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Summary 
As networks become faster there is a need for security analysis 
techniques that can keep up with the increased network 
throughput. Traditional centralized approaches to traffic analysis 
cannot scale with the increase of bandwidth advances mainly due 
to their memory and computational requirements. In the last few 
years a number of distributed architectures have already been 
proposed for dedicated network monitoring tasks but they are not 
scalable in the context of high speed networks. In this paper we 
present an optimized scalable distributed architecture which is 
about 10 times quicker than the centralized architecture. The 
solution is based on switch-based splitting approach that supports 
intrusion detection on high-speed links by balancing the traffic 
load among different sensors running Snort.  
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1. Introduction 

   Networks began a potentially hostile environment, 
where intruders are passively or actively trying to breach 
network security. Passive intruders may browse through 
sensitive data files, monitor private conversations, or 
intercept e-mail messages. Active intruders, on the other 
hand, are malicious and seek to destroy information, deny 
others access to network resources, and introduce false 
data or unauthenticated messages onto the network. This 
type of intruder may even seek to destroy programs and 
applications by introducing viruses or worms into the 
network. 
Current intrusion detection systems (IDS) are barely 
capable of real-time traffic analysis on saturated 
Fast-Ethernet links (100 Mbps). As network technology 
presses forward, Gigabit-Ethernet (1000 Mbps) has been 
imposed as a standard for large network installations. In 
order to protect such installations, a new approach for 
intrusion detection is necessary to manage the 
ever-increasing data volume. Network speeds have 
increased faster than the speed of processors. Thus, 

centralized solutions have reached their limit, in particular 
for multi-step attacks or packet’s content analysis which 
requires maintaining much information about the attack. 
This may seriously overloads a single node. In addition, the 
centralized solution becomes overloaded as the number of 
attack’s signatures that the IDS must check grows. This is 
due to the continuous increase of the number of possible 
attacks. For example, the size of the rule set used by the 
Snort IDS was quadrupled from 1000 rules in 2001 to over 
4000 at the beginning of 2008 [1]. Recent researches have 
introduced different parallel IDS scheme based on a set of 
sensors. Each sensor analyses the whole traffic or just a part 
of it. These parallel IDS has raised new issues including the 
network architecture, the software architecture, the traffic 
duplication, and the traffic splitting. In other hand, the 
correlation of IDS information with vulnerability data is 
necessary to increase the effectiveness of the security 
monitoring to satisfy the real-time constraints. This allows 
for greater automation to take action in real time against 
intruders. This research paper presents an efficient scalable 
IDS architecture dedicated for high speed networks. 
Section 2 shows the related work. Section 3 presents our 
distributed IDS architecture. In Section 4 the performance 
study of our system is detailed and finally the paper is 
concluded by some future work. 
 
