
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

78

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

Hybrid method for aircraft landing scheduling based on a

Job Shop formulation

G. Bencheikh †, ††, J. Boukachour ††, A. El Hilali Alaoui †, and F. El Khoukhi †, ††

† Modeling Laboratory and Scientific Computing,
Faculty of Science and Technology, Fez, B. P. 2202 Route D'Imouzzer Fez Morocco

†† CERENE
ISEL, Quai Frissard BP 1137 -76063 Le Havre Cedex France

Summary
This paper aims to study the multiple runway case of the static
Aircraft Landing Problem (ALP), where all data are known in
advance. In the first part of this work, we propose a formulation
of the problem as a mathematical programming model in order to
reduce the number of constraints (which can positively reduce
the computing time) and to give a more rigorous formulation. In
the second part, we formulate the ALP as a Job Shop Scheduling
Problem (JSSP) based on a graphical representation. The interest
of this second formulation is to show the relation between the
ALP as a specific scheduling problem and the NP-hard JSSP as a
more general Scheduling.
Finally, to resolve the ALP, we propose a hybrid method
combining Genetic Algorithms with Ant Colony Optimization
Algorithm. The hybrid algorithm is tested on variant instances of
the ALP, involving up to 50 aircraft and 4 runways.

Key words:
Scheduling, Metaheuristic, Job Shop Scheduling, Aircraft landing,
Mathematical Programming, Genetic Algorithm, Ant Colony
Optimization Algorithm

1. Introduction and related works

The ALP has been studied in many works, including J. E.
Beasley et al. [5]. They have presented a mathematical
formulation of the problem as a mixed linear program;
they used a resolution method based on relaxation of
binary variables and introducing additional constraints.
Computational results are presented involving 10 to 50
aircraft and 1 to 4 runways. G. Jung and M. Laguna have
presented a new approach in [26] based on the
segmentation of time. Their method has been tested on
instances involving 10 to 50 aircraft and 1 to 4 runways. It
consists of dividing the problem into smaller sub-problems
and each one is formulated as a linear program (as in [5])
and optimally resolved. In [20], A.T. Ernst and M.
Krishnamoorthy proposed resolutions methods, an exact
method based on Branch and Bound and a heuristic one
based on Genetic Algorithm. In [21], A.T. Ernst et al.

proposed a heuristic and an exact method for the static and
dynamic ALP. A Genetic Algorithm and a branch and
bound algorithm has been applied by J. Abela et al. [1]. J.
Boukachour and A. El Hilali Alaoui [10] applied a Genetic
Algorithm for the single runway case. In [13], V. Ciesielski
and P. Scerri presented a Genetic Algorithm for two
runways. The landing times are allocated by specifying a
30 seconds time slot and infeasible individuals are not
eliminate but penalized. A particular case has been discuss
in [7], where J.E. Beasley et al. used a heuristic method
based on population called ‘heuristic population’ for
scheduling aircraft landing in London Heathrow airport.
Their algorithm solves the dynamic case [6]. In [30] H.
Pinol and J.E. Beasley presented a mathematical
formulation of the ALP with two types of objective
functions: linear and nonlinear one. They presented two
genetic approaches to solve the ALP, Scatter Search and
bionomic algorithm. Their computational results involve
10 to 500 aircraft and 1 to 5 runways.
In this paper, we deal with the multiple runway of the
static ALP. In the first part, we give a new mathematical
formulation of the ALP in order to reduce the number of
constraints. In the second part, we formulate the ALP as a
JSSP with a partial order and alternative sequences. Finally,
we present a hybrid resolution method combining Genetic
Algorithm and Ant Colony Optimization [17].

2. Problem description

When an aircraft arrives in an airport radar range (or radar
horizon), it requires from air traffic control an
authorization to land, a landing time and an appropriate
runway if several runways are available. The landing time
must be between an earliest landing time, which
corresponds to the time at witch the aircraft could land if it
flies at its fastest speed (witch is not economical for
aircraft), and a latest landing time.
Within this time window, there is a target landing time, a
preferred landing time, which corresponds to the time that

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

79

aircraft could land if it flies at its cruise speed (the most
economical speed of the aircraft). It corresponds to the
time announced to passengers. Any deviation (earliness or
delay) from the target time causes disturbances at the
airport. Consequently, a penalty cost is associated with
each deviation before or after the target time of an aircraft.
So, the objective is to minimize the total cost of penalties
such as:

• An interval of security between two successive
landings on the same runway must be respected;

• An interval of security that must separate two
successive landings on different runways must be
respected;

• Each aircraft must land within a predetermined
time window [Earliest landing time, Latest
landing time].

3. Mathematical formulation

In the following section, we give a new mathematical
formulation of the static case of the ALP based on the
classical formulation presented in [5].

