
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

140

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

Accelerating Phase Based Motion Estimation with Hierarchical
Search Technique Using Parallel Threading in Graphical

Processing Unit (GPU)

Rosa A. Asmara† and M. Hariadi††,

 State Polytechnics of Malang Institute of Technology Sepuluh Nopember, Surabaya, Indonesia

Summary
This paper presents Phase Only Correlation (POC) methods in
hierarchical search motion estimation for high resolution digital
video using Graphical Processing Unit (GPU). Using the POC
function, one can estimate the translational displacement as well
as the degree of similarity between two image blocks from the
location and height of the correlation peak, respectively[1].
Motion Estimation is a process for defining object movement in
digital video sequences. Motion Estimation is a system used in
some field such as image processing, image analysis, video
coding, and computer vision. A POC based hierarchical search is
a high cost algorithm results in long processing time, thus the
system developed in this paper proceed POC function in
Graphical Processing Unit using parallel threading technology.
The evaluation counts processing time speed of the methods
using Graphical Processing Unit in high definition video with
1280 x 720 pixel resolution. The results show that the methods
using GPU performs accelerating speed more than two times
faster processing 2 layer hierarchical search in 256x256 POC
block size than doing the same methods using CPU. Using the
NVidia GeForce 9600GT GPU, kernel execution with 256 thread
per block, 9 32-bit register per thread, and 36 bytes of memory
shared for every thread block, the multiprocessor maximum
occupancy is 100%, with 768 active threads per multiprocessor,
24 Active Warps per multiprocessor, and 3 active thread blocks
per multiprosessor.

Key words:
Motion Estimation, Phase Only Correlation, Graphical
Processing Unit Programming, hierarchical search.

1. Introduction

Motion estimation is the process of determining the
movement of the objects of a video sequence. The
movement is usually expressed in terms of the motion
vectors of selected points within the current frame with
respect to another frame known as the reference frame. A
motion vector represents the displacement of a point
between the current frame and the reference frame.

Motion estimation is a fundamental task in numerous
fields, such as image processing, image analysis, video
coding, and computer vision. Robust high accuracy

motion estimation is essential for applications such as
mesh-based motion compensation for video coding, stereo
vision 3D measurement, and super-resolution imaging (the
reconstruction of a high-resolution image using multiple
low-resolution images). Here, robustness refers to
consistent pixel level estimation of motion vectors with
minimal false detection [1].

Strategies for finding the best matching block are
broadly classified into two types: full search methods and
hierarchical search methods. The former is suitable for
detecting local motion of individual objects, while the
latter is suitable for detecting global motion of the scene.
A POC based hierarchical search is a high cost algorithm
results in long processing time, thus the system developed
in this paper proceed POC function in Graphical
Processing Unit using parallel threading technology.

2. Theory and related Algorithm

2.1 Phase Only Correlation

Consider two N1 x N2 images, f(n1,n2) and g(n1,n2),
where we assume that the idex range are n1 = -M1,...,M1
and n2 = -M2,...,M2, for mathematical simplicity, and
hence N1 = 2M1 + 1 and N2 = 2M1 + 1. Let F(k1,k2) and
G(k1,k2) denote the 2D Discrete Fourier Transforms (2D
DFTs) of the two images. F(k1,k2) and G(k1,k2) are given
by

),(
212121

21

21

22
2

11
1

),(),(),(kkj
F

nn

nk
N

nk
N

FekkAWWnnfkkF θ==∑ (1)

),(
212121

21

21

22

2

11

1
),(),(),(kkj

G
nn

nk
N

nk
N

GekkAWWnngkkG θ==∑ (2)

Where k1 = -M1,...,M1, k2 = -M2,...,M2, 1
1

2
N

j

N eW
π

−
= ,

2
2

2
N

j

N eW
π

−
= , and the operator ∑ 21nn denotes

IJCSNS International Journal of Computer Science and Network Security, VOL. 9 No.8 August 2009

141

∑∑ −=−=
2

22
1

11

M
Mn

M
Mn , AF(k1,k2) and AG(k1,k2) are

amplitude components, and),(21 kkj Fe θ and),(21 kkj Ge θ
are phase components.

