on

these identities, known to all components. The leader is

defined as the component with largest identity among all

participating components.

Verification consists of establishing whether a system

satisfies some property, that is, whether all possible

behaviors of the system are included in the property

specified. It is commonly to classify the approach to formal

verification into two classes, which are the deductive and

the algorithmic approach. The deductive approach which is

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

2

based on verification rules reduces the system validity of a

temporal property to the general validity of a set of

first-order verification conditions. Model checking is the

most popular algorithmic verification method. This method

is fully automatic for finite-state systems. However, it

suffers from the so-called state-explosion problem. Since

the size of the state space is typically exponential in the

number of components, the class of systems that can be

handled by this method is limited.

The using of diagrams in verifying systems has been

proposed, because they can reflect the intuitive

understanding of the systems and its specification or the

model. Diagram can also be seen as an abstraction of the

system, where properties of the diagram are guaranteed to

hold for the systems as well. In particular, the use of

diagrams in verification of distributed systems can be found,

for example in [12]. In [12] the author proposed the use of

predicate diagrams (introduced in [13]) for analyzing a

self-stabilizing algorithm.

Following [14], in this work we view distributed systems as

parameterized systems which are systems that consist of

several similar processes whose number is determined by

an input parameter. Predicate diagram* are a class of

predicate diagrams [13], which are intended as the basis for

the verification of parameterized systems. This method

integrates deductive verification and algorithmic

techniques. The correspondence between the original

specification or the model and the diagram is established by

non-temporal proof obligations, whereas model checking

can be used to verify properties over finite-state

abstractions. We use TLA* [15] for formalization and use

TLA+ [16] style for writing specifications. This approach

has been successfully used in verification of reader writer

algorithm [17].

This paper is structured as follows. Section 2 describes

briefly the specification used for parameterized systems in

TLA*. The definition of predicate diagrams* will be given

in Section 3. Section 4 describes how to verify the leader

election protocol using predicate diagrams*. Section 5

concludes this paper.

2. Specification of parameterized systems

In this work, we restrict on the parameterized systems

which are interleaving and consist of finitely, but

arbitrarily, discrete components. Let M denotes a finite and

non-empty set of processes running in the system being

considered. A parameterized system can be described as a

formula of the form:

 parSpec  Init   [k  M: Next(k)]v (1)

   k  M : L(k)

where

 Init is a state predicate that describes the global initial

condition,

 Next(k) is an action that characterizes the next-state

relation of a process k,

 v is a state function representing the variables of the

system and

 L(k) is a formula stating the liveness conditions

expected from the process k.

Formulas such as Next(k) and L(k) are called

parameterized actions.

3. Predicate diagrams*

Now we present a class of diagrams that can be used for

the verification of parameterized systems. The underlying

assertion language, by assumption, contains a finite set O

of binary relation symbols  that are interpreted by

well-founded orderings. For O, its reflexive closure is

denoted by . We write O
=
 to denote the set of relation

symbols and for O.

3.1 Definition of predicate diagrams*

A predicate diagram* is a finite graph whose nodes are

labeled with sets of (possibly negated) predicates, and

whose edges are labeled with parameterized actions as

well as optional annotations that assert certain expressions

to decrease with respect to an ordering in O
=
. Intuitively, a

node of a predicate diagram* represents the set of system

states that satisfy the formulas contained in the node. An

edge (n,m) is labeled with a parameterized action A(k) if

A(k) can cause a transition from a state represented by n to

a state represented by m. A parameterized action A(k) may

have an associated fairness condition; fairness conditions

apply to all transitions labeled by the action rather than to

individual edges.

Formally, the definition of predicate diagrams* is relative

to two finite sets P and A that contain the state predicates

and the parameterized actions of interest; we will later use

 to denote a special stuttering action. We write Cl(P) to

denote the set of literals formed by the predicates in P, that

is, the union of P and the negations of the predicates in P.