2. Related work 
 
    The speed of the new backbone network has reached up 
to 10G so that one single Network Intrusion Detection 
system (NIDS) can’t be capable to monitor the whole 
network effectively and react in real time to the security 
attacks. In this section, we present some related work of the 
research investigations on parallel IDS for high-speed 
networks based on the distributed architecture [2, 3].  
To promote the NIDS performance and efficiency, present 
studies on IDS for high-speed network monitoring have 
begun to choose the distributed architecture as an alterative. 
There are two key technologies in the parallel IDS which 
are traffic splitting and load balancing.  The Traffic 
splitting designs are mainly based on flows or on security 
policies and IDS characteristics [4, 5]. It is based on the 
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following some main principles (a) distribution of the 
packets of the same attack to the same sensor (b) keeping up 
with the network speed efficiently (c) adaptation to the 
variety of the network traffic. The load balancing aims to 
assign an appropriate load among the sensors [6].  It is 
implemented either by (a) the traffic splitter which make 
easy the management of the overall system [7]. This choice 
requires an expensive specific high-speed instrument to 
work at a full wire speed, and more may be likely the 
bottleneck of the system.  Or by (b) each sensor based on 
the load balancing approach by applying of some proposed 
effective algorithms for load evaluation and adjustment 
which will predict overloading on nodes precisely and 
reduce the load smoothly to get a smallest packet loss rate 
[8]. Due to the complexity of these algorithms, they are 
enhanced by several improvements to increase the system 
performance such that (a) early filtering, where a portion of 
the packets are processed on the splitter instead of the 
sensors (b) multiple levels of hashing to disperse the highly 
intensive traffic on one sensor (c) or an analyzing node, 
which receives messages issued by sensors, detects the 
multi-object attack behaviors and adjusts the distribution of 
the network flow dynamically.  
Mainly, four parallel techniques exist in the literature for 
IDS: packet-level parallelism, session-level parallelism, 
rule-level parallelism, and component-level parallelism 
(see figures 1.a, 1.b, 1.c, 1.d).   
The packet-level parallelism consists on creating several 
dependent sensors [9]. Each sensor applies the complete set 
of rules. A round-robin-like algorithm is then used to split 
the traffic among the sensors. A perfect load-balancing 
across all sensors is then guaranteed. However, a session 
analyzer is necessary (see figure 1.b) in order to perform 
stateful analysis. This is required for example for 
multi-packet or multi-session attacks. The session analyzer 
has to maintain session integrity, flow and stream tables, 
and a reassembly list. The analyzer fills these structures 
from the preprocessors. The analyzer can be considered as a 
shared space updatable by the preprocessors and consulted 
by the sensors. This shared space is expected to be a serious 
bottleneck since it should be protected against access each 
time a component tries to use it. Moreover, the space is used 
at least as many times as the number of incoming packets 
and sessions.  
The session-level parallelism is motivated by the fact that 
the packet from one session will never affect another 
session state [10, 11]. Therefore, different sessions can be 
processed by independent sensors. A session splitter (see 
Figure 1.c) are then used to load balancing the sensors by 
sending session’s packets to different sensors using a 
round-robin-like algorithm. The shared space required by 
the packet-level parallelism can be avoided by simply 
maintaining separate session tables for each sensor. 
However, the reassembly stage could not be eliminated. In 
addition, the network analyzer is needed in order to detect 

multi-session or multi-host attacks. The session-level 
parallelism does not guarantee a perfect load balancing 
among sensors. In fact, since over 80 % of the snort rules 
are TCP-based and over 30 % are HTTP-based, some 
sensors will be overloaded against some discharged 
sensors. 
The rule-level parallelism creates a set of rules for each 
sensor [12]. In this case a traffic duplicator is then used to 
send every packet to every sensor. Each sensor performs 
quick check of every packet to determine if the sensor 
contains a rule associated with the given packet. If so, the 
sensor would process the packet, otherwise it would drop it. 
This approach guarantees a load balancing among the 
sensors if the administrator divides the rules perfectly. 
However, each sensor, in this case, wastes much time while 
preprocessing every packet and dropping unnecessary ones. 

 
Fig. 1: parallel architectures 

 
 
In component-level parallelism, individual components of 
the IDS architecture are isolated and given their own 
processing elements (see Figure 1.d). Two natural 
candidates are preprocessing and multi-pattern matching. 
There are a number of ways in which component-level 
parallelism could be implemented. Consider an example 
with three sensors. The first sensor read the packets, 
classifies them and reassembles them, the second sensor 
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processes the packets and the third sensor validate the 
attacks and performs the passive/active actions. This 
performance of the IDS based on this architecture is 
guaranteed from the high-level pipelining where a sensor 
feeds the next one.  
 
3. A Distributed IDS Architecture 

 
3.1 Design Challenges 
   To design and implement new models and architectures 
we should address the following main challenges imposed 
by the high speed networks and the real time constraints: 
Scalability: IDS should handle heavy traffic load. As a 
network may grow fast, the IDS design should allow the 
addition of new sensors. In addition, the design of the IDS 
should be flexible and extendable in order to support the 
exponential evolution of the intrusion detection rules’ 
number. 
Fault tolerance: since the IDS may fail down for different 
reasons (hardware failure, Denial of Services attacks, etc), 
the global IDS architecture should monitor the different 
sensors and forwards the whole or a part of the traffic from 
a down sensor to another sensor. The forwarding may also 
occur if a sensor is overloaded and thus it should be 
discharged. 
Stateful analysis: when using traffic splitting, the traffic 
stream comprising a single attack should be sent to only one 
sensor and not to be scattered to different sensors. 
In-depth analysis: the parallel IDS design should 
encompass a honeypot which is called by the IDS in order 
to provide an in-depth analysis about the attackers' 
objectives and techniques. 
Accuracy and efficiency of alert correlation:  how to 
couple meaningfully different alerts generated by different 
heterogeneous distributed IDS some of them based on 
misuse model and some others based on anomaly model 
and how to correlate these IDS alerts with the network 
vulnerability assessment alerts efficiently and in real-time  
 
3.2 Architecture Design 
We propose the following architecture (see Fig 2).  
For incoming traffic: 

1. The high speed network switch/router splits the 
incoming traffic to the IDS sensors by forwarding 
the packets based on its switching table to the 
dedicated sensor for this service. For example the 
FTP sensor will only select packets sent to the FTP 
server(s) deployed in the network. 

