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Summary 
Leader election is an important protocol in distributed computing. 

The objective of the protocol is to decide which process among 

all contributing processes in the system should be offer a 

particular functionality after a system crash long enough. There 

are two basic properties that the leader election implementation 

needs to obey: (1) safety: it is never the case that there are two or 

more leaders at the same time and (2) liveness: in a stable 

situation (i.e. processes stop dying for a while), a leader will 

eventually be elected. 

In this paper we considered a ring-based leader election protocol 

proposed by Chang and Roberts. We have proven or verified that 

this protocol satisfies the both properties. The proof is done by 

viewing the distributed systems as parameterized systems and 

using a class diagram called predicate diagrams* to do the 

verification. We use TLA* for formalization and use TLA+ style 

for writing specifications. 
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1. Introduction 

A distributed system is a collection of independent 

computers that appears to its users as a single coherent 

system [1]. The simple examples of  distributed systems 

are World-Wide Web - which is the collection of Web 

servers that jointly provide the distributed database of 

hypertext and multimedia documents - and the computers 

of a local network that provide a uniform view of a 

distributed file system and the collection of computers on 

the Internet that implement the Domain Name Service 

(DNS) [2].  

 

There are a number of economic and technical reasons - 

including cost, performance, scalability, and reliability - 

that make distributed systems more attractive than 

centralized systems. Unfortunately, realistic distributed 

systems are subject to failures. These failures are usually 

caused by the problems with the connections (network 

failures) and mechanical device (drive failures). A 

distributed system is said to be a self-stabilizing system if it 

be started in any possible global state after a failure occurs 

by itself. This property makes this kind of system tolerant to 

faults which means that it can recover by itself after 

processors crash long enough.  

 

In distributed systems, it is common that more than one 

components offer the same functionality. However, 

whenever a failure happens, only one of them is allow to 

offer a particular function. As a consequence, a component 

must be elected. This elected component is called the 

leader.  

 

The leader election problem is a well-known and 

extensively studied problem [3]. The objective of the 

protocol is for the processes among themselves to establish 

the leader [3]. There are two basic properties that the leader 

election implementation needs to obey: (1) safety: it is 

never the case that there are two or more leaders at the same 

time and (2) liveness: in a stable situation (i.e. processes 

stop dying for a while), a leader will eventually be elected 

[3]. 

 

Self-stabilizing systems were introduced in the seminal 

paper of Dijkstra [4].  In that paper, Dijkstra presented 

three semi-uniform, self-stabilizing, ring-based protocols 

for mutual exclusion. Following this work, many leader 

election protocols have been developed. Each of them 

considered a certain aspect of distributed systems, such as 

network topology (ring [5,6,7], mesh, complete network 

[8,9,10], and so on), communication mechanism 

(asynchronous or synchronous), available topology 

information at processes [11] and so forth. 

 

In this paper we are interested in verification of a ring-based 

leader election protocol proposed by Chang and Roberts [6]. 

We assume a finite number of similar components. Which 

has a fixed unique identity and a total ordering exists on 

these identities, known to all components. The leader is 

defined as the component with largest identity among all 

participating components.  

 

Verification consists of establishing whether a system 

satisfies some property, that is, whether all possible 

behaviors of the system are included in the property 

specified. It is commonly to classify the approach to formal 

verification into two classes, which are the deductive and 

the algorithmic approach. The deductive approach which is 
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based on verification rules reduces the system validity of a 

temporal property to the general validity of a set of 

first-order verification conditions. Model checking is the 

most popular algorithmic verification method. This method 

is fully automatic for finite-state systems. However, it 

suffers from the so-called state-explosion problem. Since 

the size of the state space is typically exponential in the 

number of components, the class of systems that can be 

handled by this method is limited. 

 

The using of diagrams in verifying systems has been 

proposed, because they can reflect the intuitive 

understanding of the systems and its specification or the 

model. Diagram can also be seen as an abstraction of the 

system, where properties of the diagram are guaranteed to 

hold for the systems as well. In particular, the use of 

diagrams in verification of distributed systems can be found, 

for example in [12]. In [12] the author proposed the use of 

predicate diagrams (introduced in [13]) for analyzing a 

self-stabilizing algorithm.   