Assume given two finite sets P and A of state predicates

and parameterized actions. A predicate diagram* G = (N, I,

, o, ) over P and A consists of:

 a finite set N  2
Cl(P)

 of nodes,

 a finite set I  N of initial nodes,

 a family of  = (A(k))A(k)A of relations A(k)  N  N,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

3

 an edge labeling o that associates a finite set {(t1, 1),

…, (td, d)}, of terms ti paired with a relation  i 

O
=
 with every edge (n,m)  , and

 a mapping  : A  {NF,WF,SF} that associates a

fairness condition with every parameterized action in

A; the possible values represent no fairness, weak

fairness, and strong fairness.

We say that the parameterized action A(k) can be taken at

node n  N iff (n,m)  A holds for some m  N, and

denote by En(A(k))  N the set of nodes where A(k) can be

taken. We say that the parameterized action A(k) can be

taken along an edge (n,m) iff (n,m)  A(k).

We now define runs and traces through a diagram as the

set of those behaviors that correspond to fair runs

satisfying the node and edge labels. To evaluate the

fairness conditions we identify the enabling condition of a

parameterized action A(k) with the existence of

A(k)-labeled edges at a given node. We use the symbol 

to denote the natural numbers.

Let G = (N, I, , o, ) be a predicate diagram* over sets P

and A. A run of G is an -sequence  = (s0,n0,A0)(s1,n1,A1)

… of triples where si is a state, ni  N is a node and Ai is a

parameterized action such that all of the following

conditions hold:

 n0  I is an initial node.

 si|[ni]| holds for all i  N.

 For all i  I, either Ai=  and ni = ni+1 or Ai  A and

(ni,ni+1)  Ai.

 If Ai  A and (t,)  o(ni,ni+1), then si+1|[t]| si|[t]|.

 If Ai =  then si+1|[t]| si|[t]| holds whenever (t,)

o(ni,m) for some mN.

 For every parameterized action A(k) such that (A(k))

= WF there are infinitely many i such that either Ai

= A(k) or ni  En(A(k)).

 For every parameterized action A(k) such that (A(k))

= SF, either Ai = A(k) holds for infinitely many i or

ni  En(A(k)) holds for only finitely many i.

We write runs(G) to denote the set of runs of G. The set

tr(G) of traces through G consists of all behaviors  =

s0s1… such that there exists a run  = (s0,n0,A0) (s1,n1,A1)

… of G based on the states in .

Informally,  = s0s1… is a trace through the predicate

diagram* G if we can find a sequence of nodes ni whose

associated formulas are true at si and that are related by

transitions whose edge labels, including the ordering

annotations, are satisfied by consecutive states. In addition

to the transitions that are explicitly represented by edges of

the diagram, we allow stuttering transitions that remain in

the source node.

Fairness conditions are used to prevent infinite stuttering.

Their interpretation is standard, based on the intuition that

the enabledness of actions with non-trivial fairness

requirements is reflected in the diagram.

3.2 Verification using predicate diagrams*

The verification process using predicate diagrams is done

in two steps [14]. The first step is to find a predicate

diagram that can be proven to be the correct representation

of the system to be verified, i.e. the diagram conforms to

the system specification. For proving whether a diagram

conforms to a specification or not, the so-called

conformance theorem is used. Thus the first step is done

deductively.

With the current setting, i.e. the using of parameterized

actions, some modifications should be done on the

conformance theorem. In particular, the conditions related

to the fairness conditions should be treated slightly

differently from non-parameterized ones. We need to

address one important issue that will be used later, which

is the issue about fairness. Note that in the specification

the fairness condition is represented as a conjunction of

formulas of the forms  kM: WFv(A(k)) and/or  kM:

SFv(A(k)), i.e. for every process k in M and for some

parameterized action A(k), we associate weak and strong

fairness, respectively, with A(k). Let's turn to the definition

of predicate diagrams, in particular the definition of . In

the context of parameterized systems, : A {NF,WF,SF}

is now a mapping that associates a fairness condition with

every parameterized action A(k) in A. For example, for

some parameterized action A(k), if (A(k)) = WF then we

mean (k  M : A(k)) = WF.

We say that a predicate diagram* G conforms to a

parameterized program parSpec if every behavior that

satisfies parSpec is a trace through G.

Theorem 1. Let G = (N, I, , o, ) be a predicate diagram*

over P and A and let parSpec  Init  [kM: Next(k)]v 

kM: L(k) be a parameterized system. If all the

following conditions hold then G conforms to parSpec:

1. |= Init  
In

n.

