
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

110

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

Simulator for Software Project Inspection
P. K. Suri1, Bharat Bhushan2, Ashish Jolly3

1Department of Computer Science & Applications, Kurukshetra University, Kurukshetra (Haryana), India.

2Department of Computer Science & Applications, Guru Nanak Khalsa College, Yamuna Nagar (Haryana), India.
3Department of Computer Science & Applications, Shri Atmanand Jain Institute of Management & Technology, Ambala City (Haryana), India.

Abstract
Software project inspection has been shown to be an effective
defect removal practice, leading to higher quality software with
lower field failures. The use of software code inspections, design
inspections, and requirements inspections, has been found to
increase software quality and lower software development costs
[1, 2].
Efficiency is the main attribute of reliability. Efficiency measures
the performance of the software and performance of software is
better if it is error free or defect free. To check the defect free
software and to make it acceptable in the market, the software is
inspected by the analysts on various criteria. The criteria are
termed as defects classification and they are described as defects
like Logical, User Interface, Design Issues, Hard Coding,
Modularity etc.
An attempt has been made to design a simulator to inspect the
software on the basis of certain criteria. The software is divided
into ten modules and each module is inspected by fourteen
analysts. Each analyst gives his view about the different criteria.
The rate of agreement among the analyst is computed on the
basis of Fleiss Kappa Coefficient using various relations. The
value of Kappa Coefficient decides whether the analysts are
agreed on these criteria. If they agree on these criteria, then the
software is treated to be better and more efficient as compared to
the previous version.
Keywords
Defect analysis, Defect Classification, Efficiency, Fleiss Kappa
Coefficient, Inspection

1. Introduction
Inspections are defined as a static analysis technique that
relies on visual examination of development products to
detect errors, violations of development standards, and
other problems [3]. It also helps to increase the
development team’s familiarity with the code. Prior studies
indicate that software project inspections
can detect as little as 20% to as much as 93% of the total
number of defects in an artifact. Based upon a literature
survey report, on average software inspections find 57% of
the defects in code and design documents. Inspections
have been traditionally done manually with key members
of the development and quality assurance teams. [4]

Industrial data has shown that inspections are among the
most effective of all verification and validation (V&V)
activities, measured by the percentage of defects typically
removed from a document. [5]

In many software organizations, defects are classified very
simply, using categories such as Minor, Major, Severe,
Critical. Simple classifications of this kind are typically
used to assign priorities in repairing defects. Deeper
understanding of the effectiveness of software
development methodologies and techniques require more
detailed classification of defects. [6]

Although no one is happy to find defects in their software,
defects are introduced and removed continually during
software engineering processes, and it is practically
necessary to acknowledge, record, and analyze those
defects to make progress toward higher standards of
quality. [7]

Most software reliability methods have been developed to
predict the reliability of a program using only data
gathered during the testing and validation of a specific
program. Hence, the confidence that can be attained in the
reliability estimate is limited since practical resource
constraints can result in a statistically small sample set. [8]

Fleiss’ Kappa
Fleiss' kappa is a variant of Cohen's kappa, a statistical
measure of inter-rater reliability. Where Cohen's kappa
works for only two raters, Fleiss' kappa works for any
constant number of raters giving categorical ratings to a
fixed number of items. It is a measure of the degree of
agreement that can be expected above chance. Agreement
can be thought of as follows, if a fixed number of analysts
assign numerical ratings to a number of efficiency measure
criterions then the kappa will give a measure for how
consistent the ratings are. The kappa, , can be defined as

 =
PE

PEPAV
−
−

1

The factor 1 - PE gives the degree of agreement that is
attainable above chance, and PAV - PE gives the degree of
agreement actually achieved above chance. The statistic
takes values between 0 and 1, where a value of 1 means
complete agreement.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

111

With appropriate interpretation, the Kappa value can be
used as an objective criterion for evaluating the quality of
the software.