3.1 Notations

We use for the formulation, the following notations:

3.1.1. Variables

N : the number of aircrafts waiting to land,
R : the number of available runways,
ei : the earliest landing time for aircraft i,
li : the latest landing time of aircraft i,
tai : the target landing time for aircraft i,
Pbi : cost by one unit of time for aircraft i if it lands

before its target time,
Pai : cost by one unit of time for aircraft i if it lands

after its target time,
Sij : the separation time between aircraft i and

aircraft j (Sij > 0, i≠j), if i lands before j on the
same runway

sij : the separation time between aircraft i and
aircraft j (sij ≥ 0, i≠j), if i lands before j on a
different runways

In the following, we suppose that matrix of separation is
symmetric (Sij = Sji and sij = sji)

3.1.2. Decision variables

ti : the scheduled landing time for aircraft i
eri : earliness of the aircraft i, max (0, tai – ti)
tri : delay of the aircraft i, max (0, ti – tai)

⎩
⎨
⎧
−

=
otherwise

j before lands iaircraft if

1
1

xij

Note that a similar variable has been used in some
previous papers [5] [10] [21]:

⎩
⎨
⎧

=
otherwise

j before lands iaircraft if

0
1

xij

⎩
⎨
⎧

=
otherwise

rrunway on lands iaircaft if

0
1

y ir

⎩
⎨
⎧

=
otherwise

runway same on the land j and iaircarft if

0
1

z ij

3.2. Constraints

For each aircraft, the scheduled landing time must belong
to the landing window, [ei , li]

 N,...,1i ilitie =∀≤≤ (1)

Note that this constraint is equivalent to 0 ≤ yi ≤ 1 where

)ieil(iyieit −+=

The following constraints show that there are two cases: i
lands before j or j lands before i.

 ij,N,...,1j,i 0jixijx >=∀=+ (2)

{ } N,...,1j,i 1,1 ijx =∀−∈ (3)
Note that in [5], we found similar constraints:

ij ,N,...,1j,i 1jixijx >=∀=+ (2a)

{ } N,...,1j,i 1,0 ijx =∀∈ (3a)
In some cases, we can immediately decide if xij =1 or
xij = -1.
For example, if li < ej then xij = 1 and xji = -1

The separation constraints must be respected:

()
ij ,N,...,1j,i

ijz1ijsijz.ijSit.ijxjt.ijx

>=∀

−++≥
 (4)

Let (i, j) be a pair of aircraft such as i < j and suppose that
aircraft i and j land on the same runway, i.e. zij = 1,
(1 − zij = 0)
• If the aircraft i lands before aircraft j then xij=1, the

constraint (4) becomes :
ijij Stt +≥

• If the aircraft j lands before aircraft i then xij = -1, the
constraint (4) becomes :

ijij Stt +−≥−
Since Sij = Sji, (The matrix (Sij) is symmetric), we have:

jiji Stt +≥
We can conclude that the two situations, aircraft i lands
before aircraft j or j lands before i, can be expressed by the
constraint (4).
In [30], H. Pinol and J. E. Beasley have considered the
following constraint:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

80

()
 ji ,N ,...,1j,i

jix.Mijz1ijsijz.ijSitjt

≠=∀

−−++≥
 (4a)

Where M is a great positive number and

⎩
⎨
⎧

=
otherwise0

j before lands iaircraft if1
 ijx

Let (i,j) be a pair of aircraft such as i ≠ j and suppose that
aircraft i and j land on the same runway, i.e. zij = 1
(1 − zij = 0)

• If the aircraft i lands before aircraft j then xij = 1, the

constraint (4a) becomes :
ijij Stt +≥

• If the aircraft j lands before aircraft i then xij = 0, the
constraint (4a) becomes :

MStt jiji −+≥
We can observe that our mathematical formulation of the
last constraint is an improvement of the constraint (4a). In

the constraint (4a), we must consider N2N − relations
(expressed by ji ,N ,...,1j,i ≠=∀). In our formulation,

constraint (4) considers only
2

N2N −
 relations

(expressed by j i ,N ,...,1j,i <=∀).
The deviation before and after the target time are
expressed by the constraints (5), (6), (7), (8) and (9)
below:

N,...,1i ititaier =∀−≥ (5)
N,...,1i ieitaier0 =∀−≤≤ (6)

N,...,1i itaititr =∀−≥ (7)
N,...,1i itailitr0 =∀−≤≤ (8)

N,...,1i itrieritait =∀+−= (9)

We introduce the following constraint to express the fact
that an aircraft must be landed on one runway:

N,...,1i1
R

1r
iry =∀=∑

=
 (10)

Then, the matrix (zij) is symmetric:

ij , N ,...,1j,i jizijz >=∀= (11)

