
IJCSNS International Journal of Computer Science and Network Security, Vol.9, No.8, August 2009

89

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

Software design simulation for quick and qualitative application
development

P.K. Suri1 Gurdev Singh2

1. Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, (Haryana) India.

2. Department of Computer Science & Applications, Kurukshetra University, Kurukshetra, (Haryana) India.

Abstract: Quick and qualitative software development is the
prime objective of every software development organization.
This paper addresses a new approach by storing the design
document in the form of (DGML – Design Markup Language)
text and applying the search mechanism for specified
requirements on the stored design documents for finding a
new solution by reusing the existing. The search mechanism in
the simulation algorithm uses the design rank approach,
which specifies the quality of a design. The proposed
simulation framework for design reusability helps in speed up
the development process and makes it of a good quality. It
provides a new design to start with, from exiting design
module.
Keywords-Qualitative software design, Software design reusability,
Software design inference, Software design representation, DNSIM,
Design Notation Storage.

I. INTRODUCTION
In software development lifecycle, when analysis phase

is over, the next phase is to represent the requirements in the
form of design solution figures, like flowcharts, DFDs etc.
These pictorial representations of the design documents give
the familiarity about the process flow .

There are tools available to store the object oriented
design in the form of diagrams and then these diagrams are
converted in to the text files with the help of UML.
Application software are available which convert/ generate the
text file from class diagram or vice-versa. They also provide a
framework for synchronization by regeneration of the UML
class document from the classes written in the code[1].

The procedures of applications are most of the time
represented with the help of conventional old methods like
flow charts in the design specification document. When a
design document is used for writing the programs, the
flowcharts are one of the main components from that. From
the study, it has been found that there is no tool available
which store the diagrams for procedural component (like flow
chart) to a text file[2]. From the experiments and study we
found that there is a possibility to store the procedural design
document in the form of text.

PROPOSED DNSIM (DESIGN NOTATION STORAGE &
INFERENCE MECHANISM)

The diagrams for the procedural components could be
represented as a text file. The proposed DNSIM will do the

required functionality. DNSIM is a collection of the unique
tags which are named after the components of the diagrams of
procedural design. We name this notation as DGML, i.e.
Design Markup Language. This language is having the tags
which gives the possibility to represent the pictorial design as
a text document. The key set is some thing like <Diamond>
for decision, <Rectangle> for process, <Looplink> for link
connector of a loop etc. These key elements give the freedom
to store the complete procedural design document in the form
of text. The mechanism allows the user to create the design
document. When a user selects a design element to create the
design and save it, its get saves in the form of a text internally
with the help of proposed tags.

II. NEED FOR DNSIM
DNSIM is required for the storing the design of procedural
components as a text file. DNSIM is also capable of retrieving
the stored design and create the flow diagrams back. This way
the design document is having a repository, which contains the
flow chart symbols as a markup tags. Following are the key
points which identifies the need:

• DNSIM creates the design repository in the form of
design text. This is created by placing a tag for each
of the component, which is present there in the design
figure.

• DNSIM generates the pictorial design document back
from the stored text documents having design tags.

• DNSIM is having the inference engine. When a
design document is stored, its associated keywords
are also stored along with it. The DNSIM inference
engine looks into the requirement specification sheet.
It collects the design related keyword and search for
them in the design repository. As each design
document is having the keywords. The total design
repository is having a big pool of keywords per
design. The inference mechanism of DNSIM gives
the best match for the specified requirements after
context base searching.

• DNSIM provides the ranking mechanism. This
mechanism gives the good quality design solution
while reusing existing. Every time a design is reused,
its rank gets incrementing by one. When search for a
design is carried out, it gives a big result. More is the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

90

rank of a design, more it is suitable for the
requirement.

III. THE DESIGN REUSABILITY FRAMEWORK
USING DNSIM

• The reusability framework for DNSIM is having an

application program, which will be responsible for
following

• The generation of the flowcharts from reading the
design repository.

• The storing of the updated flowchart in to a text file
base design repository

• Identifying keywords after reading requirement
specification document.

• The lookup mechanism on the stored design and
evaluation of the design components as a candidate
for the reusable entity.

• Providing a good quality design solution from
existing after applying the ranking algorithm.

 The application will be a DNSIM tag parser, which read the
design-repository keywords and keywords from requirement
specification documents. It the checks for similarity. The
match found after comparison will be reported as a success.
Interface will show the ready to use designed modules cloud to
be pick-up as a reusable building blocks of new application.

IV. BENEFITS FROM DNSIM SYNCHRONIZATION
FRAMEWORK

The benefits from the synchronization framework tool

are many folds. The existing design document represented
with DNSIM can be reused for other domain problems having
some similarity in functional components. The design metric
can also be predicted easily from DNSIM based design
document.