2. Each dedicated sensor runs only the IDS rules set 
dedicated to the depicted packets. For example, 
the FTP sensor will run the IDS rule set dedicated 
to the FTP service on the FTP depicted packets. 

3. In case of attack detection, the sensor executes the 
appropriate security policy strategy and it sends an 
alarm to the control center (see Fig2. TSM 

component), Otherwise the sensor will resend the 
packet to the underline local area network. 

 

 
Fig. 2: The global architecture 

 
 
 
For outgoing traffic 
Each server/host in the local area network has a Host 
Intrusion Detection System (HIDS). If that HIDS detects an 
attack, it will send an alarm to the control center. 
For the internal or external attacks 
The control center (TSM) aggregates and analyzes the 
different alarm to detect an eventual internal or external 
multi host attacks. It will execute some event correlation 
algorithms for that purposes. Depending on the attack 
nature, the control center executes an automatic security 
policy strategy or sends a notification to the network 
security administrator to do the right actions. In all the case, 
the control center produces some different security reports 
about the network security status which can be used for the 
security forensics tasks. 
 
3.3 Critics and benefits of the architecture: 
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• This solution does not require a special hardware. 
Therefore, it is easy to deploy and integrate in the 
existent real running infrastructure  

• A little investment in network configuration is 
needed since the splitting was delegated to the 
switch itself which should be monitored either 
dynamically via a variant version of the ARP 
protocol to change dynamically the switching 
table or via the switch port mirroring techniques. 

• As opposite of the existent parallel IDS This 
simple and efficient splitting design meet the 
demand of high speed, without using some 
techniques such as encapsulation and 
des-encapsulation of the packets, at the contraire, 
the IDS will not touch the traffic packets except 
the content itself for security analysis.  

• It assigns the traffic across nodes as evenly as 
possible and it adapts itself to the variety of the 
network traffic.  

• This systematic splitting of the traffic reduces the 
set of security rule to be only those needed by the 
service-specific IDS sensor.  

• The multi host attacks will be detected by the 
control center by integrating the node-issued alert 
messages (based on event correlation algorithms) 
to detect multi-object attacks on the whole 
network.  

• The real time defense could be done either by 
automatic security policies or by the administrator 
security actions decision. 

 
4. Performance study 
  
4.1 Four scenarios 
In order to validate the performance of our 

architecture (which will be called the optimized 
architecture), three other architecture are built. First, the 
centralized architecture which includes only one sensor 
configured with all the Snort's rules and fed with the whole 
traffic. This is the typical architecture which is the 
reference. Second the rule-based architecture which 
encompasses seven sensors. Each sensor uses only a part 
of the rule-set. The division of the rule-set is based on the 
destination port of the traffic. Third, the data-based 
architecture which encompasses seven sensors each one 
uses the whole rule-set but fed with a part of the whole 
traffic. The data-splitting is done according to destination 
port via port mirroring techniques. Finally, the optimized 
architecture encompasses seven sensors each one uses only 
a part of the traffic and only a part of the rule-set.  
 

4.2 Testbed 
The testbed is composed by seven sensor. Each sensor 

has a Intel Core 2 Duo CPU E6750 processor running at 

2.66 GHz with a 4096 KB cache size. The operating 
system is Ubuntu 9.04 over Linux kernel 2.6.28-13. The 
installed IDS is Snort 2.7.0 using the Sourcefire VRT 
Certified Rules (8134 rules). Snort is configured is a way 
that generates a binary log file without checking the 
checksum of the packets. All the alerts are saved in a 
mySQL-5.0.75 database using the Snort-mySQL schema 
version 107. 
 