 

Following [14], in this work we view distributed systems as 

parameterized systems which are systems that consist of 

several similar processes whose number is determined by 

an input parameter. Predicate diagram* are a class of 

predicate diagrams [13], which are intended as the basis for 

the verification of parameterized systems. This method 

integrates deductive verification and algorithmic 

techniques. The correspondence between the original 

specification or the model and the diagram is established by 

non-temporal proof obligations, whereas model checking 

can be used to verify properties over finite-state 

abstractions.  We use TLA* [15] for formalization and use 

TLA+ [16] style for writing specifications. This approach 

has been successfully used in verification of reader writer 

algorithm [17]. 

 

This paper is structured as follows. Section 2 describes 

briefly the specification used for parameterized systems in 

TLA*. The definition of predicate diagrams* will be given 

in Section 3. Section 4 describes how to verify the leader 

election protocol using predicate diagrams*. Section 5 

concludes this paper. 

2. Specification of parameterized systems 

In this work, we restrict on the parameterized systems 

which are interleaving and consist of finitely, but 

arbitrarily, discrete components. Let M denotes a finite and 

non-empty set of processes running in the system being 

considered. A parameterized system can be described as a 

formula of the form: 

        parSpec  Init   [k  M: Next(k)]v  (1) 

                        k  M : L(k) 

where  

 Init is a state predicate that describes the global initial 

condition,  

 Next(k) is an action that characterizes the next-state 

relation of a process k,  

 v is a state function representing the variables of the 

system and  

 L(k) is a formula stating the liveness conditions 

expected from the process k. 

 

Formulas such as Next(k) and L(k) are called 

parameterized actions. 

3. Predicate diagrams* 

Now we present a class of diagrams that can be used for 

the verification of parameterized systems. The underlying 

assertion language, by assumption, contains a finite set O 

of binary relation symbols  that are interpreted by 

well-founded orderings. For O, its reflexive closure is 

denoted by . We write O
=
 to denote the set of relation 

symbols and for O. 

3.1 Definition of predicate diagrams* 

A predicate diagram* is a finite graph whose nodes are 

labeled with sets of (possibly negated) predicates, and 

whose edges are labeled with parameterized actions as 

well as optional annotations that assert certain expressions 

to decrease with respect to an ordering in O
=
. Intuitively, a 

node of a predicate diagram* represents the set of system 

states that satisfy the formulas contained in the node. An 

edge (n,m) is labeled with a parameterized action A(k) if 

A(k) can cause a transition from a state represented by n to 

a state represented by m. A parameterized action A(k) may 

have an associated fairness condition; fairness conditions 

apply to all transitions labeled by the action rather than to 

individual edges. 

 

Formally, the definition of predicate diagrams* is relative 

to two finite sets P and A that contain the state predicates 

and the parameterized actions of interest; we will later use  

 to denote a special stuttering action. We write Cl(P) to 

denote the set of literals formed by the predicates in P, that 

is, the union of P and the negations of the predicates in P. 

Assume given two finite sets P and A of state predicates 

and parameterized actions. A predicate diagram* G = (N, I, 

, o, ) over P and A consists of: 

 

 a finite set N  2
Cl(P)

 of nodes, 

 a finite set I  N of initial nodes, 

 a family of   = (A(k))A(k)A of relations A(k)  N  N,  
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 an edge labeling o that associates a finite set {(t1, 1), 

…, (td, d)}, of terms ti paired with a relation  i  

O
=
 with every edge (n,m)  , and 

 a mapping   : A  {NF,WF,SF} that associates a 

fairness condition with every parameterized action in 

A; the possible values represent no fairness, weak 

fairness, and strong fairness. 

 

We say that the parameterized action A(k) can be taken at 

node n  N iff (n,m)  A holds for some m  N, and 

denote by En(A(k))  N the set of nodes where A(k) can be 

taken. We say that the parameterized action A(k) can be 

taken along an edge (n,m) iff (n,m)  A(k). 

 

We now define runs and traces through a diagram as the 

set of those behaviors that correspond to fair runs 

satisfying the node and edge labels. To evaluate the 

fairness conditions we identify the enabling condition of a 

parameterized action A(k) with the existence of 

A(k)-labeled edges at a given node. We use the symbol  

to denote the natural numbers. 

