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Summary 
This paper aims to study the multiple runway case of the static 
Aircraft Landing Problem (ALP), where all data are known in 
advance. In the first part of this work, we propose a formulation 
of the problem as a mathematical programming model in order to 
reduce the number of constraints (which can positively reduce 
the computing time) and to give a more rigorous formulation. In 
the second part, we formulate the ALP as a Job Shop Scheduling 
Problem (JSSP) based on a graphical representation. The interest 
of this second formulation is to show the relation between the 
ALP as a specific scheduling problem and the NP-hard JSSP as a 
more general Scheduling. 
Finally, to resolve the ALP, we propose a hybrid method 
combining Genetic Algorithms with Ant Colony Optimization 
Algorithm. The hybrid algorithm is tested on variant instances of 
the ALP, involving up to 50 aircraft and 4 runways.  
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1. Introduction and related works 

The ALP has been studied in many works, including J. E. 
Beasley et al. [5]. They have presented a mathematical 
formulation of the problem as a mixed linear program; 
they used a resolution method based on relaxation of 
binary variables and introducing additional constraints. 
Computational results are presented involving 10 to 50 
aircraft and 1 to 4 runways. G. Jung and M. Laguna have 
presented a new approach in [26] based on the 
segmentation of time. Their method has been tested on 
instances involving 10 to 50 aircraft and 1 to 4 runways. It 
consists of dividing the problem into smaller sub-problems 
and each one is formulated as a linear program (as in [5]) 
and optimally resolved. In [20], A.T. Ernst and M. 
Krishnamoorthy proposed resolutions methods, an exact 
method based on Branch and Bound and a heuristic one 
based on Genetic Algorithm. In [21], A.T. Ernst et al. 

proposed a heuristic and an exact method for the static and 
dynamic ALP. A Genetic Algorithm and a branch and 
bound algorithm has been applied by J. Abela et al. [1]. J. 
Boukachour and A. El Hilali Alaoui [10] applied a Genetic 
Algorithm for the single runway case. In [13], V. Ciesielski 
and P. Scerri presented a Genetic Algorithm for two 
runways. The landing times are allocated by specifying a 
30 seconds time slot and infeasible individuals are not 
eliminate but penalized. A particular case has been discuss 
in [7], where J.E. Beasley et al. used a heuristic method 
based on population called ‘heuristic population’ for 
scheduling aircraft landing in London Heathrow airport. 
Their algorithm solves the dynamic case [6]. In [30] H. 
Pinol and J.E. Beasley presented a mathematical 
formulation of the ALP with two types of objective 
functions: linear and nonlinear one. They presented two 
genetic approaches to solve the ALP, Scatter Search and 
bionomic algorithm. Their computational results involve 
10 to 500 aircraft and 1 to 5 runways.  
In this paper, we deal with the multiple runway of the 
static ALP. In the first part, we give a new mathematical 
formulation of the ALP in order to reduce the number of 
constraints. In the second part, we formulate the ALP as a 
JSSP with a partial order and alternative sequences. Finally, 
we present a hybrid resolution method combining Genetic 
Algorithm and Ant Colony Optimization [17]. 
 
2. Problem description 
 
When an aircraft arrives in an airport radar range (or radar 
horizon), it requires from air traffic control an 
authorization to land, a landing time and an appropriate 
runway if several runways are available. The landing time 
must be between an earliest landing time, which 
corresponds to the time at witch the aircraft could land if it 
flies at its fastest speed (witch is not economical for 
aircraft), and a latest landing time. 
Within this time window, there is a target landing time, a 
preferred landing time, which corresponds to the time that 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009 
 

 

79

 

aircraft could land if it flies at its cruise speed (the most 
economical speed of the aircraft). It corresponds to the 
time announced to passengers. Any deviation (earliness or 
delay) from the target time causes disturbances at the 
airport. Consequently, a penalty cost is associated with 
each deviation before or after the target time of an aircraft. 
So, the objective is to minimize the total cost of penalties 
such as: 

• An interval of security between two successive 
landings on the same runway must be respected; 

• An interval of security that must separate two 
successive landings on different runways must be 
respected; 

• Each aircraft must land within a predetermined 
time window [Earliest landing time, Latest 
landing time]. 