Constraint (12) links the variables yir, yjr, and zij:

R ,...,1r ,ij ,N ,...,1j,i 1jryiryijz =∀>=∀−+≥ (12)

However, if one of the aircraft i or j lands on runway r and
the other doesn’t, we must have zij =0. This case isn’t

satisfied by the last constraint (12). To avoid this problem,
we provide the following constraint:

() ()1jry1iryjry.iryijzjry.iry
 R ,...,1r ,ij , N ,...,1j,i

−−+≤≤
=∀>=∀

 (12a)

Indeed, if
(yir, yjr) = (0,0) then 0 ≤ zij ≤ 1
(yir, yjr) = (0,1) then 0 ≤ zij ≤ 0
(yir, yjr) = (1, 0) then 0 ≤ zij ≤ 0
(yir, yjr) = (1,1) then 1 ≤ zij ≤ 1

3.3. Objective function

The objective is to minimize the cost of deviation between
the actually time of landing of all aircraft and their target
times landing.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+
N

1i
iPa.itriPb.ierMin (13)

However, there are other objectives (see [5] and [30]) like
landing the aircraft as soon as possible, compute an
efficient scheduling or reduce the aircraft‘s consummation.

4. Formulation as a Job Shop scheduling
problem

The JSSP [8] [25] is one of the most complex problems
encountered in real shop floor [19]. It consists generally of
ordering a set of jobs to be processed in a set of machines
such as:

• Each job is composed by a predefined sequence
of unprompted operations ;

• Each job must be proceeded by some machines in
a specified order not necessarily the same for all
jobs ;

• Each machine can process only one job at a time.
The JSSP is NP-hard (see [32]) and has several variations,
for example:

1. Classical Job Shop Scheduling problem
2. Flexible Job Shop Scheduling problem
3. Job Shop scheduling problem with partial order

and processing alternatives
4. Job Shop scheduling problem with separable

setup times
5. Job Shop problem with transportation times
6. Dynamic Job Shop problem

The JSSP has captured the interest of a great number of
researchers; C. Dimopoulos and A. M. S. Zalzala in [15]
illustrate recent developments in the field of evolutionary
computation for manufacturing optimization, by
considering the classical Job Shop scheduling and a wide
range of optimization problems. J. Boukachour and A.
Benabdelhafid in [9], T. Yamada and R. Nakano in [34], B.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

81

Joo Park et al. in [11] and Dirk C. Mattfeld and Christian
Bierwirth in [16], have developed resolution methods
based on Genetic Algorithms. A wide survey on
scheduling problems with setups times or costs are
provided by A. Allahverdi et al. in [2] covering more than
300 papers. An approach entitled « adaptive Branch and
Bound » is presented by Jose M. Framinan in [22] for
transforming Job Shop scheduling problems into Flow
Shops. In [27] T. Kis has studied an extension of the Job
Shop scheduling problem namely the JSSP with partial
order and processing alternatives. An application of Ant
Colony Optimization on a JSSP is presented by A. Colorni
et al. in [14] (see also the work of Kuo-Ling Huang and
Ching-Jong Liao in [28]). Many authors have studied
others variants of the problem, see M. Mastrolilli and L. M.
Gambardella in [29] and A. Rossi and G. Dini in [31] for
the flexible Job Shop problem, J. B. Chambers in [12] for
both classical and flexible Job Shop scheduling problems,
J. Hurink and S. Knust in [24], G. El Khayat et al. in [19]
for the Job Shop problem with transportation times and
recently in 2008, V. Vinod and R. Sridharan in [33] present
a simulation-based experimental study of scheduling rules
for the dynamic Job Shop problem with
sequence-dependent setups.
In this section, we propose a formulation of the ALP as a
JSSP.
Throughout the remainder of this section and in order to
better explain our formulation, we consider ten aircraft
(N=10) and two runways (R=2). Figure1 shows the
aircrafts time windows and their target times.

Each rectangle in the chart represent ei (the earliest landing
time for aircraft i), li (the latest landing time of aircraft i)
and the target time tai.

We begin to define the Jobs and their components. First,
we divide the aircrafts in subsets as shown in the figure 2
below:

In this stage, we can build the jobs as follows:
• The first job J1 corresponds to the landing of the

aircrafts: {1, 2, 3}
• The second job J2 corresponds to the landing of the

aircrafts: {4, 5, 6, 7}
• The third job J3 corresponds to the landing of the

aircrafts: {8, 9, 10}

We consider here the runways like machines and the
landing of an aircraft like an operation (landing) of a job i
(aircraft i) on a machine (runway).