 

Let G = (N, I, , o, ) be a predicate diagram* over sets P 

and A. A run of G is an -sequence  = (s0,n0,A0)(s1,n1,A1) 

… of triples where si is a state, ni  N is a node and Ai is a 

parameterized action such that all of the following 

conditions hold: 

 

 n0  I is an initial node. 

 si|[ni]| holds for all i  N. 

 For all i  I, either Ai=  and ni = ni+1 or Ai  A and 

(ni,ni+1)  Ai. 

 If Ai  A and (t, )  o(ni,ni+1), then si+1|[t]| si|[t]|. 

 If Ai =  then si+1|[t]| si|[t]| holds whenever (t, ) 

o(ni,m) for some mN. 

 For every parameterized action A(k) such that (A(k)) 

= WF there are infinitely many i such that either Ai 

= A(k) or ni  En(A(k)). 

 For every parameterized action A(k) such that (A(k)) 

= SF, either Ai = A(k) holds for infinitely many i or 

ni  En(A(k)) holds for only finitely many i.  

 

We write runs(G) to denote the set of runs of G. The set 

tr(G) of traces through G consists of all behaviors  = 

s0s1… such that there exists a run  = (s0,n0,A0) (s1,n1,A1) 

… of G based on the states in . 

 

Informally,  = s0s1… is a trace through the predicate 

diagram* G if we can find a sequence of nodes ni whose 

associated formulas are true at si and that are related by 

transitions whose edge labels, including the ordering 

annotations, are satisfied by consecutive states. In addition 

to the transitions that are explicitly represented by edges of 

the diagram, we allow stuttering transitions that remain in 

the source node. 

Fairness conditions are used to prevent infinite stuttering. 

Their interpretation is standard, based on the intuition that 

the enabledness of actions with non-trivial fairness 

requirements is reflected in the diagram. 

3.2 Verification using predicate diagrams* 

The verification process using predicate diagrams is done 

in two steps [14]. The first step is to find a predicate 

diagram that can be proven to be the correct representation 

of the system to be verified, i.e. the diagram conforms to 

the system specification. For proving whether a diagram 

conforms to a specification or not, the so-called 

conformance theorem is used. Thus the first step is done 

deductively. 

 

With the current setting, i.e. the using of parameterized 

actions, some modifications should be done on the 

conformance theorem. In particular, the conditions related 

to the fairness conditions should be treated slightly 

differently from non-parameterized ones. We need to 

address one important issue that will be used later, which 

is the issue about fairness. Note that in the specification 

the fairness condition is represented as a conjunction of 

formulas of the forms  kM: WFv(A(k)) and/or  kM: 

SFv(A(k)), i.e. for every process k in M and for some 

parameterized action A(k), we associate weak and strong 

fairness, respectively, with A(k). Let's turn to the definition 

of predicate diagrams, in particular the definition of . In 

the context of parameterized systems, : A {NF,WF,SF} 

is now a mapping that associates a fairness condition with 

every parameterized action A(k) in A. For example, for 

some parameterized action A(k), if (A(k)) = WF then we 

mean (k  M : A(k)) = WF. 

 

We say that a predicate diagram* G conforms to a 

parameterized program parSpec if every behavior that 

satisfies parSpec is a trace through G. 

 

Theorem 1. Let G = (N, I, , o, ) be a predicate diagram* 

over P and A and let parSpec  Init  [kM: Next(k)]v  

kM: L(k) be a parameterized system. If all the 

following conditions hold then G conforms to parSpec: 

1. |= Init  
In

n. 

2. | n[kM:Next(k)]vn' 
 )(),(:))(,( kAmnkAm 

Av  m’. 

3. For n,m  N and all (t, ) o(n,m): 

a. | n  m'  
 )(),(: kAmnA 

kM:A(k)v  t’  t. 

b. | n  [kM:Next(k)]v  n'  t' t. 

4. For every action A(k)  A such that (A(k))  NF: 
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a. If (A(k)) = WF then |= parSpec  

WFv(kM:Next(k)). 

b. If (A(k)) = SF then |= parSpec  

SFv(kM:Next(k)). 

c. | n  kM:ENABLEDA(k)v holds whenever 

n  En(A(k)). 

d. | n  A(k)v  m’ holds for all n,m  N such 

that (n,m)  A(k). 