2. | n[kM:Next(k)]vn' 
)(),(:))(,(kAmnkAm 

Av  m’.

3. For n,m  N and all (t,) o(n,m):

a. | n  m'  
)(),(: kAmnA 

kM:A(k)v  t’ t.

b. | n  [kM:Next(k)]v  n'  t' t.

4. For every action A(k)  A such that (A(k))  NF:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

4

a. If (A(k)) = WF then |= parSpec 

WFv(kM:Next(k)).

b. If (A(k)) = SF then |= parSpec 

SFv(kM:Next(k)).

c. | n  kM:ENABLEDA(k)v holds whenever

n  En(A(k)).

d. | n  A(k)v  m’ holds for all n,m  N such

that (n,m)  A(k).

Condition 1 asserts that every initial state of the system

must be covered by some initial node. This ensures that

every run of the system can start at some initial node of the

diagram. Condition 2 asserts that from every node, every

transition, if it is enabled then it must have a place to go,

i.e., there is a successor node which represents the

successor state of the transition. It proves that every run of

the system can stay in the diagram. Condition 3 is related

to the ordering annotations and Condition 4 is related to

the fairness conditions.

The second verification step is to prove that all traces

through a predicate diagram satisfy some property F. On

this case, we view the diagram as a finite transition system

that is amenable to model checking. All predicates and

actions that appear as labels of nodes or edges are then

viewed as atomic propositions.

Regarding predicate diagrams* as finite labeled transition

systems, their runs can be encoded in the input language of

standard model checkers such as SPIN [18]. Two variables

indicate the current node and the last action taken. The

predicates in P are represented by boolean variables,

which are updated according to the label of the current

node, non-deterministically, if that label contains neither P

nor P. We also add variables b(t,), for every term t and

relation O such that (t,) appears in some ordering

annotation o(n,m). These variables are set to 2 if the last

transition taken is labeled by (t,), to 1 if it is labeled by

(t, ) or is stuttering transition and to 0 otherwise.

Whereas the fairness conditions associated with the actions

of a diagram are easily expressed as LTL (Linear Temporal

Logic) assumptions for SPIN.

4. Chang and Roberts’ protocol

We now consider the leader election protocol proposed by

Chang and Roberts. Chang and Roberts is a ring-based

leader election algorithm used to find a process with the

largest identification. It is a useful method of election in

decentralized distributed computing. We take the

interleaving version of this protocol, which means every

time only one process is active. The informal description

of the protocol is given as follows.

The algorithm assumes there exist a set M of processes

running in the system and that each process has a

Universal Identification (UID) and also that the processes

can arrange themselves in a unidirectional ring with a

communication channel going to the clockwise (successor)

and anticlockwise (previous) neighbor. The 2 part

algorithm can be described as follows:

1 Initially each process in the ring is marked as

non-participant.

2 A process that notices a lack of leader starts an

election. It marks itself as participant and creates an

election message containing its UID. It then sends this

message clockwise to its neighbor.

3 When a process receives an election message it

compares the UID with its own, if the current process

has a larger UID it replaces the one in the election

message with its UID. The process the marks itself as

participant and again forwards the election message in

a clockwise direction.

4 If the process was already marked as participant when

it receives an election message the procedure is

different. In this case it will compare the UID as

before but only forward the election message if it has

needed to replace the UID.

The algorithm finishes when a process receives an election

message containing its own UID. Then the second stage of

the algorithm takes place

1 This process marks itself a non-participant and sends

an elected message to its neighbor announcing its

election and UID.

2 When a process receives an elected message it marks

itself as non-participant records the elected UID and

again forward the elected message.

3 When the elected message reaches the newly elected

process the election is over.

Assuming there are no failures this algorithm will finish.

We may also notice that the participation and

non-participation states are used so that when 2 or more

processes start an election at roughly the same time only a

single winner will be announced.

The formal specification of the protocol is given in Figure

1. This protocol is modeled in terms of four sets np, p, 

and  that contains (the identification of) non-participant,

participant, leader and failed processes, respectively.