Kappa Statistic Strength of Agreement
< 0 Poor agreement

0.0 – 0.20 Slight agreement
0.21 – 0.40 Fair agreement
0.41 – 0.60 Moderate agreement
0.61 – 0.80 Substantial agreement
0.81 – 1.00 Almost perfect agreement

Table 1: Levels of Agreement among Analysts

2. Proposed Simulator

Software inspection plays a crucial role in achieving high
quality software right from the beginning. Especially for
requirements documents inspections are beneficial as
defects can be detected and removed at an early point in
time before they can leak into subsequent phases of the
development process, where those defects can cause high
rework cost and quality problems [9].

The Proposed Simulator for software acceptance assumes
that whether the new version of the software to be released
in the market will be acceptable or not based on certain
criteria. If the efficiency of the new software will be higher
than the previous versions, the new version of the software
will be more efficient. Efficiency is one of the major
attribute of software quality. The software is inspected on
the basis of various criteria and it is checked whether the
analysts are agreed upon these criteria. The simulator is
designed to determine the efficiency level of agreement
among many analysts which is measured using Fleiss
Kappa coefficient. The software under study consists of N
number of modules. There are k numbers of criteria. A
large number of analysts are given the responsibility to
inspect the various modules of the software and using
Fleiss Kappa Coefficient it is determined at what level all
the analysts are agreed upon to launch the new version of
the existing software. The efficiency level of the software
will be an indicator for the quality of the new version of
the software.

Assumptions

1. There are fixed number of analysts.
2. The number of analysts select the criteria is

computed with the help of random number
generator program.

3. Software consists of a large number of modules.

Terms and Notations
N : Number of different software modules.

A : Number of Software Analyst.
k : Various types of criteria
PE : Expected Probability of disagreement
P1(J) : Proportion of all efficiency levels

 which were to the J-th criteria.
P(I) : The extent to which analysts agree for the

 I-th module.
PAV : Mean of PI’s
A[I,J] : Efficiency levels for each module of the

 software using random number generator
 program.

 : Fleiss Kappa Coefficient

Algorithm:
Step 1: Start
Step 2: Read N, A, k

Step 3: Compute the efficiency levels for each module of
the software using random number generator program
through Poisson Distribution, (A[I,J]).

Step 4: Compute sum of all criteria values on the basis of
which the software is inspected.

Step 5: Compute proportion of all efficiency levels which
were to the J-th category using the relation

 ∑
=

=
N

i
ijANA

JP
1

1)(1

Step 6: Compute P(I), the extent to which analyst agrees
for the I-th module using the relation

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

= ∑
=

)(
)1(

1)(
1

2 A
AA

IP
k

j
ijA

Step 7: Compute PAV i.e., the mean of PI’s using the
relation

 ∑
=

=
N

i

IP
N

PAV
1

)(1

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= ∑∑

= =

N

i

k

j
ij NA

ANA A
1 1

2

)1(
1

Step 8: Compute PE i.e., the expected probability of
disagreement using the relation

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

112

 ∑
=

=
k

j
JPPE

1

2)(1

Step 9: Compute Fleiss’ Kappa coefficient using the
relation

PE

PEPAV
−
−

=
1

Step 10: Stop.

3. Case Study:

Fourteen analysts (A) are assigned the job of software
inspection and they study the software modules on the
basis of certain criteria among various modules of the
software. For this single software is recommended and
inspected for certain type of criteria (k) based on ten
different modules (N) of the same software.

Case 1

Ten modules of the software are inspected on the basis of
five types of software criteria. The criteria are Logical,
User Interface, Design Issues, Hard Coding and
Modularity designated as 1, 2, 3, 4 and 5 as shown in table
2. P(I) and P1(J) are computed using the relations defined
above.

Input: Read the value of Number of different software
modules (N), Number of software analysts (A) and various
types of criteria (k).

