
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

9

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

A scalable distributed IDS Architecture for High speed

Networks

Hassen Sallay1, Khalid A. AlShalfan1, Ouissem Ben Fred j1

1College of Computer Science and Information, Imam Muhammad Bin Saud University, Riyadh, - Saudi Arabia

Summary
As networks become faster there is a need for security analysis
techniques that can keep up with the increased network
throughput. Traditional centralized approaches to traffic analysis
cannot scale with the increase of bandwidth advances mainly due
to their memory and computational requirements. In the last few
years a number of distributed architectures have already been
proposed for dedicated network monitoring tasks but they are not
scalable in the context of high speed networks. In this paper we
present an optimized scalable distributed architecture which is
about 10 times quicker than the centralized architecture. The
solution is based on switch-based splitting approach that supports
intrusion detection on high-speed links by balancing the traffic
load among different sensors running Snort.

Key words:
Intrusion Detection, High Speed Networks, Distributed
Architecture, Scalability

1. Introduction

 Networks began a potentially hostile environment,
where intruders are passively or actively trying to breach
network security. Passive intruders may browse through
sensitive data files, monitor private conversations, or
intercept e-mail messages. Active intruders, on the other
hand, are malicious and seek to destroy information, deny
others access to network resources, and introduce false
data or unauthenticated messages onto the network. This
type of intruder may even seek to destroy programs and
applications by introducing viruses or worms into the
network.
Current intrusion detection systems (IDS) are barely
capable of real-time traffic analysis on saturated
Fast-Ethernet links (100 Mbps). As network technology
presses forward, Gigabit-Ethernet (1000 Mbps) has been
imposed as a standard for large network installations. In
order to protect such installations, a new approach for
intrusion detection is necessary to manage the
ever-increasing data volume. Network speeds have
increased faster than the speed of processors. Thus,

centralized solutions have reached their limit, in particular
for multi-step attacks or packet’s content analysis which
requires maintaining much information about the attack.
This may seriously overloads a single node. In addition, the
centralized solution becomes overloaded as the number of
attack’s signatures that the IDS must check grows. This is
due to the continuous increase of the number of possible
attacks. For example, the size of the rule set used by the
Snort IDS was quadrupled from 1000 rules in 2001 to over
4000 at the beginning of 2008 [1]. Recent researches have
introduced different parallel IDS scheme based on a set of
sensors. Each sensor analyses the whole traffic or just a part
of it. These parallel IDS has raised new issues including the
network architecture, the software architecture, the traffic
duplication, and the traffic splitting. In other hand, the
correlation of IDS information with vulnerability data is
necessary to increase the effectiveness of the security
monitoring to satisfy the real-time constraints. This allows
for greater automation to take action in real time against
intruders. This research paper presents an efficient scalable
IDS architecture dedicated for high speed networks.
Section 2 shows the related work. Section 3 presents our
distributed IDS architecture. In Section 4 the performance
study of our system is detailed and finally the paper is
concluded by some future work.

2. Related work

 The speed of the new backbone network has reached up
to 10G so that one single Network Intrusion Detection
system (NIDS) can’t be capable to monitor the whole
network effectively and react in real time to the security
attacks. In this section, we present some related work of the
research investigations on parallel IDS for high-speed
networks based on the distributed architecture [2, 3].
To promote the NIDS performance and efficiency, present
studies on IDS for high-speed network monitoring have
begun to choose the distributed architecture as an alterative.
There are two key technologies in the parallel IDS which
are traffic splitting and load balancing. The Traffic
splitting designs are mainly based on flows or on security
policies and IDS characteristics [4, 5]. It is based on the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