Besides the four sets, we also use two arrays namely Msg

and tMsg. The elements of arrays Msg and tMsg are

consist of two parts. The first part is an integer which

represents a UID and the second part is an indicator

whether the message is an election message when the

value is FALSE and an elected message when the value is

TRUE. Each k-th element of Msg and tMsg represents the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

5

newest and the last message received by process k that

comes from the previous neighbor, respectively.

Initially every process is in np so that np is equal to M, and

the three other sets are empty. The elements of array Msg

and tMsg are set to 0, FALSE.

Action Start(k) can be taken on two conditions. The first

condition is that the k is in np which means that the

process is a non-participant process. The second one is that

the first part of the k-th element of Msg is 0. This

represents the situation in where a process has not received

any messages yet.

The election process is modeled by two separated actions:

Election1(k) and Election2(k). Election1(k) is active

whenever a process k is a non-participant process but has

already received an election message from its previous

neighbor. Whereas Election2(k) is active whenever the

process k is already a participant and it received an

election message with larger UID than its own.

The Elected(k) can be taken only by process which will be

the leader. The Failed(k) is similar to Election2(k), only

now the process k received an elected message rather that

an election message. As consequence process k is failed to

be the leader.

Notice that in this version we don’t take into account the

communication process between two processes, in

particular the sending message. We prevent a process from

sending the same messages over and over to its successor

neighbor by using tMsg. Some parameterized actions, for

example Election1(k), are active only if the content of k-th

element of Msg[k] and tMsg[k] are different. This

guarantees that Election1(k) is active only if process k

received a new message from its previous process.

We will verify two basic properties that the leader election

implementation obey the : (1) safety: it is never the case that

there are two or more leaders at the same time; (2) –

liveness: in a stable situation (i.e. processes stop dying for a

whie), a leader will eventually be elected. The two

properties can be expressed as formulas:

LdrElct  ( i,j  M : i    j    i = j) (2)

 LdrElct   (( ={}  p  {})   ( {})) (3)

Figure 2 depicts the suitable predicate diagram* for this

protocol. The number outside each node is not the part of

the diagram. We use this numbering only for explanation

purpose. For the sake of clearness, we put the

parameterized action label on the left side of the nodes and

the ordering annotations on the right side of the nodes.

On node 2, 3, 4 and 5 we put some ordering annotations

for avoiding infinite loops on those nodes. On node 2 we

put four annotations. The first annotation,

(|{j:Msg[j][1]=0}|,<) guarantee that eventually the action

Start(k) can not be taken since the set {j:Msg[j][1]=0} is

eventually empty. The second annotation (|np|,<) is used to

prevent the action Election1(k) to be active forever. This is

because np is finite and eventually is empty. Two other

annotations are used to guarantee that the action

Election2(k) eventually cannot be taken. The explanation

of the ordering annotations on nodes 3, 4 and 5 are quite

similar.

Using Theorem 1 we can prove that the diagram conforms

to the specification in Figure 1. From the diagram in

Figure 2 we can produce 21 verification conditions. Some

of those conditions are:

 Init  np| > 0  |p| = 0  || = 0  ||= 0

 (|np| > 0  |p| = 0  || = 0  ||= 0)  [k  M :

Next(k)]v  (|np’| > 0  |p’| = 0  |’| = 0  |’|= 0) 

k  M : Start(k)v  (|np’| > 0  |p’| > 0  |’| = 0 

|’|= 0)

 (|np| > 0  |p| > 0  || = 0  ||= 0)  [k  M :

Next(k)]v  (|np’| > 0  |p’| > 0  |’| = 0  |’|= 0) 

k  M : Election1(k)v  (|np’| = 0  |p’| > 0  |’| = 0

 |’|= 0)

 (|np| > 0  |p| > 0  || = 0  ||= 0)  (|np’| > 0  |p’| >

0  |’| = 0  |’|= 0)  k  M : Election1(k)v 

|{j:Msg[j][1]=0}’| < |{j:Msg[j][1] = 0}|

The next step is to encode the predicate diagram* in

Promela, the input language of SPIN. To do this, six

variables are used which are action, node, np, p, ldr, and f.

action and node are used to indicate the last action taken

and the current node; whereas np, p, ldr, and f are used to

represent the predicate that hold on every node, for

example, if np = 0 then the predicate |np| = 0 holds and if

np = 1 the the predicate |np| > 0 holds. action = 1 if

Start(k) is taken, action = 2 if Election1(k) is taken and so

on.