The reusable design is a new concept introduced from
this new type of design representation. The DNSIM is capable
of producing not only the structure design but UI design also.
When user produces a design sheet and its design repository,
the reusable components can be selected from the design
repository. Like in case of UI design, the basic UI for
authenticating the user name and password is almost same for
most of the application. The repository will be having a
component for authenticating the user name and password.
That user can select from a component list of repository and
add to its own new design.

This approach of using the design components of
existing software design for the building blocks of new
software design saves the time for new system. This also
makes it more robust because the reused component is driven
from an already tested, implemented and maintainable system.
This reduces a lot of issues, which could arise otherwise if

design is new. New design need a lot of rework to finally get
is a working design.

Following example shows the representation of a procedural
design component of bubble sort procedure with the help of
proposed DNSIM framework.

Figure 1. Procedural design of bubble sort algorithm

Let Arr is the array
of n elements.

Index1 < n

Set Index1 = 0
Set temp =0

Set Index2 = 0

Index2 < n-
Index1

Swap (Arr [index2], Arr
[index2+1])

Arr[index2] >
Arr [index2+1]

END

Index2=Index2+1

Index1=Index1+1

Start

IJCSNS International Journal of Computer Science and Network Security, Vol.9, No.8, August 2009

91

V. DNSIM BASED DESCRIPTION OF ABOVE
PROCEDURAL DESIGN OF BUBBLE SORT
ALGORITHM

Figure 2. DNSIM representation of bubble sort algorithm

Figure 3. Procedural representation of the algorithm

Following are the details of the above-mentioned DNSIM
representation of bubble sort algorithm:

<Sort>
This represents the design entity name. This is the name of
design component of and is a part of whole software design.
This name will appear in the design repository list and could
be used a reference for the design component reusability.

<Algorithm id = “Sort”>
Other way of representing this could be as writing the
algorithm and algorithm name. This notation is known as the
attribute naming convention where algorithm name is attribute
of algorithm. That could be written as <Algorithm id =
“Sort”>. This is could be more elaborative and will be helpful
in producing a list of algorithms in the design repository.

<Rectangle >
This is a part of the flowchart component and used to
represent the task or processing.

<LoopLink>
This is the part of flow chart component and used to represent
the looping implementation or iterations.

<Diamond>
This is a part of the flowchart component and used to
represent the decision-making.

The other flow chart component could be used as by

their representation image style name and as their notations
are known for flowchart making.

Other benefits of using this notation for design
representation are that we can calculate the design metrics on
the design document repository very easily and efficiently.
Various design checks and initial design performance related
checks could be enforced at earlier stages. Software
developers should be able to find out software quality attribute
during the design process. By evaluating metrics at an early
stage of design, managers and software developers can make
better design choices and identify stress points that may lead
to costly difficulties during coding and maintenance.

VI. SIMULATION RESULTS AND CONCLUSION

 The simulation is carried out on a set of requirement
specification documents of different projects. The key words
are collected from the requirement specification documents.

Figure 4. Framework for design notation storage and inference mechanism

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

92

These keywords are then compared to the keywords
of the existing design documents. The inference mechanism
finds the match for the suitable occurrence. The ranking
mechanism again assigns a quality check on the outcome of
inference result before reusability. The matches found with
good rank are used and a new design is proposed. Following
are the figures used during simulation.

Requirement
document
keywords

Design
repository
keywords

match

Rank base
correction

Success for
reusability

(%)

Achievements in
finished design
after reusability

(%)

28 20 15 54 37

25 18 16 64 26

13 12 11 84 67

22 19 13 59 41

18 15 13 72 53

76 56 50 65 33

12 5 4 33 18

32 27 23 71 57

10 9 7 70 61

Figure 5. Figures for applying simulation and success results

Design reusability & accomplishment graph

0

10
20

30
40

50
60

70
80

90

1 2 3 4 5 6 7 8 9

Requirement document keyw ords
Design repository keyw ords match
Rank base correction
Success for reusability
Design accomplished

Figure 6. Outcome of the simulation. Design reusability and new design
accomplished graphs for give requirements..

VII. CONCLUSION

The simulation is carried out on the requirement
specification document of ten different projects. The keywords
evaluated from these requirement documents when compared
against the stored design document gives more than 33%
reusability. That means when creating a new project, at least
33% of the design efforts could be saved which is a good
figure to consider design reusability as a new approach.
Reusability is counted for the not of design elements used
from available design repository. This figure appears after the
application of page rank algorithms, which assure the
available reusable module of good quality although it decrease
the reusable figure that appears after search process.