10

following some main principles (a) distribution of the
packets of the same attack to the same sensor (b) keeping up
with the network speed efficiently (c) adaptation to the
variety of the network traffic. The load balancing aims to
assign an appropriate load among the sensors [6]. It is
implemented either by (a) the traffic splitter which make
easy the management of the overall system [7]. This choice
requires an expensive specific high-speed instrument to
work at a full wire speed, and more may be likely the
bottleneck of the system. Or by (b) each sensor based on
the load balancing approach by applying of some proposed
effective algorithms for load evaluation and adjustment
which will predict overloading on nodes precisely and
reduce the load smoothly to get a smallest packet loss rate
[8]. Due to the complexity of these algorithms, they are
enhanced by several improvements to increase the system
performance such that (a) early filtering, where a portion of
the packets are processed on the splitter instead of the
sensors (b) multiple levels of hashing to disperse the highly
intensive traffic on one sensor (c) or an analyzing node,
which receives messages issued by sensors, detects the
multi-object attack behaviors and adjusts the distribution of
the network flow dynamically.
Mainly, four parallel techniques exist in the literature for
IDS: packet-level parallelism, session-level parallelism,
rule-level parallelism, and component-level parallelism
(see figures 1.a, 1.b, 1.c, 1.d).
The packet-level parallelism consists on creating several
dependent sensors [9]. Each sensor applies the complete set
of rules. A round-robin-like algorithm is then used to split
the traffic among the sensors. A perfect load-balancing
across all sensors is then guaranteed. However, a session
analyzer is necessary (see figure 1.b) in order to perform
stateful analysis. This is required for example for
multi-packet or multi-session attacks. The session analyzer
has to maintain session integrity, flow and stream tables,
and a reassembly list. The analyzer fills these structures
from the preprocessors. The analyzer can be considered as a
shared space updatable by the preprocessors and consulted
by the sensors. This shared space is expected to be a serious
bottleneck since it should be protected against access each
time a component tries to use it. Moreover, the space is used
at least as many times as the number of incoming packets
and sessions.
The session-level parallelism is motivated by the fact that
the packet from one session will never affect another
session state [10, 11]. Therefore, different sessions can be
processed by independent sensors. A session splitter (see
Figure 1.c) are then used to load balancing the sensors by
sending session’s packets to different sensors using a
round-robin-like algorithm. The shared space required by
the packet-level parallelism can be avoided by simply
maintaining separate session tables for each sensor.
However, the reassembly stage could not be eliminated. In
addition, the network analyzer is needed in order to detect

multi-session or multi-host attacks. The session-level
parallelism does not guarantee a perfect load balancing
among sensors. In fact, since over 80 % of the snort rules
are TCP-based and over 30 % are HTTP-based, some
sensors will be overloaded against some discharged
sensors.
The rule-level parallelism creates a set of rules for each
sensor [12]. In this case a traffic duplicator is then used to
send every packet to every sensor. Each sensor performs
quick check of every packet to determine if the sensor
contains a rule associated with the given packet. If so, the
sensor would process the packet, otherwise it would drop it.
This approach guarantees a load balancing among the
sensors if the administrator divides the rules perfectly.
However, each sensor, in this case, wastes much time while
preprocessing every packet and dropping unnecessary ones.

Fig. 1: parallel architectures

In component-level parallelism, individual components of
the IDS architecture are isolated and given their own
processing elements (see Figure 1.d). Two natural
candidates are preprocessing and multi-pattern matching.
There are a number of ways in which component-level
parallelism could be implemented. Consider an example
with three sensors. The first sensor read the packets,
classifies them and reassembles them, the second sensor

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

11

processes the packets and the third sensor validate the
attacks and performs the passive/active actions. This
performance of the IDS based on this architecture is
guaranteed from the high-level pipelining where a sensor
feeds the next one.

3. A Distributed IDS Architecture

3.1 Design Challenges
 To design and implement new models and architectures
we should address the following main challenges imposed
by the high speed networks and the real time constraints:
Scalability: IDS should handle heavy traffic load. As a
network may grow fast, the IDS design should allow the
addition of new sensors. In addition, the design of the IDS
should be flexible and extendable in order to support the
exponential evolution of the intrusion detection rules’
number.
Fault tolerance: since the IDS may fail down for different
reasons (hardware failure, Denial of Services attacks, etc),
the global IDS architecture should monitor the different
sensors and forwards the whole or a part of the traffic from
a down sensor to another sensor. The forwarding may also
occur if a sensor is overloaded and thus it should be
discharged.
Stateful analysis: when using traffic splitting, the traffic
stream comprising a single attack should be sent to only one
sensor and not to be scattered to different sensors.
In-depth analysis: the parallel IDS design should
encompass a honeypot which is called by the IDS in order
to provide an in-depth analysis about the attackers'
objectives and techniques.
Accuracy and efficiency of alert correlation: how to
couple meaningfully different alerts generated by different
heterogeneous distributed IDS some of them based on
misuse model and some others based on anomaly model
and how to correlate these IDS alerts with the network
vulnerability assessment alerts efficiently and in real-time