 
3. Mathematical formulation 
 
In the following section, we give a new mathematical 
formulation of the static case of the ALP based on the 
classical formulation presented in [5].  
 
3.1 Notations 
 
We use for the formulation, the following notations: 
 
3.1.1. Variables 
 
N  : the number of aircrafts waiting to land, 
R  : the number of available runways, 
ei  : the earliest landing time for aircraft i, 
li  : the latest landing time of aircraft i, 
tai  : the target landing time for aircraft i, 
Pbi  : cost by one unit of time for aircraft i if it lands 

before its target time, 
Pai  : cost by one unit of time for aircraft i if it lands 

after its target time, 
Sij  : the separation time between aircraft i and 

aircraft j (Sij > 0, i≠j), if i lands before j on the 
same runway 

sij  : the separation time between aircraft i and 
aircraft j (sij ≥ 0, i≠j), if i lands before j on a 
different runways 

In the following, we suppose that matrix of separation is 
symmetric (Sij = Sji and sij = sji)  
 
3.1.2. Decision variables 
 
ti  : the scheduled landing time for aircraft i 
eri  : earliness of the aircraft i, max (0, tai – ti) 
tri  : delay of the aircraft i, max (0, ti – tai) 

⎩
⎨
⎧
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otherwise 
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Note that a similar variable has been used in some 
previous papers [5] [10] [21]: 
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3.2. Constraints 
 
For each aircraft, the scheduled landing time must belong 
to the landing window, [ei , li ] 

   N,...,1i ilitie =∀≤≤   (1) 
 
Note that this constraint is equivalent to 0 ≤ yi ≤ 1 where 

)ieil(iyieit −+=  
 
The following constraints show that there are two cases: i 
lands before j or j lands before i. 

  ij,N,...,1j,i 0jixijx >=∀=+  (2) 

{ } N,...,1j,i  1,1 ijx =∀−∈   (3) 
Note that in [5], we found similar constraints: 

ij ,N,...,1j,i 1jixijx >=∀=+   (2a) 

{ } N,...,1j,i  1,0 ijx =∀∈   (3a) 
In some cases, we can immediately decide if xij =1 or    
xij = -1.  
For example, if li < ej then xij = 1 and xji = -1 
 
The separation constraints must be respected: 

( )
ij  ,N,...,1j,i  

ijz1ijsijz.ijSit.ijxjt.ijx

>=∀

−++≥
  (4) 

Let (i, j) be a pair of aircraft such as i < j and suppose that 
aircraft i and j land on the same runway, i.e. zij = 1,     
(1 − zij = 0) 
• If the aircraft i lands before aircraft j then xij=1, the 

constraint (4) becomes : 
ijij Stt +≥  

• If the aircraft j lands before aircraft i then xij = -1, the 
constraint (4) becomes : 

ijij Stt +−≥−  
Since Sij = Sji, (The matrix (Sij) is symmetric), we have: 

jiji Stt +≥  
We can conclude that the two situations, aircraft i lands 
before aircraft j or j lands before i, can be expressed by the 
constraint (4). 
In [30], H. Pinol and J. E. Beasley have considered the 
following constraint: 
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( )
 ji ,N   ,...,1j,i 

jix.Mijz1ijsijz.ijSitjt

≠=∀

−−++≥
 (4a) 

 
Where M is a great positive number and  

⎩
⎨
⎧

=
otherwise0 

j before  lands iaircraft  if1 
  ijx  

 
Let (i,j) be a pair of aircraft such as i ≠ j and suppose that 
aircraft i and j land on the same runway, i.e. zij = 1         
(1 − zij = 0) 
 
• If the aircraft i lands before aircraft j then xij = 1, the 

constraint (4a) becomes : 
ijij Stt +≥  

• If the aircraft j lands before aircraft i then xij = 0, the 
constraint (4a) becomes : 

MStt jiji −+≥  
We can observe that our mathematical formulation of the 
last constraint is an improvement of the constraint (4a). In 

the constraint (4a), we must consider N2N −  relations 
(expressed by  ji ,N   ,...,1j,i ≠=∀ ). In our formulation, 

constraint (4) considers only 
2

N2N −
 relations 

(expressed by j i ,N   ,...,1j,i <=∀ ). 
The deviation before and after the target time are 
expressed by the constraints (5), (6), (7), (8) and (9) 
below: 