The properties to be verified are now can be written as

(ldr = 0  ldr = 1) and  ((ldr = 0  p = 1)   (ldr =

1)). Last, by using SPIN we model-check the diagram. As

result, we concluded that the protocol satisfies the two

properties.

5. Conclusion and future work

We have shown that the leader election protocol proposed

by Chang and Roberts satisfy the safety and liveness

properties as required. We have viewed the distributed

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

6

systems as parameterized systems. The verification is then

done by using predicate diagrams*.

There are many work that are devoted to the formal

specification and verification of distributed systems, in

particular leader-election protocol. Some of them are [3, 5,

12, 14]. This work is very closed to [12, 14]. The similarity

between this work and [12] is that we use the

diagram-based approach to do the verification. We also use

TLA to formalize our approach. However, [12] did not treat

the distributed systems as parameterized systems.

Following [14], in this work we view distributed systems as

parameterized systems. In [14] the verification of

parameterized systems is done pure deductively. Whereas

the difference between [14] and this work is we proposed

the use of predicate diagram* for the verification process,

rather than do the verification pure deductively.

In the context of parameterized systems, there are two

classes of properties may be considered, namely the

properties related to the whole processes and the ones

related to a single process in the system. The latter class is

sometimes called the universal property. In this work we

only consider the properties which are related to the whole

processes. It is planned to investigate the universal

properties of the protocol, such as once a process becomes a

participant then eventually it will be the leader or not. In

this case we will use a variant of predicate diagram* which

is parameterized predicate diagrams [19, 20].

Init   k  M : Msg[k] = 0, FALSE  tMsg[k] = 0, FALSE

  np = M  p = {}   ={}   = {}

Start(k)   k  np  Msg[k][1] = 0

  np’ = np \ {k}  p’ = p  {k}  ’ =   ’ = 

  Msg’ = [Msg EXCEPT!succ(k) = k, FALSE  tMsg’ = tMsg

Election1(k)   Msg[k]  tMsg[k]  k  np  Msg[k][1]  0

  np’ = np \ {k}  p’ = p  {k}  ’ =  ’ = 

   Msg[k][1] > k  Msg’ = [Msg EXCEPT!succ{k} =Msg[k][1],

FALSE]

  Msg[k][1] < k  Msg’ = [Msg EXCEPT!succ{k} = k, FALSE]

  tMsg’ = [tMsg EXCEPT!k = Msg[k]]

Election2(k)   Msg[k]  tMsg[k]  k  p  Msg[k][1] > k

  np’ = np  p’ = p  ’ =  ’ = 

  Msg’ = [Msg EXCEPT!succ(k) = Msg[k]]

  tMsg’ = [tMsg EXCEPT!k = Msg[k]]

Elected(k)   Msg[k]  tMsg[k]  k  p  Msg[k][1] = k

  np’ = np  p’ = p \ {k}  ’ =   {k}  ’ = 

  Msg’ = [Msg EXCEPT!succ(k) = k, TRUE]

  tMsg’ = [tMsg EXCEPT!k = Msg[k]]

Failed(k)   Msg[k]  tMsg[k]  k  p  Msg[k][1]  k  Msg[k][2] = TRUE

  np’ = np  p’ = p \ {k}  ’ =   ’ =   {k}

  Msg’ = [Msg EXCEPT!succ(k) = k, TRUE]

  tMsg’ = [tMsg EXCEPT!k = Msg[k]]

v  np, p, , , Msg, tMsg

Next(k)  Start(k)  Election1(k)  Election2(k)  Elected(k)  Failed(k)

L(k)   WFv(Start(k))  WFv(Election1(k))  WFv(Election2(k)) 

WFv(Elected(k))

  WFv(Failed(k))

LdrElct  Init  [ k  M : Next(k)]v  k  M : L(k)

Figure 1. Formal specification of Chang and Roberts’ Leader Election protocol.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

7

Figure 2. Predicate diagram* for Chang and Roberts’ Leader Election protocol.