3.2 Architecture Design
We propose the following architecture (see Fig 2).
For incoming traffic:

1. The high speed network switch/router splits the
incoming traffic to the IDS sensors by forwarding
the packets based on its switching table to the
dedicated sensor for this service. For example the
FTP sensor will only select packets sent to the FTP
server(s) deployed in the network.

2. Each dedicated sensor runs only the IDS rules set
dedicated to the depicted packets. For example,
the FTP sensor will run the IDS rule set dedicated
to the FTP service on the FTP depicted packets.

3. In case of attack detection, the sensor executes the
appropriate security policy strategy and it sends an
alarm to the control center (see Fig2. TSM

component), Otherwise the sensor will resend the
packet to the underline local area network.

Fig. 2: The global architecture

For outgoing traffic
Each server/host in the local area network has a Host
Intrusion Detection System (HIDS). If that HIDS detects an
attack, it will send an alarm to the control center.
For the internal or external attacks
The control center (TSM) aggregates and analyzes the
different alarm to detect an eventual internal or external
multi host attacks. It will execute some event correlation
algorithms for that purposes. Depending on the attack
nature, the control center executes an automatic security
policy strategy or sends a notification to the network
security administrator to do the right actions. In all the case,
the control center produces some different security reports
about the network security status which can be used for the
security forensics tasks.

3.3 Critics and benefits of the architecture:

High
Speed

Network

Giga
Ethernet

HSN Edge
switch/Router

Giga
Ethernet
Switch

Modified
ARP
protocol

Load Balancing

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

12

• This solution does not require a special hardware.
Therefore, it is easy to deploy and integrate in the
existent real running infrastructure

• A little investment in network configuration is
needed since the splitting was delegated to the
switch itself which should be monitored either
dynamically via a variant version of the ARP
protocol to change dynamically the switching
table or via the switch port mirroring techniques.

• As opposite of the existent parallel IDS This
simple and efficient splitting design meet the
demand of high speed, without using some
techniques such as encapsulation and
des-encapsulation of the packets, at the contraire,
the IDS will not touch the traffic packets except
the content itself for security analysis.

• It assigns the traffic across nodes as evenly as
possible and it adapts itself to the variety of the
network traffic.

• This systematic splitting of the traffic reduces the
set of security rule to be only those needed by the
service-specific IDS sensor.

• The multi host attacks will be detected by the
control center by integrating the node-issued alert
messages (based on event correlation algorithms)
to detect multi-object attacks on the whole
network.

• The real time defense could be done either by
automatic security policies or by the administrator
security actions decision.

4. Performance study

4.1 Four scenarios
In order to validate the performance of our

architecture (which will be called the optimized
architecture), three other architecture are built. First, the
centralized architecture which includes only one sensor
configured with all the Snort's rules and fed with the whole
traffic. This is the typical architecture which is the
reference. Second the rule-based architecture which
encompasses seven sensors. Each sensor uses only a part
of the rule-set. The division of the rule-set is based on the
destination port of the traffic. Third, the data-based
architecture which encompasses seven sensors each one
uses the whole rule-set but fed with a part of the whole
traffic. The data-splitting is done according to destination
port via port mirroring techniques. Finally, the optimized
architecture encompasses seven sensors each one uses only
a part of the traffic and only a part of the rule-set.

4.2 Testbed
The testbed is composed by seven sensor. Each sensor

has a Intel Core 2 Duo CPU E6750 processor running at

2.66 GHz with a 4096 KB cache size. The operating
system is Ubuntu 9.04 over Linux kernel 2.6.28-13. The
installed IDS is Snort 2.7.0 using the Sourcefire VRT
Certified Rules (8134 rules). Snort is configured is a way
that generates a binary log file without checking the
checksum of the packets. All the alerts are saved in a
mySQL-5.0.75 database using the Snort-mySQL schema
version 107.