Table 2 shows the simulated values of criteria vs software
modules and is depicted in graph 1.

Criteria

 S/w Modules

1

2

3

4

5

1 0 0 0 0 14
2 0 4 4 4 2
3 6 0 0 5 3
4 2 2 8 2 0
5 3 3 6 1 1
6 4 6 2 0 2
7 1 3 8 2 0
8 2 5 3 2 2
9 5 5 2 2 0

10 4 2 2 3 3
Table 2

Simulated Values of Criteria vs Analysts

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10
No. of Software Modules

N
o.

 o
f A

na
ly

st
 fo

r e
ac

h
C

rit
er

ia

Logical

User Interface

Design Issues

Hard Coding

M odularity

 Graph 1
Output:
i) Table 3 shows the proportion of all efficiency levels
which were to the J-th criteria and is depicted in graph 2.

Criteria 1 2 3 4 5

P1(J) 0.1929 0.2143 0.2500 0.1500 0.1929
Table 3

Proportion of Level of Efficiency among all
Analysts for particular Criteria

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5
Criteria Type

Ef
fic

ie
nc

y
Le

ve
l

P1(J)

 Graph 2
ii) Table 4 shows the extent to which analysts agree for the
I-th module and is depicted in graph 3.

S/w Modules P(I)
1 1.0000
2 0.2088
3 0.3077
4 0.3407
5 0.2308
6 0.2527
7 0.3516
8 0.1758
9 0.2418

10 0.1538
Table 4

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

113

Rating vs Software Modules

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10
Software Modules

R
at

in
g

gi
ve

n
by

 A
na

ly
st

fo

r e
ac

h
m

od
ul

e

P(I)

 Graph 3

iii) Fleiss Kappa Coefficient

Mean of PI’s = PAV = 0.3264
Expected Probability of disagreement,
PE = 0.2053
Kappa Coefficient, = 0.1523

Case 2

Ten modules of the software are inspected on the basis of
four types of software criteria. The criteria are Logical,
User Interface, Design Issues and Hard Coding designated
as 1, 2, 3 and 4 depicted in table 5. P(I) and P1(J) are
computed using the relations defined above.

Input: Read the value of Number of different software
modules (N), Number of software analysts (A) and various
types of criteria (k).
Table 5 shows the simulated values of criteria vs software
modules and is depicted in graph 4.

Criteria

 S/w Modules

1

2

3

4

1 0 0 0 14
2 2 4 4 4
3 6 6 2 0
4 4 0 10 0
5 10 2 2 0
6 7 4 2 1
7 2 10 2 0
8 5 0 5 4
9 0 9 4 1

10 8 2 0 4
Table 5

Simulated Values of Criteria vs Analysts

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10

No. of Software Modules

N
o.

of
 A

na
ly

st
 fo

r e
ac

h
C

rit
er

ia

Logical

User Interface

Design Issues

Hard Coding

Graph 4

Output:

i) Table 6 shows the proportion of all efficiency levels
which were to the J-th criteria and is depicted in graph 5.

Criteria 1 2 3 4
P1(J) 0.3143 0.2643 0.2214 0.2000

Table 6

Proportion of Level of Efficiency among all
Analysts for particular Criteria

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

1 2 3 4
Criteria Type

Ef
fic

ie
nc

y
Le

ve
l

P1(J)

Graph 5

ii) Table 7 shows the extent to which analysts agree for the
I-th module and is depicted in graph 6.

S/w Modules P(I)
1 1.0000
2 0.2088
3 0.3407
4 0.5604
5 0.5165
6 0.3077
7 0.5165
8 0.2857
9 0.4615

10 0.3846
Table 7

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

114

Rating vs Software Modules

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Software Modules

R
at

in
g

gi
ve

n
by

 A
na

ly
st

s
fo

r e
ac

h
m

od
ul

e

P(I)

Graph 6

iii) Fleiss Kappa Coefficient

Mean of PI’s = PAV =0.4582
Expected Probability of disagreement,
PE = 0.2577
Kappa Coefficient, = 0.2702

Case 3

Ten modules of the software are inspected on the basis of
three types of software criteria. The criteria are Logical,
User Interface and Design Issues designated as 1, 2 and 3
depicted in table 8. P(I) and P1(J) are computed using the
relations defined above.