The design accomplishment figures are the percentage
of the requirement fulfillment of the required design. This is
evaluated by counting the total design keywords for
requirements again the keywords present in the design
completed after reusing the existing. This figure further
updated because final design after reusing will go through a
process of review by human involvement or heuristic. This is
important because few of the matches found after inference
and page rank algorithm on available designs may not be
required.

Also, the evaluated design is of good quality too. This
is because the keyword matching is not blind match but is
having the power of rank base selection of the outcome of the
search process. A rank is the weightage of the design. More
the design is used, more is its quality rank. Reusing a
particular design again increment the quality factor by one.

VIII. DISCUSSION

The DGML text base storage of the design document
gives a new direction in the field of reusability. This text based
design representation is having a keyword associated with
each design entity. When user requires a new design, he has
not to start work from the scratch. The proposed mechanism
will read the user requirements and perform the quality base
search in the existing design repository and gives the user a
first cut of the design document which satisfy more than 33%
and save the time and efforts. Further, the reusable design is
created from the existing design which already having the
good quality and gone through various checks before storing
in the proposed notation. This factor gives the satisfaction that
the newly created design by proposed mechanism is also
having the good quality.

References
[1] Lehman, M. M., and L. Belady, Program Evolution: Processes of

Software Change, Academic Press, New York, 1985

[2] Emerging Technologies that Support a Software Process Life Cycle.
IBM Systems, 1994

Reusability and Design Goal Achievements

54
64

84
59

72
65

33
71
70

37
26

67
41

53
33

18
57

61

1

2

3

4

5

6

7

8

9

Design accomplished

Success for reusability

IJCSNS International Journal of Computer Science and Network Security, Vol.9, No.8, August 2009

93

[3] H. D. Rombach, "Design Measurement: Some Lessons Learned," IEEE
Software, March 1990.

[4] M. Shepperd, "Design Metrics: An Empirical Analysis," Software
Engineering Journal, January 1990.

[5] R. Selby and V. Basili, "Analyzing Error-Prone System Structure," IEEE
Trans. Software Eng., 17 (2), February, 1991.

[6] H. D. Rombach, "A Controlled Experiment on the Impact of Software
Structure and Maintainability:," IEEE Trans. Software Eng., 13 (5), May,
1987.

[7] L. Constantine, E. Yourdon, "Structured Design," Prentice Hall, 1979

[8] Heineman, G., J.E. Botsford, G. Caldiera, G.E. Kaiser, M.I. Kellner, and
N.H. Madhavji.,

[9] Hekmatpour, S., Experience with Evolutionary Prototyping in a Large
Software Project, ACM Software Engineering Notes, 12,1, 38-41 1987

Dr. P.K. Suri received his Ph.D.
degree from Faculty of Engineering,
Kurukshetra University, Kurukshetra,
India and master’s degree from
Indian Institute of Technology,
Roorkee (formerly known as Roorkee
University), India. He is working as
Professor in the Department of
Computer Science and Applications,
Kurukshetra University, Kurukshetra

– 136119 (Haryana), India since Oct. 1993. He has earlier
worked as Reader, Computer Sc. & Applications, at Bhopal
University, Bhopal from 1985-90. He has supervised eleven
Ph.D.’s in Computer Science and thirteen students are working
under his supervision. He has around 125 publications in
International/National Journals and Conferences. He is
recipient of 'THE GEORGE OOMAN MEMORIAL PRIZE'
for the year 1991-92 and a RESEARCH AWARD –“The
Certificate of Merit – 2000”for the paper entitled ESMD – An
Expert System for Medical Diagnosis from INSTITUTION
OF ENGINEERS, INDIA. His teaching and research activities
include Simulation and Modeling, Software Risk Management,
Software Reliability, Software testing & Software Engineering
processes, Temporal Databases, Ad hoc Networks, Grid
Computing, and Biomechanics.

Gurdev Singh received his Masters
degree in Computer Science from
Department of Computer Science &
Applications, Kurukshetra University,
Kurukshetra, Haryana, India. Since
2002 he is working as Software
Development Professional and had
experience of working with MediaTek,
and Siemens Information System,
India. Currently he is working as

senior software engineer for Samsung Electronics in Noida,
India. He has completed projects in the field of software
development for mobile devices. He loves to transfer user

requirements in to piece of software. His interest includes
work in the domain of software engineering, effort
minimization in software development, qualitative software
design and synchronization, software design representation
methodologies and reusable software design techniques. He
has written many papers in the related domain. He is fond of
studying about the digital electronics and experimenting the
same.