Second, we define an order between operations of each job
by supposing that, when the time windows of two aircrafts
are separate, an order exists between them, hence the
appearance of a partial order at the job operations level.
So, we have a JSSP composed by three jobs J1, J2 and J3,
where J1 is composed by three operations, J2 four
operations and J3 three operations.
Now, our aim is to determine the jobs sequence on the set
of machines M, in our case M = {set of runways}. This
task consists to assign a starting time of each operation (a
landing time) and to allocate a resource (a runway)
respecting the time constraints such as:
• The earliest starting time and the due date (the earliest

and latest landing times).

Landing time

li ei tai

Aircraf
t

10
9
8
7
6
5
4
3

0h 1h 2h 3h 4h 5h Times

Figure 1: Aircraft time Windows and Target times

0h 1h 2h 3h 4h 5h Times

Job 3

Job 2

Job 1

Aircraf
t

 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

Figure 2: Random decomposing of Aircrafts in subsets

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

82

• Setup times of machines depend on the nature of the
operations (the intervals of security between aircrafts
landings).

• The order of operations in jobs (the partial order as
predefined previously).

4.1. Graphical Representation

To solve the JSSP, we often use a conjunctive-disjunctive
graph [8] [25]. The vertices or nodes represent the
operations of the job including two special nodes
(fictitious nodes), representing the beginning and the end
of the schedule. Conjunctive arcs represent constraints of
precedence and disjunctive arcs represent pairs of
operations that must be performed on the same machines.
In our case, we use a disjunctive graph « and/or » based on
two kinds of graphs (for more details on « and/or » graph
representation, see [27]):
• « and » graph describes partial order at the level of

jobs (the partial order between operations in the same
job is expressed by an ‘’ and ‘’ relation).

• « or » graph describes the alternation relation
between operations with alternatives resources (the
possibility to land an aircraft on a runway among a set
of candidates runways (multiple runways appearance)
is expressed by an ‘’ or ‘’ relation).

In the « and/or » graph, we have two kinds of edges:
• Dotted edges connecting the operations of an « and »

graph for a partial order relation ‘’ and ‘’
• Dotted edges connecting the operations of an « or »

graph for an alternation relation ‘’ or ‘’.
The following figure illustrates an example of an

« and/or » graph.

The following notations are adopted afterwards:
• a+ : the dummy beginning of an « and » graph
• a- : the dummy end of an « and » graph
• o+ : the dummy beginning of an « or » graph
• o- : the dummy end of an « or » graph
• D : the source node
• F : the sink node

We introduce the operation irO to designate the landing
of aircraft i on the runway r. So, for each aircraft i
corresponds an « or » graph whose branches are formed by
the operations R,...,1r for ,Oir = (knowing that exactly
one operation must be chosen during scheduling to respect
the fact that an aircraft can land on a single runway
through the set of runways) and for each job j corresponds
an « and » graph whose branches are formed by « or »
subgraphs corresponding to the operations in partial order
knowing that each branch can have one « or » subgraph or
more connected by precedence relations where they exist.
For the previous example with 10 aircraft and two runways,
adopting the cited notations, the jobs become:

{ }32O,31O,22O,21O,12O,11O1J =
{ }72O,71O,62O,61O,52O,51O,42O,41O2J =
{ }2 10O,1 10O,92O,91O,82O,81O3J =

Note that the landing time windows of plane 1 and plane 2
are not separated; hence we haven’t order between
operations which are associated. Likewise for aircraft 1
and 3, and aircraft 2 and 3.
We observe that the landing time windows of the pair of
aircraft (4, 5), (4, 7), (6, 5) and (6, 7) are separated; hence
we have an order between operations associated with each
pair. The operations with corresponding pairs of aircraft (8,
10) and (9, 10) are connected by precedence relations.

The « and /or» graphs below show the processing steps of,
respectively, Jobs J1, J2 and J3, as nodes.

Figure 3 Example of an « and/or » graph

Figure 4: Job J1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

83

Note that:

• A precedence relation between two operations is
represented by a continuous conjunctive arc.

• There is no adjacency between pairs of operations
(Oir, Oir’).

• The other operations are all connected by
disjunctive arcs that we have not represented in
the graphs but we consider them implicitly.

The figure 7 below illustrates the complete « and/or »
graph associate to the problem:

We evaluate by:
• Sij, the arcs ji for)O,O(jrir ≠

• sij, the arcs kr for)O,O(jkir ≠

• 0, the arcs :

)F,a(and

)a,D(),a,O(),O,a(),O,O(),O,O(ijij-ijij
−

+−++

Thus, we get the graph associated to a JSSP with partial
order and alternative sequences.