Input: Read the value of Number of different software
modules (N), Number of software analysts (A) and various
types of criteria (k).
Table 8 shows the simulated values of criteria vs software
modules and is depicted in graph 7.

Table 8

Criteria

 S/w Modules

1

2

3

1 0 0 14
2 7 0 7
3 10 4 0
4 2 0 12
5 9 5 0
6 2 6 6
7 4 10 0
8 0 8 6
9 11 3 0

10 4 10 0

Simulated Values of Criteria vs Analyst

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10
No. of Software Modules

N
o.

of
 A

na
ly

st
 fo

r e
ac

h
C

rit
er

ia Logical

User Interface

Design Issues

Graph 7

Output:

i) Table 9 shows the proportion of all efficiency levels
which were to the J-th criteria and is depicted in graph 8.

Criteria 1 2 3
P1(J) 0.3500 0.3286 0.3214

Table 9

Proportion of Level of Efficiency among all
Analysts for particular Criteria

0.3

0.31

0.32

0.33

0.34

0.35

0.36

1 2 3
Criteria Type

Ef
fic

ie
nc

y
Le

ve
l

P1(J)

Graph 8

ii) Table 10 shows the extent to which analysts agree for
the I-th module and is depicted in graph 9.

S/w Modules P(I)
1 1.0000
2 0.4615
3 0.5604
4 0.7363
5 0.5055
6 0.3407
7 0.5604
8 0.4725
9 0.6374

10 0.5604

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

115

Table 10

Rating vs Software Modules

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10
Software Modules

R
at

in
g

gi
ve

n
by

A

na
ly

st
fo

r e
ac

h
m

od
ul

e

P(I)

Graph 9

iii) Fleiss Kappa Coefficient
Mean of PI’s = PAV =0.5835
Expected Probability of disagreement,
PE =0.3338
Kappa Coefficient, = 0.3749
4. Discussion and Conclusion

The present simulator is designed to compute the level of
agreement among different analysts. This level of
agreement is described the level of efficiency which is
computed with the help of Fleiss Kappa Coefficient.

Software Inspection is an important part of the software
project management. To launch the new version of the
software in the market, there must be some level of
agreement among analysts. The software is inspected on
important criteria for which the old version of the software
has some discrepancies. The newer version is designed in
such a manner that the discrepancies of the older version
are removed. Therefore a team of analysts are given the
job of software inspection on various criteria. The level of
agreement among the analysts is measured using kappa
coefficient. It is found that if the software is inspected on
fewer numbers of criteria then the level of agreement will
be higher and the new version of the software will fulfill
the criteria more in comparison with the older version.
In other words, the newer version will be more efficient
and software will be released without any discrepancy in
the market.

Table 11 shows the value of kappa coefficient vs number
of criteria as discussed above in case 1, case 2 and case 3.

Table 11

No. of
Criteria

Kappa
Coefficient

Strength of
Agreement

5 0.1523 Slight agreement
4 0.2702 Fair agreement
3 0.3749 Fair agreement

Our proposed simulator results satisfy the above
description as depicted in the graph 10 as shown below.

Criteria vs Kappa Coefficient

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 2 4 6
No. of Software Criteria

K
ap

pa
 C

oe
ff

ic
ie

nt

Kappa
Coefficient

Graph 10

References

[1] Fagan, M. E., "Design and Code Inspections to Reduce Errors

in Program Development," IBM Systems Journal, vol. 15, pp.
182-211, 1976.

[2] O'Neill, D., "Issues in Software Inspection," IEEE Software,

1997, pp. 18-19.