 

Condition 1 asserts that every initial state of the system 

must be covered by some initial node. This ensures that 

every run of the system can start at some initial node of the 

diagram. Condition 2 asserts that from every node, every 

transition, if it is enabled then it must have a place to go, 

i.e., there is a successor node which represents the 

successor state of the transition. It proves that every run of 

the system can stay in the diagram. Condition 3 is related 

to the ordering annotations and Condition 4 is related to 

the fairness conditions. 

 

The second verification step is to prove that all traces 

through a predicate diagram satisfy some property F. On 

this case, we view the diagram as a finite transition system 

that is amenable to model checking. All predicates and 

actions that appear as labels of nodes or edges are then 

viewed as atomic propositions. 

 

Regarding predicate diagrams* as finite labeled transition 

systems, their runs can be encoded in the input language of 

standard model checkers such as SPIN [18]. Two variables 

indicate the current node and the last action taken. The 

predicates in P are represented by boolean variables, 

which are updated according to the label of the current 

node, non-deterministically, if that label contains neither P 

nor P. We also add variables b(t, ), for every term t and 

relation O such that (t, ) appears in some ordering 

annotation o(n,m). These variables are set to 2 if the last 

transition taken is labeled by (t, ), to 1 if it is labeled by 

(t,  ) or is stuttering transition and to 0 otherwise. 

Whereas the fairness conditions associated with the actions 

of a diagram are easily expressed as LTL (Linear Temporal 

Logic) assumptions for SPIN. 

4. Chang and Roberts’ protocol 

We now consider the leader election protocol proposed by 

Chang and Roberts. Chang and Roberts is a ring-based 

leader election algorithm used to find a process with the 

largest identification. It is a useful method of election in 

decentralized distributed computing. We take the 

interleaving version of this protocol, which means every 

time only one process is active. The informal description 

of the protocol is given as follows.  

The algorithm assumes there exist a set M of processes 

running in the system and that each process has a 

Universal Identification (UID) and also that the processes 

can arrange themselves in a unidirectional ring with a 

communication channel going to the clockwise (successor) 

and anticlockwise (previous) neighbor. The 2 part 

algorithm can be described as follows: 

 

1 Initially each process in the ring is marked as 

non-participant. 

2 A process that notices a lack of leader starts an 

election. It marks itself as participant and creates an 

election message containing its UID. It then sends this 

message clockwise to its neighbor. 

3 When a process receives an election message it 

compares the UID with its own, if the current process 

has a larger UID it replaces the one in the election 

message with its UID. The process the marks itself as 

participant and again forwards the election message in 

a clockwise direction. 

4 If the process was already marked as participant when 

it receives an election message the procedure is 

different. In this case it will compare the UID as 

before but only forward the election message if it has 

needed to replace the UID. 

 

The algorithm finishes when a process receives an election 

message containing its own UID. Then the second stage of 

the algorithm takes place 

1 This process marks itself a non-participant and sends 

an elected message to its neighbor announcing its 

election and UID. 

2 When a process receives an elected message it marks 

itself as non-participant records the elected UID and 

again forward the elected message. 

3 When the elected message reaches the newly elected 

process the election is over. 

 
Assuming there are no failures this algorithm will finish. 

We may also notice that the participation and 

non-participation states are used so that when 2 or more 

processes start an election at roughly the same time only a 

single winner will be announced.  

 

The formal specification of the protocol is given in Figure 

1. This protocol is modeled in terms of four sets np, p,  

and  that contains (the identification of) non-participant, 

participant, leader and failed processes, respectively. 

Besides the four sets, we also use two arrays namely Msg 

and tMsg.  The elements of arrays Msg and tMsg are 

consist of two parts. The first part is an integer which 

represents a UID and the second part is an indicator 

whether the message is an election message when the 

value is FALSE and an elected message when the value is 

TRUE. Each k-th element of Msg and tMsg represents the 
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newest and the last message received by process k that 

comes from the previous neighbor, respectively.  

 

Initially every process is in np so that np is equal to M, and 

the three other sets are empty. The elements of array Msg 

and tMsg are set to 0, FALSE. 