The cross-phase spectrum (or normalized cross

spectrum)),(ˆ
21 kkR is defined as

),(

2121

2121
21

21

),(),(
),(),(),(ˆ kkje

kkGkkF
kkGkkFkkR θ== (3)

Where),(21 kkG denotes the complex conjugate of
G(k1,k2) and θ(k1,k2) = θF(k1,k2) – θG(k1,k2). The Phase
Only Correlation function),(ˆ 21 nnr is the 2D Inverse
Discrete Fourier Transform (2D IDFT) of),(ˆ

21 kkR and is
given by

∑ −−=
21

22
2

11
1

),(ˆ1),(ˆ 21
21

21
kk

nk
N

nk
N WWkkR

NN
nnr

 (4)

Where ∑ 21kk denotes ∑∑ −=−=
2

22
1

11

M
Mk

M
Mk .

Now consider fc(x1,x2) as a 2D image defined in continues

space with real number indices x1 and x2. Let δ1 and δ2

represent sub pixel displacement of fc(x1,x2) to x1 and x2

directions, respectively. So, the displaced image can be

represented as fc(x1- δ1,x2- δ2). Assume that f(n1,n2) and

g(n1,n2) are spatially sampled images of fc(x1,x2) dan fc(x1-

δ1,x2- δ2), and are defined as,

222111 ,2121 |),(),(TnxTnxc xxfnnf === ,

222111 ,221121 |),(),(TnxTnxc xxfnng ==−−= δδ

Where T1 and T2 are the spatial sampling intervals, and

index ranges are given by n1 = -M1,...,M1 and n2 = -

M2,...,M2. The POC function),(ˆ 21 nnr between f(n1,n2)

and g(n1,n2) will be given by

{ } { }

⎭
⎬
⎫

⎩
⎨
⎧

+

+

⎭
⎬
⎫

⎩
⎨
⎧

+

+
≅

)(sin

(sin

)(sin

)(sin
),(ˆ

22
2

22

11
1

11

21
21

δπ
δπ

δπ
δπα

n
N

n

n
N

n
NN

nnr

where α < 1. The peak position of the POC function
corresponds to the displacement between the two images,
and the peak value α corresponds to the degree of
correlation between the two images. Figure 1 shows an

example of function fitting to estimate the true position
and height of the correlation peak

Fig 1. Function fitting for estimating the peak position

2.2 Hierarchical Search Method

In the POC-based hierarchical search motion
estimation method (known thereafter as POC-HS), some
coarser versions of the original input images are created.
This method is also known as the coarse-to-fine
correspondence search technique [6]. The POC-based
block matching starts at the coarsest image layer and the
operation gradually moves to the finer layers. The motion
vector detected at each layer is propagated to the next finer
layer in order to guide the search at that layer. An
overview of the technique is shown in Figure 2. Let po be
the given point in the current image, and q0 be the
corresponding point in the reference image, and let pl and
ql be the matching points at the l-th layer. The aim of the
correspondence search is to find the corresponding point
q0 of point p0 and in doing so, we obtain the motion vector
of p0 as q0 − p0.

Procedure for POC-HS
Input:
 Current image Io(n1,n2)(=I(n1,n2)),
 Reference image Jo(n1,n2)(=J(n1,n2)),
 Point po (= p) in Io(n1,n2)

Output:

 Corresponding point qo of point po in Jo(n1,n2),

motion vector HS
pov of point po.

Step 1: For l = 1,2, … ,lmax, create the l-th layer images
Il(n1,n2) and Jl(n1,n2), i.e, coarser versions of Io(n1,n2) and
Jo(n1,n2), recursively as follows :

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

142

∑∑
=

−
=

++=
l

i
l

l

i
l ininInnI

0
22111

0
21

21

)2,2(
4
1),(,

∑∑
=

−
=

++=
l

i
l

l

i
l ininJnnJ

0
22111

0
21

21

)2,2(
4
1),(.

In our experiments we set the value of lmax to 2 or 3.

Step 2: For every layer l = 1,2, … ,lmax, calculate the
coordinate pl = (pl1,pl2) corresponding to the original point
p0 recursively as follows:

⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢

⎥⎦
⎥

⎢⎣
⎢=⎥⎦

⎥
⎢⎣
⎢= −−− 21111 2

1,
2
1

2
1

llll pppp

Step 3: We assume that qlmax = plmax in the coarsest layer,
let l = lmax – 1.