In order to guaranty an accurate comparison between the
four scenarios, we have opted to use the same dumped
traffic for all the tests which is the RootFu!-11 traffic.
RootFu! is the descendant of the Capture the Flag
competition held at Defcon conference each year [13]. It is
organized and run by the Ghetto Hackers. RootFu! elects
eight teams at the DefCon conference against each other in
a test of network defense and hacking skills. Each team
has to defend its own server and applications while trying
to break into the servers of the seven other teams.
 Each team had to run five Web services on a variant of
Unix known as BSD. The services consisted of the music
streaming application IceCast, a Web news portal based on
Slashcode, two ads, and a multiuser text-based role-
playing game known as FurryMuck. Each team
accumulated points for having the applications available.
The longer a service was up, the more points its
supervising team won. However, each team lost points if a
service it was running became compromised. Teams can
choose to port, upgrade or replace services.
The traffic generated during RootFu! days was dumped
using the tcpdump program. RootFu!-11 is a part of the
Defcon-11 conference. The dumped file encompasses
10527588 packets in a 3.7 GB file. It contains about 31500
Snort's alert.

4.3 Benchmark
RootFu! Dump files encompasses 10527588 packets.

For the optimized and the data-based scenarios, the
packets are divided into seven files, one file for each
sensor, each one encompasses about 1500000 packets. The
packets are divided in a way that all the packets of a given
destination port are grouped together in the same sensor.
So that, the task of the packet splitter become easy since it
checks only the destination port of each packet an forward
it to a unique sensor. As a result, each sensor is specialized
to a specific range of ports as shown in table 1.

The configuration depends on the destination ports of the
dump file which guarantees a load balanced architecture.
However, the real traffic in a real network is different from
the RootFu! traffic. But, when applying the same port-
splitting method dynamically on the fly or statically with a
real dumped file, another port distribution will be resulted
which is suitable for the new network architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

13

Sensor number Range of ports

1 [0,80] and no a tcp or a
udp packets

2 [81, 1539]

3 [1540, 3713]

4 [3714, 8312]

5 [8313, 36412]

6 [36413, 60158]

7 [60159, 65536]

Table 1: service ports distribution among sensors

Given this port-splitting configuration, the Snort' rules are
also divided into seven files. Each file contains the rules
that must be applied to the given range of ports. e.g. the
rule file number one contains the rules that correspond to
the range of port [0,80] as a destination port or that is
neither a TCP packet nor a UDP one. The resulted rule
distribution is shown in Fig 3.

Fig.3 : Rules count for each server

Finally, for each scenario, Snort is fed with the specified
dump file and configured to process only a given number
of packets. This number varies from 100000 to the whole
number of packet in the file. Each run is repeated 15 times.
For each run, the real processed number of packet, the

processing time and the number of generated alerts are
taken. Then, the average of the processing time is saved.
Finally, the Snort's log file and the Snort's database are
emptied after each run. Finally, for each scenario, the
minimum and the maximum processing time among the
sensors is kept.

4.4 performance analysis

The figure 4 is a comparison between the centralized
and the rule-based architectures. The X-axis is the number
of packet processed by Snort and the Y-axis is the
corresponding processing time. The doted red curve
corresponds to the centralized architecture. It shows a
linear curve which is a normal behavior. The others curves
correspond to maximum and the minimum of the rule-
based scenario.

Note that a rule-based sensor contain sonly a part of the
rule set and is fed with the whole dump file. In order to
select the packets that correspond to the sensor' ports, a
Snort port filter is added. Thus, in order to process 100000
packet for example, Snort must read and filter much more
than 100000 since the packets that correspond to the
sensor's filter are spread on along the file, in contrast to the
centralized sensor which reads the first 100000 packet of
the traffic. Hence, the maximum curve and even the
minimum curve are always above the centralized curve.
The maximum curve points correspond to the sensors six
and seven' points because their ports are useless.

For Example, the sensor seven must read the whole traffic

Fig. 4: comparison between the rule-based architecture and
the centralized architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

14

in order to process only 134495 packets which requires
about 38 seconds. Then, the processing time of the sensor
seven remains about 38 seconds while the number of
packets that Snort is asked to process is more than 134495
because there are only 134495 packets that verify to the
sensor's filter. The maximum number of packet that
satisfies a filter is 1092915 which corresponds to sensor
one's filter. After that point, the Snort's processing time
remains constant.