5. Our hybrid method

To resolve the ALP, we propose a hybrid method, called
ACOGA (Ant Colony Optimization Genetic Algorithm)
which combines two metaheuristics: Genetic Algorithm
(GA) and Ant Colony Optimization (ACO).
The ACO is used to generate an initial population of
feasible solutions for the GA. The purpose is to increase
the chances of generating some goods solutions in the
initial population. Starting from a good initial population
helps the GA to find goods solutions faster. The
performance of a genetic algorithm depends strongly on
the initial population.

First, we start by describing below in more detail our
genetic algorithm in terms of coding method, fitness
function, crossover as well as mutation.

5.1. Coding method

To resolve the ALP, there are two tasks. First, give a
landing sequence and secondly compute landing times for
a set of aircraft. The landing times are computed based on

Figure 5: Job J2

Figure 6: Job J3

Figure 7: Complete « and/or » graph associate to the problem

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

84

the landing sequence. In addition to those lists (landing
sequence and landing times), we use a third list to
represent the assignment of runways to aircraft.

Here’s an example of code for 10 aircraft and 3 runways

3 1 4 2 6 7 8 5 9 10
3 2 3 2 2 3 2 1 2 1
100 115 140 150 300 320 400 552 650 580

In this solution composed of three lists, aircraft 3 lands on
the 3rd runway at 100 minutes from midnight, the aircraft 2
lands on the second runway at 115 and so on.

5.2. Generating the initial population

The initial solution plays a critical role in determining the
quality of final solution in any local search and the initial
good schedules can be evolved into the better schedules
(see [11]). However, it is possible to generate the initial
population randomly, but it’s generally difficult to generate
a number of feasible solutions with a small cost of
penalties in a good time. That’s why we propose to apply
an ACO algorithm by using the graph previously generated
(see graph of Figure 7). The number of ants is equal to the
desired initial population size.

Note that to generate a population of solutions, we can
suggest two strategies:
1. If one has a population of solutions, we propose a
strategy that consists of fixing the number of ants to the
desired initial population size and applying the ACO
algorithm below.
2. In order to get a population of higher quality solutions,
we propose a second strategy that consists of considering a
random number of ants and fixing the maximum number
of iterations of the ACO algorithm to the size of the initial
population, and keep at each iteration the best solution
given by the family of ants to build an initial population
for the GA.

To obtain a population of solutions in a short time, we
choose the second strategy which generates a landing
sequence and an assignment of runways (first and second
lists of a solution) by applying only one cycle of the ACO
algorithm. In order to complete the solutions of the ALP,
after building the previous lists, we have to compute a
landing time to each aircraft (list 3).

5.2.1. Landing sequence

The ACO algorithm is described as follows:

1. Initialization
For each ant k,

♦ Initialize the Tabuk list with the source D of
the graph

♦ Initialize the Candidatek list with the first
operation of each job Ji

♦ Initialize the pheromone trace with τ0

2. Construction of a population of m solutions
For each ant k = 1, …, m do
 Initialize i D
While (Candidatek is not empty) do

♦ From a current node i, choose the next node
j∉Tabuk among the Candidatek nodes
according to a transition rule:

⎪⎩

⎪
⎨
⎧ ≤ητ

=
βα

∉

0

0ilil
Tabul

qqifJ

qqif
j k

f

])()[(maxarg

 J is chosen randomly among Candidatek

()

()⎪
⎪
⎩

⎪⎪
⎨

⎧

+−

+−
=

runwaysdifferent on land l and i f
1*tata

1

runway same on the land l and i f
1*tata

1

il

il

i
s

i
S

il

il
ilη

♦ Insert j in Tabuk
♦ Updating the Candidatek list
♦ Local updating of pheromone trails τij using

the formula :

0lij)l1(ij τρ+τρ−=τ
End while
End for

Where, m is the number of ants, Tabuk is the list of visited
nodes, Candidatek is the list of nodes candidates to be
visited in order to respect precedence relations imposed by
the technological sequences, α and β are two parameters
that control the relative importance of τij and ηij, q is a
random variable uniformly distribute on [0, 1], q0 is a
parameter set between 0 and 1, τ0 is the initial value of
pheromone trails and ρ is the coefficient of vaporization

We note that in the previous algorithm, the information
heuristic (ηil) depends on two parameters:
• Separation time (Sil) or (sil) : generally, sil << Sil

(∀i,l = 1,…,N). So, the aircraft landing on different
runways will be privileged than those landing on the
same runway. This decision will provide a good
repartition of aircraft on runways.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

85

Child1

Child2

Child 1

• |tai – taj| : the aircraft closed in term of target time
are privileged than the others in order to land as soon
as possible to their target landing time to reduce the
cost penalty.

5.2.2. Computation of landing times

For each solution generated by ACO method, we compute
the landing times of aircraft based on the landing sequence
and the assignment of runways, respecting the aircraft
landing windows and security’s intervals between them.

