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Summary 
This paper presents Phase Only Correlation (POC) methods in 
hierarchical search motion estimation for high resolution digital 
video using Graphical Processing Unit (GPU). Using the POC 
function, one can estimate the translational displacement as well 
as the degree of similarity between two image blocks from the 
location and height of the correlation peak, respectively[1]. 
Motion Estimation is a process for defining object movement in 
digital video sequences. Motion Estimation is a system used in 
some field such as image processing, image analysis, video 
coding, and computer vision. A POC based hierarchical search is 
a high cost algorithm results in long processing time, thus the 
system developed in this paper proceed POC function in 
Graphical Processing Unit using parallel threading technology. 
The evaluation counts processing time speed of the methods 
using Graphical Processing Unit in high definition video with 
1280 x 720 pixel resolution. The results show that the methods 
using GPU performs accelerating speed more than two times 
faster processing 2 layer hierarchical search in 256x256 POC 
block size than doing the same methods using CPU. Using the 
NVidia GeForce 9600GT GPU, kernel execution with 256 thread 
per block, 9 32-bit register per thread, and 36 bytes of memory 
shared for every thread block, the multiprocessor maximum 
occupancy is 100%, with 768 active threads per multiprocessor, 
24 Active Warps per multiprocessor, and 3 active thread blocks 
per multiprosessor. 
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1. Introduction 

Motion estimation is the process of determining the 
movement of the objects of a video sequence. The 
movement is usually expressed in terms of the motion 
vectors of selected points within the current frame with 
respect to another frame known as the reference frame. A 
motion vector represents the displacement of a point 
between the current frame and the reference frame. 

Motion estimation is a fundamental task in numerous 
fields, such as image processing, image analysis, video 
coding, and computer vision. Robust high accuracy 

motion estimation is essential for applications such as 
mesh-based motion compensation for video coding, stereo 
vision 3D measurement, and super-resolution imaging (the 
reconstruction of a high-resolution image using multiple 
low-resolution images). Here, robustness refers to 
consistent pixel level estimation of motion vectors with 
minimal false detection [1]. 

Strategies for finding the best matching block are 
broadly classified into two types: full search methods and 
hierarchical search methods. The former is suitable for 
detecting local motion of individual objects, while the 
latter is suitable for detecting global motion of the scene. 
A POC based hierarchical search is a high cost algorithm 
results in long processing time, thus the system developed 
in this paper proceed POC function in Graphical 
Processing Unit using parallel threading technology. 

2. Theory and related Algorithm 

2.1 Phase Only Correlation 

Consider two N1 x N2 images, f(n1,n2) and g(n1,n2), 
where we assume that the idex range are n1 = -M1,...,M1 
and n2 = -M2,...,M2, for mathematical simplicity, and 
hence N1 = 2M1 + 1 and N2 = 2M1 + 1. Let  F(k1,k2) and 
G(k1,k2) denote the 2D Discrete Fourier Transforms (2D 
DFTs) of the two images. F(k1,k2) and G(k1,k2) are given 
by 
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The cross-phase spectrum (or normalized cross 

spectrum) ),(ˆ
21 kkR is defined as 
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Where ),( 21 kkG  denotes the complex conjugate of 
G(k1,k2) and θ(k1,k2) = θF(k1,k2) – θG(k1,k2). The Phase 
Only Correlation function ),(ˆ 21 nnr  is the 2D Inverse 
Discrete Fourier Transform (2D IDFT) of ),(ˆ

21 kkR  and is 
given by  
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Now consider fc(x1,x2) as a 2D image defined in continues 

space with real number indices x1 and x2. Let δ1 and δ2 

represent sub pixel displacement of  fc(x1,x2) to x1 and x2 

directions, respectively. So, the displaced image can be 

represented as fc(x1- δ1,x2- δ2). Assume that  f(n1,n2) and 

g(n1,n2) are spatially sampled images of  fc(x1,x2) dan fc(x1- 

δ1,x2- δ2), and are defined as, 
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Where T1 and T2 are the spatial sampling intervals, and 

index ranges are given by n1 = -M1,...,M1 and  n2 = -

M2,...,M2. The POC function ),(ˆ 21 nnr  between  f(n1,n2) 

and g(n1,n2) will be given by 
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where α < 1. The peak position of the POC function 
corresponds to the displacement between the two images, 
and the peak value α corresponds to the degree of 
correlation between the two images. Figure 1 shows an 

example of function fitting to estimate the true position 
and height of the correlation peak 