 

Action Start(k) can be taken on two conditions. The first 

condition is that the k is in np which means that the 

process is a non-participant process. The second one is that 

the first part of the k-th element of Msg is 0. This 

represents the situation in where a process has not received 

any messages yet.  

 

The election process is modeled by two separated actions: 

Election1(k) and Election2(k). Election1(k) is active 

whenever a process k is a non-participant process but has  

already received an election message from its previous 

neighbor. Whereas Election2(k) is active whenever the 

process k is already a participant and it received an 

election message with larger UID than its own.   

 

The Elected(k) can be taken only by process which will be 

the leader. The Failed(k) is similar to Election2(k), only 

now the process k received an elected message rather that 

an election message. As consequence process k is failed to 

be the leader.  

 

Notice that in this version we don’t take into account the 

communication process between two processes, in 

particular the sending message. We prevent a process from 

sending the same messages over and over to its successor 

neighbor by using tMsg. Some parameterized actions, for 

example Election1(k), are active only if the content of k-th 

element of Msg[k] and tMsg[k] are different. This 

guarantees that Election1(k) is active only if process k 

received a new message from its previous process.  

 

We will verify two basic properties that the leader election 

implementation obey the : (1) safety: it is never the case that 

there are two or more leaders at the same time; (2) – 

liveness: in a stable situation (i.e. processes stop dying for a 

whie), a leader will eventually be elected. The two 

properties can be expressed as formulas: 

LdrElct  ( i,j  M : i    j    i = j)    (2) 

 LdrElct   (( ={}  p  {})   ( {}))    (3) 

 

Figure 2 depicts the suitable predicate diagram* for this 

protocol. The number outside each node is not the part of 

the diagram. We use this numbering only for explanation 

purpose. For the sake of clearness, we put the 

parameterized action label on the left side of the nodes and 

the ordering annotations on the right side of the nodes.  

On node 2, 3, 4 and 5 we put some ordering annotations 

for avoiding infinite loops on those nodes. On node 2 we 

put four annotations. The first annotation, 

(|{j:Msg[j][1]=0}|,<) guarantee that eventually the action 

Start(k) can not be taken since the set {j:Msg[j][1]=0} is 

eventually empty. The second annotation (|np|,<) is used to 

prevent the action Election1(k) to be active forever. This is 

because np is finite and eventually is empty. Two other 

annotations are used to guarantee that the action 

Election2(k) eventually cannot be taken. The explanation 

of the ordering annotations on nodes 3, 4 and 5 are quite 

similar. 

 

Using Theorem 1 we can prove that the diagram conforms 

to the specification in Figure 1. From the diagram in 

Figure 2 we can produce 21 verification conditions. Some 

of those conditions are: 

 

 Init  np| > 0  |p| = 0  || = 0  ||= 0 

 (|np| > 0  |p| = 0  || = 0  ||= 0)  [k  M : 

Next(k)]v  (|np’| > 0  |p’| = 0  |’| = 0  |’|= 0)  

k  M : Start(k)v   (|np’| > 0  |p’| > 0  |’| = 0  

|’|= 0) 

 (|np| > 0  |p| > 0  || = 0  ||= 0)  [k  M : 

Next(k)]v  (|np’| > 0  |p’| > 0  |’| = 0  |’|= 0)  

k  M : Election1(k)v  (|np’| = 0  |p’| > 0  |’| = 0 

 |’|= 0) 

 (|np| > 0  |p| > 0  || = 0  ||= 0)   (|np’| > 0  |p’| > 

0  |’| = 0  |’|= 0)  k  M : Election1(k)v  

|{j:Msg[j][1]=0}’| < |{j:Msg[j][1] = 0}| 

 

The next step is to encode the predicate diagram* in 

Promela, the input language of SPIN. To do this, six 

variables are used which are action, node, np, p, ldr, and f. 

action and node are used to indicate the last action taken 

and the current node; whereas np, p, ldr, and f are used to 

represent the predicate that hold on every node, for 

example, if np = 0 then the predicate |np| = 0 holds and if 

np = 1 the the predicate |np| > 0 holds. action = 1 if 

Start(k) is taken, action = 2 if Election1(k) is taken and so 

on. 