Figure 5 shows a comparison between data-based and
centralized architecture using the same axis as the previous
figure. There are four curves, the centralized curve, the
minimum curve and the maximum curve among the seven
sensors of the data-based architecture and the logarithmic
base10 function. In this architecture, the traffic is split
according to the port ranges of each sensor. The curve of
the maximum shows an excellent result especially after
1600000 packets. Between 700000 and 1600000, the
centralized demonstrates a better performance, this is due
to the types of packet processed by the sensors. In fact the
centralized sensor generates about 461 alerts against only
128 alerts by the sensor number one with 700000 packets.
143 alerts among 461 are caused by the destination port 80
which requires 2400 pattern matching checks and a
quarter of the 266 alerts are caused by packets with
destination port 3306 which are checked using pattern
matching against 1681 rules. The 128 alerts generated by
the data-based sensor number one are ICMP packets which
checked against 710 rules. The Snort's processing of ICMP
packets is very expensive.
After 1600000 packets, the data-based architecture is
always better than the centralized one. As compared with
the logarithmic curve, the data-based architecture

demonstrates a logarithmic behavior which is a very good
result.

The figure 6 is a comparison between the optimized
architecture and the centralized architecture using the same
axis as the previous figure. Each sensor of the optimized
architecture is fed with a part of the whole traffic and
contains only the associated rules. The optimized
architecture is the best architecture that guarantees a
logarithmic curve. The maximum processing time is
always less than the one spent by the centralized
architecture especially after 1600000 packets. Before
1600000 packets, the ICMP packets produce almost all the
alerts and dominate the packet processing phase.

Fig. 6: comparison between the optimized-based
architecture and the centralized architecture

The optimized architecture is a large scale architecture.
With 9800000 packets is requires only 15.12 seconds
against 162 seconds with the centralized architecture. In
other words, the optimized solution is about 10 times
quicker than the centralized architecture.

The figure 7 is a comparison between the more greedy
sensor of the optimized architecture with the more greedy
sensor of the data-based architecture. It also includes a
comparison between the fastest sensors of the two
architectures. We notice that the optimized architecture is
always better than the data-based one. However, the
performance of the two architectures is very close. This
proves that the overhead of the rule check and the
maintenance of the rule-tree are not very time-expensive.

The comparison between the minimum and the maximum
curves shows that the maximum processing time is
approximately five times the minimum processing time.
For Example, with 6000000 packets, the minimum

Fig. 5: comparison between the data-based architecture
and the centralized architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

15

processing time is about 2 seconds (sensor 3) and the
maximum processing time is about 10 seconds (sensor 1).
This result proves that the sensors are not load balanced.
This is due to the huge number of alerts generated by the
sensor 1 (about 1000 alerts) against a few number of alert
generated by the sensor 3 (87 alerts).

Fig. 7: comparison between the optimized-based
architecture and the data-based architecture

This optimized architecture is based on a traffic splitting
among sensors with a corresponding rule splitting which
lead to a no-load balanced rule distribution. This figure
proves that a load balanced architecture must take into
account the vulnerable ports/servers as an important
parameter in addition to the amount of traffic and the
number of rules.

5. Conclusion
In conclusion, the performance study proves that our
distributed IDS architecture can effectively decreases the
bottleneck caused by the intrusion detection processing and
analysis for high-speed networks. It has a better scalability
and flexibility with its switch-based splitting structure.
Based on this architecture, the IDS will effectively monitor
the backbone network for security and helps in the
evaluation and forecast of network security situations. As
future work we will investigate in the design of algorithms
and techniques for the security event correlation to improve
the real-time security defending against the security attacks.
We will try also to develop some network scanning and
vulnerability assessment techniques to reduce the false
alarms and therefore improve the efficiency of intrusion
detection task.

6. References
[1] Snort:. http://www.snort.org/, 2008.
[2] SUN Qin-dong, ZHANG De-yun, GAO Peng and

ZHANG Xiao. Study of Parallel IDS Load Balancing
Algorithm. Mini-microsystems, 2004,
25(12):2215-2217.