In order to guaranty an accurate comparison between the 
four scenarios, we have opted to use the same dumped 
traffic for all the tests which is the RootFu!-11 traffic. 
RootFu! is the descendant of the Capture the Flag 
competition held at Defcon conference each year [13]. It is 
organized and run by the Ghetto Hackers. RootFu! elects 
eight teams at the DefCon conference against each other in 
a test of network defense and hacking skills. Each team 
has to defend its own server and applications while trying 
to break into the servers of the seven other teams. 
 Each team had to run five Web services on a variant of 
Unix known as BSD. The services consisted of the music 
streaming application IceCast, a Web news portal based on 
Slashcode, two ads, and a multiuser text-based role-
playing game known as FurryMuck. Each team 
accumulated points for having the applications available. 
The longer a service was up, the more points its 
supervising team won. However, each team lost points if a 
service it was running became compromised. Teams can 
choose to port, upgrade or replace services.  
The traffic generated during RootFu! days  was dumped 
using the tcpdump program. RootFu!-11 is a part of the 
Defcon-11 conference. The dumped file encompasses  
10527588 packets in a 3.7 GB file. It contains about 31500 
Snort's alert. 
 

4.3 Benchmark 
RootFu! Dump files encompasses 10527588 packets. 

For the optimized and the data-based scenarios, the 
packets are divided into seven files, one file for each 
sensor, each one encompasses about 1500000 packets. The 
packets are divided in a way that all the packets of a given 
destination port are grouped together in the same sensor. 
So that, the task of the packet splitter become easy since it 
checks only the destination port of each packet an forward 
it to a unique sensor. As a result, each sensor is specialized 
to a specific range of ports as shown in table 1. 

 
The configuration depends on the destination ports of the 
dump file which guarantees a load balanced architecture. 
However, the real traffic in a real network is different from 
the RootFu! traffic. But, when applying the same port-
splitting method dynamically on the fly or statically with a 
real dumped file, another port distribution will be resulted 
which is suitable for the new network architecture.  
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Sensor number Range of ports 

1 [0,80] and no a tcp or a 
udp packets 

2 [81, 1539] 

3 [1540, 3713] 

4 [3714, 8312] 

5 [8313, 36412] 

6 [36413, 60158] 

7 [60159, 65536] 

 
Table 1: service ports distribution among sensors 

 
 
Given this port-splitting configuration, the Snort' rules are 
also divided into seven files. Each file contains the rules 
that must be applied to the given range of ports. e.g. the 
rule file number one contains the rules that correspond to 
the range of port [0,80] as a destination port or that is 
neither a TCP packet nor a UDP one. The resulted rule 
distribution is shown in Fig 3. 
 
 
 

 
 

Fig.3 : Rules count for each server 
 
 

Finally, for each scenario, Snort is fed with the specified 
dump file and configured to process only a given number 
of packets. This number varies from 100000 to the whole 
number of packet in the file. Each run is repeated 15 times. 
For each run, the real processed number of packet, the 

processing time and the number of generated alerts are 
taken. Then, the average of the processing time is saved. 
Finally, the Snort's log file and the Snort's database are 
emptied after each run. Finally, for each scenario, the 
minimum and the maximum processing time among the 
sensors is kept. 
 

4.4 performance analysis 
 

The figure 4 is a comparison between the centralized 
and the rule-based architectures. The X-axis is the number 
of packet processed by Snort and the Y-axis is the 
corresponding processing time. The doted red curve 
corresponds to the centralized architecture. It shows a 
linear curve which is a normal behavior. The others curves 
correspond to maximum and the minimum of the rule-
based scenario.  
 
Note that a rule-based sensor contain sonly a part of the 
rule set and is fed with the whole dump file. In order to 
select the packets that correspond to the sensor' ports, a 
Snort port filter is added. Thus, in order to process 100000 
packet for example, Snort must read and filter much more 
than 100000 since the packets that correspond to the 
sensor's filter are spread on along the file, in contrast to the 
centralized sensor which reads the first 100000 packet of 
the traffic. Hence, the maximum curve and even the 
minimum curve are always above the centralized curve. 
The maximum curve points correspond to the sensors six 
and seven' points because their ports are useless.  

 
 
For Example, the sensor seven must read the whole traffic 

Fig. 4: comparison between the rule-based architecture and 
the centralized architecture 
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in order to process only 134495 packets which requires 
about 38 seconds. Then, the processing time of the sensor 
seven remains about 38 seconds while the number of 
packets that Snort is asked to process is more than 134495 
because there are only 134495 packets that verify to the 
sensor's filter. The maximum number of packet that 
satisfies a filter is 1092915 which corresponds to sensor 
one's filter. After that point, the Snort's processing time 
remains constant. 
 