N,...,1i ititaier =∀−≥   (5) 
N,...,1i ieitaier0 =∀−≤≤   (6) 

N,...,1i itaititr =∀−≥   (7) 
N,...,1i itailitr0 =∀−≤≤   (8) 

N,...,1i itrieritait =∀+−=   (9) 
 
We introduce the following constraint to express the fact 
that an aircraft must be landed on one runway: 

N,...,1i1
R

1r
iry =∀=∑

=
  (10) 

 
Then, the matrix (zij) is symmetric:  

ij  , N ,...,1j,i  jizijz >=∀=    (11) 

 
Constraint (12) links the variables yir, yjr, and zij: 

R ,...,1r   ,ij  ,N  ,...,1j,i 1jryiryijz =∀>=∀−+≥  (12) 

 
However, if one of the aircraft i or j lands on runway r and 
the other doesn’t, we must have zij =0. This case isn’t 

satisfied by the last constraint (12). To avoid this problem, 
we provide the following constraint:  

( ) ( )1jry1iryjry.iryijzjry.iry
   R ,...,1r   ,ij  , N  ,...,1j,i  

−−+≤≤
=∀>=∀

 (12a) 

Indeed, if 
(yir, yjr) = (0,0) then 0 ≤ zij ≤ 1 
(yir, yjr) = (0,1) then 0 ≤ zij ≤ 0 
(yir, yjr) = (1, 0) then 0 ≤ zij ≤ 0 
(yir, yjr) = (1,1) then 1 ≤ zij ≤ 1 
 
3.3. Objective function 
 
The objective is to minimize the cost of deviation between 
the actually time of landing of all aircraft and their target 
times landing. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+
N

1i
iPa.itriPb.ierMin   (13) 

However, there are other objectives (see [5] and [30]) like 
landing the aircraft as soon as possible, compute an 
efficient scheduling or reduce the aircraft‘s consummation. 
 
4. Formulation as a Job Shop scheduling 
problem 
 
The JSSP [8] [25] is one of the most complex problems 
encountered in real shop floor [19]. It consists generally of 
ordering a set of jobs to be processed in a set of machines 
such as: 

• Each job is composed by a predefined sequence 
of unprompted operations ; 

• Each job must be proceeded by some machines in 
a specified order not necessarily the same for all 
jobs ; 

• Each machine can process only one job at a time. 
The JSSP is NP-hard (see [32]) and has several variations, 
for example: 

1. Classical Job Shop Scheduling problem 
2. Flexible Job Shop Scheduling problem 
3. Job Shop scheduling problem with partial order 

and processing alternatives 
4. Job Shop scheduling problem with separable 

setup times 
5. Job Shop problem with transportation times 
6. Dynamic Job Shop problem 

 
The JSSP has captured the interest of a great number of 
researchers; C. Dimopoulos and A. M. S. Zalzala in [15] 
illustrate recent developments in the field of evolutionary 
computation for manufacturing optimization, by 
considering the classical Job Shop scheduling and a wide 
range of optimization problems. J. Boukachour and A. 
Benabdelhafid in [9], T. Yamada and R. Nakano in [34], B. 
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Joo Park et al. in [11] and Dirk C. Mattfeld and Christian 
Bierwirth in [16], have developed resolution methods 
based on Genetic Algorithms. A wide survey on 
scheduling problems with setups times or costs are 
provided by A. Allahverdi et al. in [2] covering more than 
300 papers. An approach entitled « adaptive Branch and 
Bound » is presented by Jose M. Framinan in [22] for 
transforming Job Shop scheduling problems into Flow 
Shops. In [27] T. Kis has studied an extension of the Job 
Shop scheduling problem namely the JSSP with partial 
order and processing alternatives. An application of Ant 
Colony Optimization on a JSSP is presented by A. Colorni 
et al. in [14] (see also the work of Kuo-Ling Huang and 
Ching-Jong Liao in [28]). Many authors have studied 
others variants of the problem, see M. Mastrolilli and L. M. 
Gambardella in [29] and A. Rossi and G. Dini in [31] for 
the flexible Job Shop problem, J. B. Chambers in [12] for 
both classical and flexible Job Shop scheduling problems, 
J. Hurink and S. Knust in [24], G. El Khayat et al. in [19] 
for the Job Shop problem with transportation times and 
recently in 2008, V. Vinod and R. Sridharan in [33] present 
a simulation-based experimental study of scheduling rules 
for the dynamic Job Shop problem with 
sequence-dependent setups. 
In this section, we propose a formulation of the ALP as a 
JSSP. 
Throughout the remainder of this section and in order to 
better explain our formulation, we consider ten aircraft 
(N=10) and two runways (R=2). Figure1 shows the 
aircrafts time windows and their target times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each rectangle in the chart represent ei (the earliest landing 
time for aircraft i), li (the latest landing time of aircraft i) 
and the target time tai. 