 
Fig 1. Function fitting for estimating the peak position 

2.2 Hierarchical Search Method 

In the POC-based hierarchical search motion 
estimation method (known thereafter as POC-HS), some 
coarser versions of the original input images are created. 
This method is also known as the coarse-to-fine 
correspondence search technique [6]. The POC-based 
block matching starts at the coarsest image layer and the 
operation gradually moves to the finer layers. The motion 
vector detected at each layer is propagated to the next finer 
layer in order to guide the search at that layer. An 
overview of the technique is shown in Figure 2. Let po be 
the given point in the current image, and q0 be the 
corresponding point in the reference image, and let pl and 
ql be the matching points at the l-th layer. The aim of the 
correspondence search is to find the corresponding point 
q0 of point p0 and in doing so, we obtain the motion vector 
of p0 as q0 − p0. 

 
Procedure for POC-HS 
Input: 
       Current image Io(n1,n2)(=I(n1,n2)), 
       Reference image Jo(n1,n2)(=J(n1,n2)), 
       Point  po (= p) in Io(n1,n2) 
 

 

Output: 

       Corresponding point  qo of point po in Jo(n1,n2), 

motion vector HS
pov of point po. 

Step 1: For l = 1,2, … ,lmax, create the l-th layer images 
Il(n1,n2) and Jl(n1,n2), i.e, coarser versions of Io(n1,n2) and 
Jo(n1,n2), recursively as follows : 
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In our experiments we set the value of  lmax to 2 or 3. 

Step 2: For every layer l = 1,2, … ,lmax, calculate the 
coordinate pl = (pl1,pl2) corresponding to the original point 
p0 recursively as follows: 
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Step 3: We assume that qlmax = plmax in the coarsest layer, 
let  l = lmax – 1. 

 
Fig 2. Block matching using a hierarchical search approach 

Step 4: From the l-th layer images Il(n1,n2) and Jl(n1,n2), 
extract two image blocks (of size W x W) fl(n1,n2) and 
gl(n1,n2) with their centers on  pl and 2ql+1, respectively. 
For accurate matching, the size of image blocks should be 
reasonably large. In our experiments, we use 256x256 
image blocks. 
Step 5: Estimate the displacement between fl(n1,n2) and 
gl(n1,n2) with pixel accuracy using the simplified version 
of the POC function, in which the displacement is 
determined to pixel-level accuracy. Let the estimated 
displacement vector be δl. The l-th layer correspondence ql 
is determined as follows : 
ql = 2ql+1 + δl. 

Step 6: Decrement the counter by 1 as l = l – 1 and repeat 
from Step 4 to Step 6 while l >=0. 

Step 7: Find the motion vector oo
HS
po pqv −= . 

2.3. Parallel Threading GPU 

The GPU is especially well-suited to address 
problems that can be expressed as data-parallel 

computations – the same program is executed on many 
data elements in parallel – with high arithmetic intensity – 
the ratio of arithmetic operations to memory operations. 
Because the same program is executed for each data 
element, there is a lower requirement for sophisticated 
flow control; and because it is executed on many data 
elements and has high arithmetic intensity, the memory 
access latency can be hidden with calculations instead of 
big data caches. 

Data-parallel processing maps data elements to 
parallel processing threads. Many applications that process 
large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets 
of pixels and vertices are mapped to parallel threads. 
Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding 
and decoding, image scaling, stereo vision, and pattern 
recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the 
field of image rendering and processing are accelerated by 
data-parallel processing, from general signal processing or 
physics simulation to computational finance or 
computational biology.  

The data types in GPU that we use can only process 
single precision types, so we have to convert our data 
types first if our data is in double precision. 

 
Procedure for POC GPU 
Step 1: Convert data types for the input from double 
precision to single precision. 
Step 2: Move the single precision data from CPU RAM to 
GPU RAM. 
Step 3: Computing parallel FFT on GPU. 
Step 4: Create the GPU Kernel for Cross Correlation to 
estimate the displacement. In our experiments, we use 256 
thread per block. 
Step 5: Computing parallel IFFT on GPU. 
Step 6: Move the displacement results back from GPU to 
CPU. 
Step 7: Convert the data types from single precision to 
double precision. 
Step 8: Find the motion vector. 
 