 
Figure 5 shows a comparison between data-based and 
centralized architecture using the same axis as the previous 
figure. There are four curves, the centralized curve, the 
minimum curve and the maximum curve among the seven 
sensors of the data-based architecture and the logarithmic 
base10 function. In this architecture, the traffic is split 
according to the port ranges of each sensor. The curve of 
the maximum shows an excellent result especially after 
1600000 packets. Between 700000 and 1600000, the 
centralized demonstrates a better performance, this is due 
to the types of packet processed by the sensors. In fact the 
centralized sensor generates about 461 alerts against only 
128 alerts by the sensor number one with 700000 packets. 
143 alerts among 461 are caused by the destination port 80 
which requires 2400 pattern matching checks and  a 
quarter of the 266 alerts are caused by packets with 
destination port 3306 which are checked using pattern 
matching against 1681 rules. The 128 alerts generated by 
the data-based sensor number one are ICMP packets which 
checked against 710 rules. The Snort's processing of ICMP 
packets is very expensive.  
After 1600000 packets, the data-based architecture is 
always better than the centralized one. As compared with 
the logarithmic curve, the data-based architecture 

demonstrates a logarithmic behavior which is a very good 
result. 
   
The figure 6 is a comparison between the optimized 
architecture and the centralized architecture using the same 
axis as the previous figure. Each sensor of the optimized 
architecture is fed with a part of the whole traffic and 
contains only the associated rules. The optimized 
architecture is the best architecture that guarantees a 
logarithmic curve. The maximum processing time is 
always less than the one spent by the centralized 
architecture especially after 1600000 packets. Before 
1600000 packets, the ICMP packets produce almost all the 
alerts and dominate the packet processing phase.  
 

Fig. 6: comparison between the optimized-based 
architecture and the centralized architecture 

 
The optimized architecture is a large scale architecture. 
With 9800000 packets is requires only 15.12 seconds 
against 162 seconds with the centralized architecture. In 
other words, the optimized solution is about 10 times 
quicker than the centralized architecture. 
  
The figure 7 is a comparison between the more greedy 
sensor of the optimized architecture with the more greedy 
sensor of the data-based architecture. It also includes a 
comparison between the fastest sensors of the two 
architectures. We notice that the optimized architecture is 
always better than the data-based one. However, the 
performance of the two architectures is very close. This 
proves that the overhead of the rule check and the 
maintenance of the rule-tree are not very time-expensive. 
 
The comparison between the minimum and the maximum 
curves shows that the maximum processing time is 
approximately five times the minimum processing time. 
For Example, with 6000000 packets, the minimum 

Fig. 5: comparison between the data-based architecture 
and the centralized architecture 
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processing time is about 2 seconds (sensor 3) and the 
maximum processing time is about 10 seconds (sensor 1). 
This result proves that the sensors are not load balanced. 
This is due to the huge number of alerts generated by the 
sensor 1 (about 1000 alerts) against a few number of alert 
generated by the sensor 3 (87 alerts).  
 

Fig. 7: comparison between the optimized-based 
architecture and the data-based architecture 

 
 
This optimized architecture is based on a traffic splitting 
among sensors with a corresponding rule splitting which 
lead to a no-load balanced rule distribution. This figure 
proves that a load balanced architecture must take into 
account the vulnerable ports/servers as an important 
parameter in addition to the amount of traffic and the 
number of rules.  
 
5. Conclusion 
In conclusion, the performance study proves that our 
distributed IDS architecture can effectively decreases the 
bottleneck caused by the intrusion detection processing and 
analysis for high-speed networks. It has a better scalability 
and flexibility with its switch-based splitting structure. 
Based on this architecture, the IDS will effectively monitor 
the backbone network for security and helps in the 
evaluation and forecast of network security situations. As 
future work we will investigate in the design of algorithms 
and techniques for the security event correlation to improve 
the real-time security defending against the security attacks. 
We will try also to develop some network scanning and 
vulnerability assessment techniques to reduce the false 
alarms and therefore improve the efficiency of intrusion 
detection task.   
 

   
6. References 
[1] Snort:. http://www.snort.org/, 2008. 
[2] SUN Qin-dong, ZHANG De-yun, GAO Peng and 

ZHANG Xiao. Study of Parallel IDS Load Balancing 
Algorithm. Mini-microsystems, 2004, 
25(12):2215-2217. 

[3] LU Zhi-Jun, ZHENG Jing, HUANG Hao. A Distributed 
Real-Time Intrusion Detection System for High-Speed 
Network. Journal of Computer Research and 
Development, 2004, 41(4):667-673. 