 

We begin to define the Jobs and their components. First, 
we divide the aircrafts in subsets as shown in the figure 2 
below: 

 

 

 

 

 

 

 

 

 
 
In this stage, we can build the jobs as follows: 
• The first job J1 corresponds to the landing of the 

aircrafts: {1, 2, 3} 
• The second job J2 corresponds to the landing of the 

aircrafts: {4, 5, 6, 7} 
• The third job J3 corresponds to the landing of the 

aircrafts: {8, 9, 10} 
 
We consider here the runways like machines and the 
landing of an aircraft like an operation (landing) of a job i 
(aircraft i) on a machine (runway). 
 
Second, we define an order between operations of each job 
by supposing that, when the time windows of two aircrafts 
are separate, an order exists between them, hence the 
appearance of a partial order at the job operations level. 
So, we have a JSSP composed by three jobs J1, J2 and J3, 
where J1 is composed by three operations, J2 four 
operations and J3 three operations. 
Now, our aim is to determine the jobs sequence on the set 
of machines M, in our case M = {set of runways}. This 
task consists to assign a starting time of each operation (a 
landing time) and to allocate a resource (a runway) 
respecting the time constraints such as: 
• The earliest starting time and the due date (the earliest 

and latest landing times). 

Landing time 

li ei tai 

Aircraf
t 
 

10 
9 
8 
7 
6 
5 
4 
3 
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Figure 1: Aircraft time Windows and Target times 
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Figure 2: Random decomposing of Aircrafts in subsets 
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• Setup times of machines depend on the nature of the 
operations (the intervals of security between aircrafts 
landings). 

• The order of operations in jobs (the partial order as 
predefined previously). 

 
4.1. Graphical Representation  
 
To solve the JSSP, we often use a conjunctive-disjunctive 
graph [8] [25]. The vertices or nodes represent the 
operations of the job including two special nodes 
(fictitious nodes), representing the beginning and the end 
of the schedule. Conjunctive arcs represent constraints of 
precedence and disjunctive arcs represent pairs of 
operations that must be performed on the same machines. 
In our case, we use a disjunctive graph « and/or » based on 
two kinds of graphs (for more details on « and/or » graph 
representation, see [27]): 
• « and » graph describes partial order at the level of 

jobs (the partial order between operations in the same 
job is expressed by an ‘’ and ‘’ relation). 

• « or » graph describes the alternation relation 
between operations with alternatives resources (the 
possibility to land an aircraft on a runway among a set 
of candidates runways (multiple runways appearance) 
is expressed by an ‘’ or ‘’ relation). 

In the « and/or » graph, we have two kinds of edges: 
• Dotted edges connecting the operations of an « and » 

graph for a partial order relation ‘’ and ‘’ 
• Dotted edges connecting the operations of an « or » 

graph for an alternation relation ‘’ or ‘’. 
The following figure illustrates an example of an 

« and/or » graph. 