[3] IEEE, "IEEE 1028-1988: IEEE Standard for Software

Reviews and Audits," 1988.

[4] Nachiappan Nagappan, Laurie Williams, Mladen Vouk,

“Preliminary Results on Using Static Analysis Tools for
Software Inspection”, Department of Computer Science,
North Carolina State University, Raleigh, NC, USA.

[5] Rus, I., Shull, F., Donzelli, P., "Decision Support for Using

Software Inspections," presented at 28th Annual NASA
Goddard Software Engineering Workshop, 2003. pp. 3 -11

[6] Diane Kelly, Terry Shepard, “A Case Study in the Use of

Defect Classification in Inspections”, IBM Centre for
Advanced Studies Conference, Toronto, Ontario, Canada pp.
7, 2001.

 [7] Siddhartha Dalal, Michael Hamada, Paul Matthews, Gardner

Patton, “Using Defect Patterns to Uncover Opportunities for
Improvement”, Bellcore Morristown, New Jersey.

[8] Raymond A. Paul, Farokh Bastani, I-Ling Yen, Venkata U.B.
Challagulla, "Defect-Based Reliability Analysis for Mission-
Critical Software," Compsac, pp.439, The Twenty-Fourth
Annual International Computer Software and Applications
Conference, 2000.

[9] Barry Boehm, Vic Basili, “Defect Reduction Top 10”, IEEE

Software, January 2001.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

116

Dr. P.K. Suri received his Ph.D degree
from Faculty of Engineering,
Kurukshetra University, Kurukshetra,
India and master’s degree from Indian
Institute of Technology, Roorkee
(formerly known as Roorkee University),
India. He is working as Professor in the
Department of Computer Science &

Applications, Kurukshetra University, Kurukshetra - 136119
(Haryana), India since Oct. 1993. He has earlier worked as
Reader, Computer Sc. & Applications, at Bhopal University,
Bhopal from 1985-90. He has supervised ten Ph.D.’s in
Computer Science and eleven students are working under his
supervision. He has more than 100 publications in International /
National Journals and Conferences. He is recipient of 'THE
GEORGE OOMAN MEMORIAL PRIZE' for the year 1991-92
and a RESEARCH AWARD –“The Certificate of Merit – 2000”
for the paper entitled ESMD – An Expert System for Medical
Diagnosis from INSTITUTION OF ENGINEERS, INDIA. His
teaching and research activities include Simulation and Modeling,
SQA, Software Reliability, Software testing & Software
Engineering processes , Temporal Databases, Ad hoc Networks,
Grid Computing , and Biomechanics.

Dr. Bharat Bhushan received his Ph.D
degree from Department of Computer
Science & Applications, Kurukshetra
University, Kurukshetra, M.Sc (Physics)
from Punjab University Chandigarh and
M.Sc (Comp. Sc.), MCA degrees from
Guru Jambeshwar University, Hissar in
2001 respectively. Presently working as
Head, Department of Computer Science

and Applications, Guru Nanak Khalsa College, Yamuna Nagar
(affiliated to Kurukshetra University, Kurukshetra- Haryana,
India) and senior most teacher of computer science in Haryana
since 1984. He is a member of Board of Studies of Computer
Science, Kurukshetra University. His research interest includes
Software Engineering, Digital Electronics and Simulation
Experiments.

Ashish Jolly received his MCA degree
from University of Madras, Chennai in the
year 1999. Currently he is pursuing Ph.D
in Computer Science from Department of
Computer Science & Applications,
Kurukshetra University, Kurukshetra,
India. He is working as a Asstt Professor
and Head in the Department of Computer
Science & Applications, Shri Atmanand

Jain Institute of Management & Technology (affiliated to
Kurukshetra University, Kurukshetra), Ambala City, Haryana,
India. His research area includes Simulation, Software
Engineering and Software Project Management.