[4] Tarek Abbes, Alakesh Haloi, Michaël Rusinowitch. 
High Performance Intrusion Detection using Traffic 
Classification. Proceedings of the IEEE International 
Conference on Advances in Intelligent Systems 
(AISTA2004), Luxembourg , Nov 2004. 

[5] T. Abbes, A. Bouhoula, and M. Rusinowitch. A traffic 
classification algorithm for intrusion detection. In 
AINA Workshops (1), pages 188–193, 2007. 

[6] L Schaelicke, K Wheeler, C Freeland. SPANIDS: A 
Scalable Network Intrusion Detection Loadbalancer. 
Proceedings of the 2nd Conference on Computing 
Frontiers, Ischia, Italy, 2005. 

[7] I.Charitakis, K.Anagnostakis, E.Markatos. An Active 
Traffic Splitter Architecture for Intrusion Detection. 
Proceedings of the 11th IEEE/ACM International 
Symposium on Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems 
(MASCOTS 2003), Orlando,  October 2003. 238- 241 

[8] JIANG Wenbao, HAO Shuang, DAI Yiqi, LIU Tinghua. 
Load Balancing Algorithm for High-speed Network 
Intrusion Detection Systems. Journal of Tsinghua Univ 
(Sci&Tech), 2006, 46(1):106-110. 

[9]  I. Cisco Technology. Parallel intrusion detection 
sensors with load balancing for high speed networks. 
1999. 

[10] C. Kruegel, F. Valeur, G. Vigna, R. Kemmerer. 
Stateful Intrusion Detection for High-Speed Networks. 
Proceedings of the IEEE Symposium on Security and 
Privacy. Los Alamitos,  alifornias: IEEE Press, May 
2002. 285- 293.  

[11] D. L. Schuff, Y. R. Choe, and V. S. Pai. Conservative 
vs. optimistic parallelization of stateful network 
intrusion detection. In PPoPP ’07: Proceedings of the 
12th ACM SIGPLAN symposium on Principles and 
practice of parallel programming, pages 138–139, New 
York, NY, USA, 2007. ACM. 

[12] A. M.S., J. Q., A. M., R. M.R.U., and A. M.B. 
Adaptative load balancingarchitecture for SNORT. In 
IEEE International Networking and Communications 
Conference (INCC’04), 2004. 

[13] http://www.defcon.org 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009 
 

 

16

 

Hassen Sallay   received the B.E degree from national 
college of computer science of Tunisia in 1999. He  
received the M.E. degree and Dr. Eng. degree from Henri 
Poincarre Univ. in 2000 and 2004, respectively. After 
working as a teaching assistant (from 2000) in Ecole de 
Mines in France, He has been an assistant professor (from 
2004) in the Dept. of Computer Science and Information, 
Imam Mohammad ibn Saud Univ. His research interest 
includes Network and information Security Management, 
Network Management and Multicast services. He is also 
interested to the Arabization research fields.  He is the 
leader of a research project funded by KACST in Network 
Security field as well as a steering committee member of 
Arabization IT research program. 
 
Khalid AlShalfan  Khalid A. Al-Shalfan, BEng, M.Sc, 
PhD in Computer Vision, (Computer Science) from the 
University of Bradford. Recently He is assistant professor 
at the College of Computer and Information Sciences, 
Al-Imam Muhammad Ibn Saud Islamic University. His 
Research activities are in Information Security and 
Computer vision. He is the leader of the IT research 
program of the Saudi IT research plan in Imam Mohammad 
Ibn Saud University. 
 
Ouissem Ben Fredj received the B.E degree from 
university of sciences of Tunis, Tunisia in 2002. He 
received the M.E. degree from Henri Poincarre Univ., 
France in 2003 and Dr. Eng. degree from University of 
Evry Val d'Essonnes, France in 2007, respectively. He 
worked as a teaching assistant in the National Institute of 
Telecommunications in France (from 2003 to 2005) and in 
the Université du Sud - Toulon - Var (from 2006 to 2007). 
He has been an assistant professor (from 2008) in the 
Dept. of Computer Science and Information, Imam 
Mohammad ibn Saud Univ. His research interest includes 
parallel and distributed systems, high-speed networks, 
Network and information Security, and voice over IP. He 
is also interested to the Quran research fields. He is an 
assistant researcher of a research project funded by 
KACST in Network Security field.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