References
[1] Andrew S. Tanenbaum and Maarten van Steen. Distributed

Systems: Principles and Paradigms. 2nd ed. Prentice Haill.

2007. ISBN-13: 9780132392273.

[2] Ihor Kuz, Manuel M.T. Chakravarty, and Gernot Heiser. A

Distributed Systems. School of Computer Science and

Engineering, the University of New South Wales.

http://gernot-heiser.org/~cs9243/lectures/intro-notes.pdf.

[3] Thomas Arts, Koen Claessen, and Hans svensson.

Semi-formal development of a fault-tolerant leader election

protocol in Erlang. FATES 2004: 140-154.

[4] E.W. Dijkstra. Self-stabilizing systems in spite of

distributed control. Comm. of the ACM (ACM) 17 (11):

643-644, 1974.

[5] G. Lelann. Distributed systems towards a formal approach.

In B. Gilchrist, ed., Information Processing vol. 77, pp.

155-160. 1977.

[6] E. Chang and R. Roberts. An improved algorithm for

decentralized extrema-finding in circular configurations of

processes. Comm. of the ACM (ACM) 22(5):281-283, 1979.

[7] G.L. Peterson. An O(n log n) unidirectional algorithm for

the circular extrema problem. ACM Trans. Progr. Lang. Syst.

4:758-762, 1982.

[8] E. Korach, S. Moran, and S. Zaks. Tight lower and upper

bounds for some distributed algorithms for a complete

network of processors. In Proc. 3rd Annual ACM Symp on

Principles of Distributed Computing, pp. 199-207. ACM,

1984.

[9] G. Singh. Efficient distributed algorithms for leader election

in complete networks. In Proc 11th IEEE Intl. Conf. on

Distributed Computing Systems, pp. 472-479, 1991.

[10] Y. Afek and E. Gafni. Time and message bounds for election

in synchronous and asynchronous complete networks.

SIAM Journal on Computing, 20(2):376-394, 1991.

[11] M.C. Loui, T.A. Matsushita, and D.B. West. Election in a

complete network with a sense of direction. Information

Processing Letters, 22:185-187, 1986.

[12] D. Cansell, D. Méry and S. Merz Formal analysis of a

self-stabilizing algorithm using predicate diagrams. GI

Jahrestagung (1) 2001: 628-634.

[13] D. Cansell, D. Méry and S. Merz, , “Predicate diagrams for

the verification of reactive systems”, Intl. Conf. on

http://gernot-heiser.org/~cs9243/lectures/intro-notes.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

8

Integrated Formal Methods (IFM 2000), vol 1945 of Lecture

Notes in Computer Science, Springer-Verlag, 2000.

[14] Nikolaj S. Bjørner, Uri Lerner, and Zohar Manna. Deductive

verification of parameterized fault-tolerant systems: a case

study.

[15] Stephan Merz. Logic-based analysis of reactive systems:

hiding, composition and abstraction. Habilitationsschrift.

Institut für Informatik. Ludwig-Maximilians Universität,

Munich, Germany, 2002.

[16] Leslie Lamport. Specifying Systems: The TLA+ Language

and Tools for Hardware and Software Engineers.

Addison-Wesley, 2002.

[17] Cecilia E. Nugraheni. Diagram-based verification of

parameterized systems. JCMCC 65 (2008), pp. 91-102.

[18] G. Holzmann. The SPIN Model checker. IEEE Trans. Of

software engineering, 16(5):1512-1542, 1997.

[19] Cecilia E. Nugraheni. Predicate diagrams as basis for the

verification of reactive systems. PhD Thesis. Institut für

Informatik. Ludwig-Maximilians Universität, Munich,

Germany, 2004.

[20] Cecilia E. Nugraheni. Universal properties verification of

parameterized parallel systems. Lecture Notes in Computer

Science Vol. 3482. Springer. 2005.

Cecilia E. Nugraheni received the B.S.

and M.S. degrees in Informatics

Engineering from Bandung Institute of

Technology in 1993 and 1997,

respectively. In 2004 she got her PhD

degree from Institut für Informatik,

Ludwig-Maximilians Universität, Munich,

Germany. She is now an academic staff at

Computer Science Dept., Parahyangan

Catholic University, Bandung, Indonesia.