()⎟
⎠
⎞⎜

⎝
⎛ +=

∈
iji

Oi
jj Sttat max,max

5.3. Reproduction

The reproduction, crossover followed by a mutation, is
applied after a roulette-wheel selection. We apply the 1X
crossover [17] on the first list and second one of a solution.
These lists correspond to the sequence of aircrafts and
their allocated runways. The crossover point is the same
for both lists and it is chosen randomly.

To avoid a repetition of an aircraft, when constructing
Construction of children from a pair of parents, we
proceed as follows:

Let P1 and P2 be the lists of the parents:

After choosing a crossover point, we copy the left part of
the first parent into the first child and the left part of the
second parent into the second child

Then we complete the first child with the missing aircraft
and their assigned runways from the second parent (not
already assigned) in the same order in which they appear
in the second parent) beginning by the first element on the
left side.

Then the other child will be similarly produced by
exchanging the role of the two parents.

The third list (landing times) is calculated according to the
process described in 5.2.2.

Finally, the mutation selects two or more aircraft at
random and swaps their positions as shown in the example
below with 10 aircraft and 3 runways. Unlike crossover,
mutation acts just on the landing sequence (the first list of
as solution).

Before

6 3 7 10 8 9 2 1 4 5
1 1 2 3 1 2 3 1 3 1

After
6 9 7 10 8 3 2 1 4 5
1 1 2 3 1 2 3 1 3 1

Then, the third list (landing times) is calculated according
to the process described in 5.2.2.

3 9 1 5 4 10 7 6 2 8
3 2 3 2 2 3 2 1 2 1

6 3 7 10 8 9 2 1 4 5
1 1 2 3 1 2 3 1 3 1

3 9 1 5 4 10
3 2 3 2 2 3

6 3 7 10 8 9
1 1 2 3 1 2

3 9 1 5 4 10 6 7 8 2
3 2 3 2 2 3 1 2 1 3

Crossover point

Parent1

Parent2

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

86

6. Numerical Results and Discussion

The hybrid algorithm was implemented in C++, and
tested on a Pentium 4, 2.66 GHz CPU with 240 Mo of
RAM. All benchmarks can be downloaded from the web
page:
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.ht
ml [4].

Table 1 summarizes the results acquired for 25 benchmark
instances. First, we can see clearly from Table 1 that our
hybrid algorithm works much better that a genetic
algorithm alone. Secondly, in the majority of cases, our
algorithm finds or approaches the optimal solution.

Benchmarks N R Optimal
values

ACGA
Values

CPU(s)
(ACGA)

GA
Values

CPU(s)
(GA)

1 10 1 700 700 1.42 820 12.40
 2 90 90 1.14 90 10.36
 3 0 0 1.09 0 10.32

2 15 1 1480 1720 2.44 1720 19.97
 2 210 210 2.25 220 16.82
 3 0 0 1.48 10 15.87

3 20 1 820 850 3.64 1750 28.41
 2 60 60 3.03 570 26.41
 3 0 0 3.02 320 22.32

4 20 1 2520 4480 3.51 6580 28.11
 2 640 680 3.49 1770 25.19
 3 130 130 3.45 600 24.06
 4 0 0 3.04 330 25.19

5 20 1 3100 4800 3.36 5800 27.70
 2 650 720 4.02 1650 29.15
 3 170 240 3.39 560 24.75
 4 0 0 3.06 440 22.88

6 30 1 24442 24442 3.08 * *
 2 554 554 3.86 * *
 3 0 0 4.38 * *

7 44 1 1550 1550 5.67 * *
 2 0 200 4.41 * *

8 50 1 1950 3240 7.33 * *
 2 135 160 10.47 * *
 3 0 0 10.09 * *

Table 1 Computational results

At the level of CPU time, we observe that GA takes more
time than ACGA. This is due to the fact that in GA the
landing times are generated randomly from the landing
windows. Indeed, each time, we assign a random landing
time to an aircraft while respecting the intervals of security
with previous ones. If it’s not the case, this landing time is
regenerated until all the intervals of security are respected.
This task increases the CPU time, especially when the

number of aircraft increases.

7. Conclusion

This paper has discussed the multiple runway case of the static
Aircraft Landing Problem, where data are known in advance.
We have expressed the ALP as a JSSP with partial order
and alternative sequences through an « and/or » graph. In

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.11, November 2008 87

terms of resolution, we enhanced a hybrid method which
combines two metaheuristics, namely Genetic Algorithm
and Ant Colony Optimization.
Finally, our ongoing researches will concern, in one hand,
the improvement of our algorithm to handle instances of
large size (100 to 500 aircrafts) and on the other hand, the
study of the dynamic case to face dynamic disturbances.