 
 
 
 
 
 
 
 
 
 
 
The following notations are adopted afterwards:  
• a+ : the dummy beginning of an « and » graph 
• a- : the dummy end of an « and » graph 
• o+ : the dummy beginning of an « or » graph 
• o- : the dummy end of an « or » graph 
• D : the source node 
• F : the sink node  

We introduce the operation irO  to designate the landing 
of aircraft i on the runway r. So, for each aircraft i 
corresponds an « or » graph whose branches are formed by 
the operations R,...,1r  for  ,Oir =  (knowing that exactly 
one operation must be chosen during scheduling to respect 
the fact that an aircraft can land on a single runway 
through the set of runways) and for each job j corresponds 
an « and » graph whose branches are formed by « or » 
subgraphs corresponding to the operations in partial order 
knowing that each branch can have one « or » subgraph or 
more connected by precedence relations where they exist.  
For the previous example with 10 aircraft and two runways, 
adopting the cited notations, the jobs become: 
 

{ }32O,31O,22O,21O,12O,11O1J =  
{ }72O,71O,62O,61O,52O,51O,42O,41O2J =
{ }2 10O,1 10O,92O,91O,82O,81O3J =  

 
Note that the landing time windows of plane 1 and plane 2 
are not separated; hence we haven’t order between 
operations which are associated. Likewise for aircraft 1 
and 3, and aircraft 2 and 3. 
We observe that the landing time windows of the pair of 
aircraft (4, 5), (4, 7), (6, 5) and (6, 7) are separated; hence 
we have an order between operations associated with each 
pair. The operations with corresponding pairs of aircraft (8, 
10) and (9, 10) are connected by precedence relations. 
 
The « and /or» graphs below show the processing steps of, 
respectively, Jobs J1, J2 and J3, as nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Example of an « and/or » graph 

 
 

Figure 4: Job J1 
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Note that: 

• A precedence relation between two operations is 
represented by a continuous conjunctive arc.  

• There is no adjacency between pairs of operations 
(Oir, Oir’). 

• The other operations are all connected by 
disjunctive arcs that we have not represented in 
the graphs but we consider them implicitly. 

 

The figure 7 below illustrates the complete « and/or » 
graph associate to the problem: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We evaluate by: 
• Sij, the arcs ji  for  )O,O( jrir ≠  

• sij, the arcs kr  for  )O,O( jkir ≠  

• 0, the arcs :  

)F,a(  and

  )a,D(),a,O(),O,a(),O,O(),O,O( ijij-ijij
−

+−++
 

Thus, we get the graph associated to a JSSP with partial 
order and alternative sequences. 

 
5. Our hybrid method 
 
To resolve the ALP, we propose a hybrid method, called 
ACOGA (Ant Colony Optimization Genetic Algorithm) 
which combines two metaheuristics: Genetic Algorithm 
(GA) and Ant Colony Optimization (ACO). 
The ACO is used to generate an initial population of 
feasible solutions for the GA. The purpose is to increase 
the chances of generating some goods solutions in the 
initial population. Starting from a good initial population 
helps the GA to find goods solutions faster. The 
performance of a genetic algorithm depends strongly on 
the initial population. 
 
First, we start by describing below in more detail our 
genetic algorithm in terms of coding method, fitness 
function, crossover as well as mutation. 
 
5.1. Coding method 
 
To resolve the ALP, there are two tasks. First, give a 
landing sequence and secondly compute landing times for 
a set of aircraft. The landing times are computed based on 

 
Figure 5: Job J2 

 

Figure 6: Job J3 
 

Figure 7: Complete « and/or » graph associate to the problem
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the landing sequence. In addition to those lists (landing 
sequence and landing times), we use a third list to 
represent the assignment of runways to aircraft.  
 
 
Here’s an example of code for 10 aircraft and 3 runways 
 
3 1 4 2 6 7 8 5 9 10 
3 2 3 2 2 3 2 1 2 1 
100 115 140 150 300 320 400 552 650 580
 
In this solution composed of three lists, aircraft 3 lands on 
the 3rd runway at 100 minutes from midnight, the aircraft 2 
lands on the second runway at 115 and so on. 
 
5.2. Generating the initial population 
 
The initial solution plays a critical role in determining the 
quality of final solution in any local search and the initial 
good schedules can be evolved into the better schedules 
(see [11]). However, it is possible to generate the initial 
population randomly, but it’s generally difficult to generate 
a number of feasible solutions with a small cost of 
penalties in a good time. That’s why we propose to apply 
an ACO algorithm by using the graph previously generated 
(see graph of Figure 7). The number of ants is equal to the 
desired initial population size. 
 