[3] LU Zhi-Jun, ZHENG Jing, HUANG Hao. A Distributed
Real-Time Intrusion Detection System for High-Speed
Network. Journal of Computer Research and
Development, 2004, 41(4):667-673.

[4] Tarek Abbes, Alakesh Haloi, Michaël Rusinowitch.
High Performance Intrusion Detection using Traffic
Classification. Proceedings of the IEEE International
Conference on Advances in Intelligent Systems
(AISTA2004), Luxembourg , Nov 2004.

[5] T. Abbes, A. Bouhoula, and M. Rusinowitch. A traffic
classification algorithm for intrusion detection. In
AINA Workshops (1), pages 188–193, 2007.

[6] L Schaelicke, K Wheeler, C Freeland. SPANIDS: A
Scalable Network Intrusion Detection Loadbalancer.
Proceedings of the 2nd Conference on Computing
Frontiers, Ischia, Italy, 2005.

[7] I.Charitakis, K.Anagnostakis, E.Markatos. An Active
Traffic Splitter Architecture for Intrusion Detection.
Proceedings of the 11th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems
(MASCOTS 2003), Orlando, October 2003. 238- 241

[8] JIANG Wenbao, HAO Shuang, DAI Yiqi, LIU Tinghua.
Load Balancing Algorithm for High-speed Network
Intrusion Detection Systems. Journal of Tsinghua Univ
(Sci&Tech), 2006, 46(1):106-110.

[9] I. Cisco Technology. Parallel intrusion detection
sensors with load balancing for high speed networks.
1999.

[10] C. Kruegel, F. Valeur, G. Vigna, R. Kemmerer.
Stateful Intrusion Detection for High-Speed Networks.
Proceedings of the IEEE Symposium on Security and
Privacy. Los Alamitos, alifornias: IEEE Press, May
2002. 285- 293.

[11] D. L. Schuff, Y. R. Choe, and V. S. Pai. Conservative
vs. optimistic parallelization of stateful network
intrusion detection. In PPoPP ’07: Proceedings of the
12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 138–139, New
York, NY, USA, 2007. ACM.

[12] A. M.S., J. Q., A. M., R. M.R.U., and A. M.B.
Adaptative load balancingarchitecture for SNORT. In
IEEE International Networking and Communications
Conference (INCC’04), 2004.

[13] http://www.defcon.org

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

16

Hassen Sallay received the B.E degree from national
college of computer science of Tunisia in 1999. He
received the M.E. degree and Dr. Eng. degree from Henri
Poincarre Univ. in 2000 and 2004, respectively. After
working as a teaching assistant (from 2000) in Ecole de
Mines in France, He has been an assistant professor (from
2004) in the Dept. of Computer Science and Information,
Imam Mohammad ibn Saud Univ. His research interest
includes Network and information Security Management,
Network Management and Multicast services. He is also
interested to the Arabization research fields. He is the
leader of a research project funded by KACST in Network
Security field as well as a steering committee member of
Arabization IT research program.

Khalid AlShalfan Khalid A. Al-Shalfan, BEng, M.Sc,
PhD in Computer Vision, (Computer Science) from the
University of Bradford. Recently He is assistant professor
at the College of Computer and Information Sciences,
Al-Imam Muhammad Ibn Saud Islamic University. His
Research activities are in Information Security and
Computer vision. He is the leader of the IT research
program of the Saudi IT research plan in Imam Mohammad
Ibn Saud University.

Ouissem Ben Fredj received the B.E degree from
university of sciences of Tunis, Tunisia in 2002. He
received the M.E. degree from Henri Poincarre Univ.,
France in 2003 and Dr. Eng. degree from University of
Evry Val d'Essonnes, France in 2007, respectively. He
worked as a teaching assistant in the National Institute of
Telecommunications in France (from 2003 to 2005) and in
the Université du Sud - Toulon - Var (from 2006 to 2007).
He has been an assistant professor (from 2008) in the
Dept. of Computer Science and Information, Imam
Mohammad ibn Saud Univ. His research interest includes
parallel and distributed systems, high-speed networks,
Network and information Security, and voice over IP. He
is also interested to the Quran research fields. He is an
assistant researcher of a research project funded by
KACST in Network Security field.