References
[1] J. Abela, D. Abramson, M. Krishnamoorthy, A. De Silva and

G. Mills (1993), « Computing optimal schedules for landing
aircraft », Proceeding 12th National ASOR Conference,
Adelaide, Australia, pp 71-90, 1993.

[2] A. Allahverdi, C.T. Ng, T.C.E. Cheng and Mikhail Y.
Kovalyov (2008), « A survey of scheduling problems with
setup times or costs », European Journal of Operational
Research, Volume 187, pp 985-1032, Issue 3, 16 June 2008.

[3] N. Bauerle, O. Engelhardt-Funk, and M. Kolonko (2007),
« On the waiting time of arriving aircrafts and the capacity of
airports with one or two runways », European Journal of
Operational Research, 177 (2), pp 1180-1196, 2007.

[4] J. E. Beasley (1990), OR-library: Distributing test problems
by electronic mail, Journal of the Operational Research
Society 41 (1990) 1069–1072, Available from:
<http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.htm
l >.

[5] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha and
D. Abramson (2000), « Scheduling aircraft landings – The
static case », Transportation Science, 34, pp 180-197, 2000.

[6] J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha and
D. Abramson (2004), « Displacement problem and
dynamically Scheduling aircraft landing », Journal of the
Operational Research Society, 55, pp 54-64, 2004.

[7] J. E. Beasley, J. Sonander, and P. Havelok (2001),
« Scheduling aircraft landing at London Heathrow using a
population heuristic », Journal of the operational Research
Society, 52, pp 483-493, 2001.

[8] J. Blazewicz, W. Domschke and E. Pesch (1996), « The job
shop scheduling problem: conventional and new solution
techniques », European Journal of Operational Research, 93,
pp 1-33, 1996.

[9] J. Boukachour and A. Benabdelhafid (2000), « Résolution
d’un problème d’ordonnancement de type job-shop par les
algorithmes génétiques », Troisième Conférence
Internationale de Mathématiques Appliquées et des Sciences
de l’Ingénieur, CIMASI Octobre 2000, Casablanca, Maroc,
2000.

[10] J. Boukachour and A. Elhilali Alaoui (2002), « A Genetic
Algorithm to solve a Problem of Scheduling Plane Landing »,
Advanced Computer Systems part II, pp 257-263, 2002.

[11] B. Joo Park, H. Rim Choi and H. Soo Kim (2003), « A
hybrid genetic algorithm for the job shop scheduling
problems », Computers & Industrial Engineering, Volume 45,
pp 597-613, Issue 4, December 2003.

[12] J. B. Chambers (1996): «Classical and flexible job shop
scheduling by Tabu search », Department of computer
Science, University of Texas, 1996.

[13] V. Ciesielski and P. Scerri (1998), « Real Time Genetic
Scheduling of Aircraft Landing Times », In D.Fogel, editor,
Proceeding of the 1998 IEEE International Conference on

Evolutionary Computation (ICEC98), pp 360-364, IEEE,
New York, USA, 1998.

[14] A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian (1994),
«Ant System for Job-Shop Scheduling » , Belgian Journal
of Operations Research, Statistics and Computer Science
(JORBEL), 34, pp 39-53, 1994.

[15] C. Dimopoulos and A. M. S. Zalzala (2000), « Recent
Developments in Evolutionary Computation for
Manufacturing Optimization: Problems, Solutions, and
comparisons », IEEE Transactions on Evolutionary
Computation, Volume 4, No. 2, pp 93-113, July 2000.

[16] Dirk C. Mattfeld and Christian Bierwirth (2004), « An
efficient genetic algorithm for job shop scheduling with
tardiness objectives », European Journal of Operational
Research, Volume 155, pp 616-630, Issue 3, 16 June 2004.

[17] J. Dréo, A. Pétrowski, P. Siarry and E. Taillard (2003):
« Métaheuristiques pour l’optimisation difficile », Eryolles
2003.

[18] N. Durand (2004) : « Algorithmes génétiques et autres outils
d’optimisation appliqués à la gestion du trafic aérien », HDR
de l’Institut Polytechnique de Toulouse, 2004.

[19] G. El Khayat, A. Langevin and D. Riopel (2006),
« Integrated production and material handling scheduling
using mathematical programming and constraint
programming », European Journal of Operational Research,
Volume 175, pp 1818-1832, Issue 3, 16 December 2006.

[20] A.T. Ernst and M. Krishnamoorthy (2001), « Algorithms for
Scheduling Aircraft Landing », CSIRO Mathematical and
Information Sciences Private Bag 10, Clayton South MDC,
Clayton VIC 3169, Australia. 2001.

[21] A.T. Ernst, M. Krishnamoorthy and R.H. Store (1999),
« Heuristic and exact algorithms for scheduling aircraft
landings », pp 229-241, Networks 34; 1999.