Fig 2. Block matching using a hierarchical search approach

Step 4: From the l-th layer images Il(n1,n2) and Jl(n1,n2),
extract two image blocks (of size W x W) fl(n1,n2) and
gl(n1,n2) with their centers on pl and 2ql+1, respectively.
For accurate matching, the size of image blocks should be
reasonably large. In our experiments, we use 256x256
image blocks.
Step 5: Estimate the displacement between fl(n1,n2) and
gl(n1,n2) with pixel accuracy using the simplified version
of the POC function, in which the displacement is
determined to pixel-level accuracy. Let the estimated
displacement vector be δl. The l-th layer correspondence ql
is determined as follows :
ql = 2ql+1 + δl.

Step 6: Decrement the counter by 1 as l = l – 1 and repeat
from Step 4 to Step 6 while l >=0.

Step 7: Find the motion vector oo
HS
po pqv −= .

2.3. Parallel Threading GPU

The GPU is especially well-suited to address
problems that can be expressed as data-parallel

computations – the same program is executed on many
data elements in parallel – with high arithmetic intensity –
the ratio of arithmetic operations to memory operations.
Because the same program is executed for each data
element, there is a lower requirement for sophisticated
flow control; and because it is executed on many data
elements and has high arithmetic intensity, the memory
access latency can be hidden with calculations instead of
big data caches.

Data-parallel processing maps data elements to
parallel processing threads. Many applications that process
large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets
of pixels and vertices are mapped to parallel threads.
Similarly, image and media processing applications such
as post-processing of rendered images, video encoding
and decoding, image scaling, stereo vision, and pattern
recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the
field of image rendering and processing are accelerated by
data-parallel processing, from general signal processing or
physics simulation to computational finance or
computational biology.

The data types in GPU that we use can only process
single precision types, so we have to convert our data
types first if our data is in double precision.

Procedure for POC GPU
Step 1: Convert data types for the input from double
precision to single precision.
Step 2: Move the single precision data from CPU RAM to
GPU RAM.
Step 3: Computing parallel FFT on GPU.
Step 4: Create the GPU Kernel for Cross Correlation to
estimate the displacement. In our experiments, we use 256
thread per block.
Step 5: Computing parallel IFFT on GPU.
Step 6: Move the displacement results back from GPU to
CPU.
Step 7: Convert the data types from single precision to
double precision.
Step 8: Find the motion vector.

(a)

IJCSNS International Journal of Computer Science and Network Security, VOL. 9 No.8 August 2009

143

(b)

(c)

Fig 3. (c) displacement translational of image (a) and (b) with phase only
correlation using GPU

3. Experiments and Evaluation

To manage hundreds of threads running several
different programs, the multiprocessor employs an
architecture called SIMT (single-instruction, multiple-
thread). The multiprocessor maps each thread to one scalar
processor core, and each scalar thread executes
independently with its own instruction address and register
state. The multiprocessor SIMT unit creates, manages,
schedules, and executes threads in groups of 32 parallel
threads called warps. The multiprocessor maximum
occupancy is the ratio of active warps to the maximum
number of warps supported on a multiprocessor of the
GPU. Each multiprocessor on the device has a set of N
registers available for use by thread programs. These
registers are a shared resource that are allocated among the
thread blocks executing on a multiprocessor. The
compiler attempts to minimize register usage to maximize
the number of thread blocks that can be active in the
machine simultaneously. If a program tries to launch a
kernel for which the registers used per thread times the
thread block size is greater than N, the launch will fail.
The kernel created use 256 thread per block. From the

experiments, known that it used 9 registers and 36 shared
memory.