 
(a) 
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(b) 

 
(c) 

Fig 3. (c) displacement translational of image (a) and (b) with phase only 
correlation using GPU 

3. Experiments and Evaluation 

To manage hundreds of threads running several 
different programs, the multiprocessor employs an 
architecture called SIMT (single-instruction, multiple-
thread). The multiprocessor maps each thread to one scalar 
processor core, and each scalar thread executes 
independently with its own instruction address and register 
state. The multiprocessor SIMT unit creates, manages, 
schedules, and executes threads in groups of 32 parallel 
threads called warps. The multiprocessor maximum 
occupancy is the ratio of active warps to the maximum 
number of warps supported on a multiprocessor of the 
GPU.  Each multiprocessor on the device has a set of N 
registers available for use by thread programs.  These 
registers are a shared resource that are allocated among the 
thread blocks executing on a multiprocessor.  The 
compiler attempts to minimize register usage to maximize 
the number of thread blocks that can be active in the 
machine simultaneously. If a program tries to launch a 
kernel for which the registers used per thread times the 
thread block size is greater than N, the launch will fail. 
The kernel created use 256 thread per block. From the 

experiments, known that it used 9 registers and 36 shared 
memory.  
 

Table 1 : Physical Limitations of GPU used 
Threads / Warp 32
Warps / Multiprocessor 24
Threads / Multiprocessor 768
Thread Blocks / Multiprocessor 8
Total # of 32-bit registers / Multiprocessor 8192
Register allocation unit size 256
Shared Memory / Multiprocessor (bytes) 16384
Warp allocation granularity (for register 
allocation) 2

 
Using the physical limitations of the GPU as shown 

in table 1, we can calculate the multiprocessor maximum 
occupancy as follows: 
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x1 = 8  
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x3 = 2304 
where r1= register per thread, y2= register allocation unit 
size, x3 ≈  register per thread block 
 
⎡ ⎤ { }512,.|min4 threadpermemsharednnx ≥Ζ∈= (7) 
x4= 512 
Where x4 ≈  shared memory per thread block 
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x5 = 3  
where x5 ≈  Max. Warp per multiprocessor 
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x6 = 3 
Where x6 ≈ Max. Register per multiprocessor 
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x7= 32 
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Where x7 ≈ Max. Shared memory  per multiprocessor 
    
 
Took the minimum results from the equation  (8),(9), and 
(10), which is equal to Active thread block per 
multiprocessor.  
 
Active Warp per multiprocessor = Active thread block per 
multiprocessor X Warp per thread block 
    = 24 
Active Threads per Multiprocessor = Active thread block 
per multiprocessor X thread per block 
      = 768 
 
Multiprocessor Maximum Occupancy = (Active Warp per 
multiprocessor / Warp per multiprocessor) X 100% 
          = 100% 
  

 

 
(a) 

 
(b) 

 
(c) 

Fig 4. (c) Motion Vector  from Mobile Calendar using 32x32 size block 
taken from reference image (a) and current image (b) 

The chart below is  the results of the processing 
time in Full Search, 3 Layer and 2 Layer Hierarchical 
Search using 32x32 size POC block to 256x256 size POC 
block.  The yellow bar is the processing time in CPU, and 
the red one is the processing time in GPU. 
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Fig. 5. Processing time of Full Search POC GPU and CPU 
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Fig. 6. Processing time of Hierarchical Search POC GPU and CPU 3 

layer 
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2 Layer HS POC CPU vs GPU
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Fig. 7. Processing time of Hierarchical Search POC GPU and CPU 2 

layer 
 

The chart below is  the results of the processing time ratio 
between CPU and GPU in 2 layer hierarchical search, 3 
layer hierarchical search, and full search using 32 POC 
block to 256 POC block.  The yellow bar is the processing 
time ratio in Full search, the red one is the processing time 
ratio in 3 layer hierarchical search, and the green one is the 
processing time ratio in 2 layer hierarchical search. 
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Fig. 8. Time process ratio between Full Search, 3 layer Hierarchical 

Search, 2 layer Hierarchical Search POC GPU and CPU 

4. Conclusion 

This paper presents an acceleration of POC-based 
motion estimation with hierarchical search using GPU for 
video sequences. In the proposed method, the motion 
vector result achieved from displacement result processed 
in GPU. We have demonstrated that the proposed method 
is generally more than twice faster than processing the 
same method using CPU. Using the NVidia GeForce 
9600GT GPU, kernel execution with 256 thread per block, 
9 32-bit register per thread, and 36 bytes of memory 
shared for every thread block, the multiprocessor 
maximum occupancy is 100%, with 768 active threads per 
multiprocessor, 24 Active Warps per multiprocessor, and 
3 active thread blocks per multiprosessor. 
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