Note that to generate a population of solutions, we can 
suggest two strategies:  
1. If one has a population of solutions, we propose a 
strategy that consists of fixing the number of ants to the 
desired initial population size and applying the ACO 
algorithm below. 
2. In order to get a population of higher quality solutions, 
we propose a second strategy that consists of considering a 
random number of ants and fixing the maximum number 
of iterations of the ACO algorithm to the size of the initial 
population, and keep at each iteration the best solution 
given by the family of ants to build an initial population 
for the GA. 
 
To obtain a population of solutions in a short time, we 
choose the second strategy which generates a landing 
sequence and an assignment of runways (first and second 
lists of a solution) by applying only one cycle of the ACO 
algorithm. In order to complete the solutions of the ALP, 
after building the previous lists, we have to compute a 
landing time to each aircraft (list 3). 
 
 
5.2.1. Landing sequence 
 
The ACO algorithm is described as follows: 
 

1. Initialization 
For each ant k, 

♦ Initialize the Tabuk list with the source D of 
the graph  

♦ Initialize the Candidatek list with the first 
operation of each job Ji 

♦ Initialize the pheromone trace with τ0 
 
2. Construction of a population of m solutions  
For each ant k = 1, …, m do 
         Initialize i D 
While (Candidatek is not empty) do 

♦ From a current node i, choose the next node 
j∉Tabuk among the Candidatek nodes 
according to a transition  rule: 

         
⎪⎩

⎪
⎨
⎧ ≤ητ

=
βα

∉

0

0ilil
Tabul

qqifJ

qqif
j k

f                                        

       ])()[(maxarg

 
 
             J is chosen randomly among Candidatek   
             

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

+−

+−
=

runwaysdifferent  on land l and i f     
1*tata

1

runway  same on the land l and i f    
1*tata

1

il

il

i
s

i
S

il

il
ilη

 
♦ Insert j in Tabuk 
♦ Updating the Candidatek list 
♦ Local updating of pheromone trails τij  using 

the formula :   

0lij)l1(ij τρ+τρ−=τ  
End while 
End for 
 
 
Where, m is the number of ants, Tabuk is the list of visited 
nodes, Candidatek is the list of nodes candidates to be 
visited in order to respect precedence relations imposed by 
the technological sequences, α and β are two parameters 
that control the relative importance of τij and ηij, q is a 
random variable uniformly distribute on [0, 1], q0 is a 
parameter set between 0 and 1, τ0 is the initial value of 
pheromone trails and ρ is the coefficient of vaporization 
 
We note that in the previous algorithm, the information 
heuristic (ηil) depends on two parameters: 
• Separation time (Sil) or (sil) : generally, sil << Sil  

(∀i,l = 1,…,N). So, the aircraft landing on different 
runways will be privileged than those landing on the 
same runway. This decision will provide a good 
repartition of aircraft on runways. 
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Child1 

Child2 

Child 1

• |tai – taj| : the aircraft closed in term of target time 
are privileged than the others in order to land as soon 
as possible to their target landing time to reduce the 
cost penalty.  

 
5.2.2. Computation of landing times 
 
For each solution generated by ACO method, we compute 
the landing times of aircraft based on the landing sequence 
and the assignment of runways, respecting the aircraft 
landing windows and security’s intervals between them. 

( )⎟
⎠
⎞⎜

⎝
⎛ +=

∈
iji

Oi
jj Sttat max,max

 
 
 
5.3. Reproduction 
 
The reproduction, crossover followed by a mutation, is 
applied after a roulette-wheel selection. We apply the 1X 
crossover [17] on the first list and second one of a solution. 
These lists correspond to the sequence of aircrafts and 
their allocated runways. The crossover point is the same 
for both lists and it is chosen randomly. 
 
To avoid a repetition of an aircraft, when constructing 
Construction of children from a pair of parents, we 
proceed as follows: 
 
Let P1 and P2 be the lists of the parents: 
 
 
 
 

 
 
 
 
 
 

 
After choosing a crossover point, we copy the left part of 
the first parent into the first child and the left part of the 
second parent into the second child 
 
 
 
 
 

 

 

 

Then we complete the first child with the missing aircraft 
and their assigned runways from the second parent (not 
already assigned) in the same order in which they appear 
in the second parent) beginning by the first element on the 
left side.  