Table 1 : Physical Limitations of GPU used
Threads / Warp 32
Warps / Multiprocessor 24
Threads / Multiprocessor 768
Thread Blocks / Multiprocessor 8
Total # of 32-bit registers / Multiprocessor 8192
Register allocation unit size 256
Shared Memory / Multiprocessor (bytes) 16384
Warp allocation granularity (for register
allocation) 2

Using the physical limitations of the GPU as shown

in table 1, we can calculate the multiprocessor maximum
occupancy as follows:

⎡ ⎤
⎭
⎬
⎫

⎩
⎨
⎧

≥Ζ∈=
warpperthread
blockperthreadnnx |min1 , (5)

x1 = 8
where integersofsets=Ζ , x1 ≈ Warp per thread block

If
⎡ ⎤ { }ygranularitallocationwarpxnnx ,|min 12 ≥Ζ∈=
, then
⎡ ⎤ { }2123 ,32|min yrxnnx ××≥Ζ∈= (6)
x3 = 2304
where r1= register per thread, y2= register allocation unit
size, x3 ≈ register per thread block

⎡ ⎤ { }512,.|min4 threadpermemsharednnx ≥Ζ∈= (7)
x4= 512
Where x4 ≈ shared memory per thread block

⎣ ⎦
⎭
⎬
⎫

⎩
⎨
⎧

≤Ζ∈=
blockperwarp

ssormultiproceperwarpLimitnnx |max5 (8)

x5 = 3
where x5 ≈ Max. Warp per multiprocessor

⎣ ⎦
⎭
⎬
⎫

⎩
⎨
⎧

≤Ζ∈=
blockthreadperregister

ssormultiproceperregisterTotalnnx |max6
 (9)

x6 = 3
Where x6 ≈ Max. Register per multiprocessor

⎣ ⎦
⎭
⎬
⎫

⎩
⎨
⎧

≤Ζ∈=
blockthreadpermemoryshared

ssormultiprocepermemorysharednnx |max7
 (10)

x7= 32

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

144

Where x7 ≈ Max. Shared memory per multiprocessor

Took the minimum results from the equation (8),(9), and
(10), which is equal to Active thread block per
multiprocessor.

Active Warp per multiprocessor = Active thread block per
multiprocessor X Warp per thread block
 = 24
Active Threads per Multiprocessor = Active thread block
per multiprocessor X thread per block
 = 768

Multiprocessor Maximum Occupancy = (Active Warp per
multiprocessor / Warp per multiprocessor) X 100%
 = 100%

(a)

(b)

(c)

Fig 4. (c) Motion Vector from Mobile Calendar using 32x32 size block
taken from reference image (a) and current image (b)

The chart below is the results of the processing
time in Full Search, 3 Layer and 2 Layer Hierarchical
Search using 32x32 size POC block to 256x256 size POC
block. The yellow bar is the processing time in CPU, and
the red one is the processing time in GPU.

Full Search POC CPU vs GPU

0

5

10

15

20

25

30

35

40

32 64 128 256

POC Block

tim
e

(s
ec

on
d

FS POC CPU
FS POC GPU

Fig. 5. Processing time of Full Search POC GPU and CPU

3 Layer HS POC CPU vs GPU

0

100

200

300

400

500

600

32 64 128 256

POC Block

tim
e

(s
ec

on
d

HS POC CPU
HS POC GPU

Fig. 6. Processing time of Hierarchical Search POC GPU and CPU 3

layer

IJCSNS International Journal of Computer Science and Network Security, VOL. 9 No.8 August 2009

145

2 Layer HS POC CPU vs GPU

0

20

40

60

80

100

120

140

160

32 64 128 256

POC Block

tim
e

(s
ec

on
d

HS POC CPU
HS POC GPU

Fig. 7. Processing time of Hierarchical Search POC GPU and CPU 2

layer

The chart below is the results of the processing time ratio
between CPU and GPU in 2 layer hierarchical search, 3
layer hierarchical search, and full search using 32 POC
block to 256 POC block. The yellow bar is the processing
time ratio in Full search, the red one is the processing time
ratio in 3 layer hierarchical search, and the green one is the
processing time ratio in 2 layer hierarchical search.