[22] Jose M. Framinan (2007), « An adaptive branch and bound
approach for transforming job shops into flow shops »,
Computers & Industrial Engineering, Volume 52, pp 1-10,
Issue 1, February 2007.

[23] J. V. Hensen (2004), « Genetic Search methods in air trafic
control », Computers and Operations Research, 31, pp
445-459, 2004.

[24] J. Hurink and S. Knust (2002), « A tabu search algorithm for
scheduling a single robot in a job-shop environment »,
Discrete Applied Mathematics, Volume 119, pp 181-203,
Issues 1-2, 15 June 2002.

[25] A. S. Jain and S. Meeran (1999), « Deterministic job-shop
scheduling: past, present and future », European Journal of
Operational Research, 113, pp 390-434, 1999.

[26] G. Jung and M. Laguna (2003), «Time segmenting heuristic
for an aircraft landing problem », leeds school of Bisness,
University of Colorado, Boulder, CO 80309, USA. Working
paper, 2003.

[27] T. Kis (2003), « Job-Shop scheduling with processing
alternatives », European Journal of Operational Research,
Volume 151, pp 307-332, Issue 2, 1 December 2003.

[28] Kuo-Ling Huang and Ching-Jong Liao (2008), « Ant colony
optimization combined with taboo search for the job shop
scheduling problem », Computers & Operations Research,
Volume 35, pp 1030-1046, Issue 4, April 2008.

[29] M. Mastrolilli and L. M. Gambardella (2000), « Effective
neighbourhood function for the flexible job shop problem »,
Journal of Scheduling, 3(1), pp 3-20, 2000.

IJCSNS International Journal of Computer Science and Network Security, Vol.9 No.8, August 2009

88

[30] H. Pinol and J. E. Beasley (2006), «Scatter Search and
Bionomic Algorithms for the Aircraft Landing Problem»,
Europeen Journal of Operational Research, 127(2), pp
439-462, 2006.

[31] A. Rossi and G. Dini (2007), « Flexible job-shop scheduling
with routing flexibility and separable setup times using ant
colony optimization method », Robotics and
Computer-Integrated Manufacturing, Volume 23, pp 503-516,
Issue 5, October 2007.

[32] B. Roy and B. Sussmann (1964): « Les problèmes
d’ordonnancement avec contraintes disjonctives », Note DS
NO 9 Bis, SEMA, Montrouge, 1964.

[33] V. Vinod and R. Sridharan (2008), « Scheduling a dynamic
job shop production system with sequence-dependent setups:
An experimental study », Robotics and Computer-Integrated
Manufacturing, Volume 24, pp 435-449, Issue 3, June 2008.

[34] T. Yamada and R. Nakano (1992), « A genetic algorithm
applicable to large scale job shop problems », in Proc. 2end
Int. Conf. PPS from Nature, Männer and Manderick, Eds.
Amsterdam, The Netherlands: Elsevier Science, pp. 281-290,
1992.

Ghizlane Bencheikh is a PhD student of
the Laboratory of Modeling and Scientific
Calcul and CERENE laboratory, she is a
member of Operational Research and
Computer group at the Faculty of Sciences
and Techniques of Fez, Morocco. She works
on scheduling problems and metaheuristics.

Jaouad Boukachour is an Associate
Professor of Computer Sciences at Le
Havre University, France. His research
interests include: Scheduling Problems,
Operational Research, and Supply Chain
Management. He has supervised a number
of PhD researchers in areas such as
logistics and scheduling aircraft landings.
Currently, he is supervising six PhD

students working on traceability, modelling road traffic, job shop
scheduling, scheduling aircraft landings and vehicle routing. He
has published more than 30 referred research papers. Within the
French CPER 2006 (State-Region Project Contract), he was
responsible for Modelling Optimisation and Simulation of
physical and information flows in an industrial logistics project.
Currently, he heads two projects about tracking container
shipments, funded by French National Research Agency (ANR)
and CPER 2008.

Ahmed Elhilali Alaoui is a Professor of
Operational Research at the Faculty of
Sciences and Techniques of Fez, Morocco.
His research interests include: Scheduling
Problems and Operational Research. He is
responsible for the operational research
and computer group, and he is supervising
10 PhD students working on job shop
scheduling, scheduling aircraft landings,

vehicle routing and optimization algorithms. He is member of the
La Société Marocaine de Recherche Opérationnelle (SOMARO).

Fatima El Khoukhi is a PhD student
of the Laboratory of Modeling and
Scientific Calcul and CERENE
laboratory, she is a member of
Operational Research and Computer
group at the Faculty of Sciences and
Techniques of Fez, Morocco. She
works on scheduling problems and
metaheuristics.