 

The properties to be verified are now can be written as 

(ldr = 0  ldr = 1) and  ((ldr = 0  p = 1)   (ldr = 

1)). Last, by using SPIN we model-check the diagram. As 

result, we concluded that the protocol satisfies the two 

properties. 

 

5. Conclusion and future work 

We have shown that the leader election protocol proposed 

by Chang and Roberts satisfy the safety and liveness 

properties as required. We have viewed the distributed 
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systems as parameterized systems. The verification is then 

done by using predicate diagrams*.   

There are many work that are devoted to the formal 

specification and verification of distributed systems, in 

particular leader-election protocol. Some of them are [3, 5, 

12, 14]. This work is very closed to [12, 14]. The similarity 

between this work and [12] is that we use the 

diagram-based approach to do the verification. We also use 

TLA to formalize our approach. However, [12] did not treat 

the distributed systems as parameterized systems. 

Following [14], in this work we view distributed systems as 

parameterized systems. In [14] the verification of 

parameterized systems is done pure deductively. Whereas 

the difference between [14] and this work is we proposed 

the use of predicate diagram* for the verification process, 

rather than do the verification pure deductively. 

In the context of parameterized systems, there are two 

classes of properties may be considered, namely the 

properties related to the whole processes and the ones 

related to a single process in the system. The latter class is 

sometimes called the universal property. In this work we 

only consider the properties which are related to the whole 

processes. It is planned to investigate the universal 

properties of the protocol, such as once a process becomes a 

participant then eventually it will be the leader or not. In 

this case we will use a variant of predicate diagram* which 

is parameterized predicate diagrams [19, 20].  

 

 

  

 

 

 

 

Init    k  M : Msg[k] = 0, FALSE  tMsg[k] = 0, FALSE 

  np = M  p = {}   ={}   = {} 

Start(k)    k  np  Msg[k][1] = 0 

  np’ = np \ {k}  p’ = p  {k}  ’ =   ’ =  

  Msg’ = [Msg EXCEPT!succ(k) = k, FALSE  tMsg’ = tMsg   

Election1(k)    Msg[k]  tMsg[k]  k  np  Msg[k][1]  0    

  np’ = np \ {k}  p’ = p  {k}  ’ =  ’ =  

   Msg[k][1] > k  Msg’ = [Msg EXCEPT!succ{k} =Msg[k][1], 

FALSE]   

    Msg[k][1] < k  Msg’ = [Msg EXCEPT!succ{k} = k, FALSE] 

  tMsg’ = [tMsg EXCEPT!k = Msg[k]] 

Election2(k)    Msg[k]  tMsg[k]  k  p  Msg[k][1] > k  

  np’ = np   p’ = p  ’ =  ’ =  

  Msg’ = [Msg EXCEPT!succ(k) = Msg[k]] 

  tMsg’ = [tMsg EXCEPT!k = Msg[k]] 

Elected(k)    Msg[k]  tMsg[k]  k  p  Msg[k][1] = k 

  np’ = np  p’ = p \ {k}  ’ =   {k}  ’ =  

  Msg’ = [Msg EXCEPT!succ(k) = k, TRUE] 

  tMsg’ = [tMsg EXCEPT!k = Msg[k]] 

Failed(k)     Msg[k]  tMsg[k]  k  p  Msg[k][1]  k  Msg[k][2] = TRUE 

  np’ = np   p’ = p \ {k}  ’ =   ’ =   {k} 

  Msg’ = [Msg EXCEPT!succ(k) = k, TRUE] 

  tMsg’ = [tMsg EXCEPT!k = Msg[k]] 

v   np, p, , , Msg, tMsg 

Next(k)   Start(k)  Election1(k)  Election2(k)  Elected(k)  Failed(k)  

L(k)    WFv(Start(k))  WFv(Election1(k))  WFv(Election2(k))  

WFv(Elected(k)) 

  WFv(Failed(k)) 

LdrElct    Init  [ k  M : Next(k)]v  k  M : L(k)  

Figure 1. Formal specification of Chang and Roberts’ Leader Election protocol. 
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Figure 2. Predicate diagram* for Chang and Roberts’ Leader Election protocol. 
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