Time Process Ratio GPU/CPU

0

0.5

1

1.5

2

2.5

32 64 128 256

POC Block

Ra
tio

FS POC
3 Layer HS POC
2 Layer HS POC

Fig. 8. Time process ratio between Full Search, 3 layer Hierarchical

Search, 2 layer Hierarchical Search POC GPU and CPU

4. Conclusion

This paper presents an acceleration of POC-based
motion estimation with hierarchical search using GPU for
video sequences. In the proposed method, the motion
vector result achieved from displacement result processed
in GPU. We have demonstrated that the proposed method
is generally more than twice faster than processing the
same method using CPU. Using the NVidia GeForce
9600GT GPU, kernel execution with 256 thread per block,
9 32-bit register per thread, and 36 bytes of memory
shared for every thread block, the multiprocessor
maximum occupancy is 100%, with 768 active threads per
multiprocessor, 24 Active Warps per multiprocessor, and
3 active thread blocks per multiprosessor.

Acknowledgments

The author wish to thank Mr. Suryo Hapsoro as a
Research Director in Higher Educational Directorate of
National Education Department Indonesia and the team
for their financial support.

References
[1] Loy Hui Chien and Takafumi Aoki, ”Robust Motion

Estimation for Video Sequences Based on Phase-Only
Correlation,” 6th IASTED International Conference
Signal and Image Processing, pp. 441-446, August
2004.

[2] C.D. Kuglin and D.C. Hines, “The phase correlation
image alignment method,” Proc. Int. Conf. on
Cybernetics and Society, pp. 163-165, 1975.

[3] K. Takita, M.A. Muquit, T. Aoki, and T. Higuchi,
“High-Accuracy subpixel image registration based on
phase-only correlation,” IEICE Trans. Fundamentals,
Vol. E86-A, No. 8, pp. 1925-1934, August 2003.

[4] K. Takita, M. A. Muquit, T. Aoki, and T. Higuchi,“A
sub-pixel correspondence search technique for
computer vision applications,” IEICE Trans.
Fundamentals, 2004.

[5] GPGPU Vis Course, Minneapolis, USA, 2005.
[6] Nuno Vasconcelos, “Coarse-to-Fine Least Squares

Motion Estimator”, October 23, 1993.
[7] Sudipta N. Sinha, Jan-Michael Frahm, Marc Pollefeys,

Yakup Genc, “GPU-based Video Feature Tracking
and Matching”, 2004

[8] Eero P. Simoncelli, “Coarse-to-Fine Estimation of
Visual Motion”, 8th Workshop on Image and
Multidimensional Signal Processing in Cannes France,
IEEE Signal Processing Society, September 1993.

[9] John Watkinson, “The Engineer’s Guide to Motion
Compensation”, 1994

[10] NVidia Cuda Team, “SC-07 Cuda Tutorial”, 2007
[11] GPGPU VISCOURSE05, International conference on

GPGPU, Minneapolis USA, April 20, 2005.
[12] Matlab R2007a Documentation, 2007.
[13] Nvidia Developer Team, “NVIDIA CUDA

Programming Guide Version 2.0”, 6/7/2008.
[14] Nvidia Developer Team, “CUDA Reference Manual

Version 2.0”, June 2008.
[15] Nvidia Developer Team, “CUDA CUFFT Library

Manual Version 2.0”, April 2008.
[16] Nvidia Developer Team, “CUDA nvcc Manual

Version 2.0”, January 04 2008.
[17] Nvidia Developer Team, “Nvidia White Paper,

Accelerating MATLAB with CUDA using MEX
Files”, September 2007.

[18] Nvidia CUDA Forums,
http://forums.nvidia.com/index.php?showforum=62, 2009

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

146

Rosa A. Asmara received the B.E.
degree in electronics engineering from
Brawijaya University, and the M.S.
degree in Multimedia engineering,
from Institute of Technology Sepuluh
Nopember, Surabaya, Indonesia, in
2004 and 2009, respectively. He is
currently a lecturer at State
Polytechnics of Malang, Indonesia.
His research interests include signal
processing, image processing, parallel
processing, and computer vision.

M. Hariadi received the B.E degree
in electronics engineering, Institute of
Technology Sepuluh Nopember,
Surabaya, Indonesia, M.S. degree and
PhD. Degree in Tohoku University,
Japan, in 2003 and 2006, respectively.
He is currently a senior lecturer in
Institute of Technology Sepuluh
Nopember, Surabaya, Indonesia. His
research interests include image
processing, video processing,

Artificial Intelligence, multimedia and computer vision.