 
 

 

 

Then the other child will be similarly produced by 
exchanging the role of the two parents. 

The third list (landing times) is calculated according to the 
process described in 5.2.2. 

Finally, the mutation selects two or more aircraft at 
random and swaps their positions as shown in the example 
below with 10 aircraft and 3 runways. Unlike crossover, 
mutation acts just on the landing sequence (the first list of 
as solution). 
 

Before 

6 3 7 10 8 9 2 1 4 5 
1 1 2 3 1 2 3 1 3 1 

 

After 
6 9 7 10 8 3 2 1 4 5 
1 1 2 3 1 2 3 1 3 1 

 

Then, the third list (landing times) is calculated according 
to the process described in 5.2.2. 

3 9 1 5 4 10 7 6 2 8 
3 2 3 2 2 3 2 1 2 1 

6 3 7 10 8 9 2 1 4 5 
1 1 2 3 1 2 3 1 3 1 

3 9 1 5 4 10    
3 2 3 2 2 3    

6 3 7 10 8 9    
1 1 2 3 1 2    

3 9 1 5 4 10 6 7 8 2 
3 2 3 2 2 3 1 2 1 3 

Crossover point  

Parent1 

Parent2
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6. Numerical Results and Discussion 
 
The hybrid algorithm was implemented in C++, and 
tested on a Pentium 4, 2.66 GHz CPU with 240 Mo of 
RAM. All benchmarks can be downloaded from the web 
page: 
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.ht
ml [4]. 

 
Table 1 summarizes the results acquired for 25 benchmark 
instances. First, we can see clearly from Table 1 that our 
hybrid algorithm works much better that a genetic 
algorithm alone. Secondly, in the majority of cases, our 
algorithm finds or approaches the optimal solution. 
 
 

Benchmarks N R Optimal 
values 

ACGA 
Values 

CPU(s) 
(ACGA) 

GA 
Values 

CPU(s) 
(GA) 

1 10 1 700 700 1.42 820 12.40 
  2 90 90 1.14 90 10.36 
  3 0 0 1.09 0 10.32 

2 15 1 1480 1720 2.44 1720 19.97 
  2 210 210 2.25 220 16.82 
  3 0 0 1.48 10 15.87 

3 20 1 820 850 3.64 1750 28.41 
  2 60 60 3.03 570 26.41 
  3 0 0 3.02 320 22.32 

4 20 1 2520 4480 3.51 6580 28.11 
  2 640 680 3.49 1770 25.19 
  3 130 130 3.45 600 24.06 
  4 0 0 3.04 330 25.19 

5 20 1 3100 4800 3.36 5800 27.70 
  2 650 720 4.02 1650 29.15 
  3 170 240 3.39 560 24.75 
  4 0 0 3.06 440 22.88 

6 30 1 24442 24442 3.08 * * 
  2 554 554 3.86 * * 
  3 0 0 4.38 * * 

7 44 1 1550 1550 5.67 * * 
  2 0 200 4.41 * * 

8 50 1 1950 3240 7.33 * * 
  2 135 160 10.47 * * 
  3 0 0 10.09 * * 

 

Table 1 Computational results 

 
At the level of CPU time, we observe that GA takes more 
time than ACGA. This is due to the fact that in GA the 
landing times are generated randomly from the landing 
windows. Indeed, each time, we assign a random landing 
time to an aircraft while respecting the intervals of security 
with previous ones. If it’s not the case, this landing time is 
regenerated until all the intervals of security are respected. 
This task increases the CPU time, especially when the 

number of aircraft increases. 
 
7. Conclusion 
 
This paper has discussed the multiple runway case of the static 
Aircraft Landing Problem, where data are known in advance. 
We have expressed the ALP as a JSSP with partial order 
and alternative sequences through an « and/or » graph. In 
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terms of resolution, we enhanced a hybrid method which 
combines two metaheuristics, namely Genetic Algorithm 
and Ant Colony Optimization. 
Finally, our ongoing researches will concern, in one hand, 
the improvement of our algorithm to handle instances of 
large size (100 to 500 aircrafts) and on the other hand, the 
study of the dynamic case to face dynamic disturbances. 
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