
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

160

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

Interoperability issues seen in Web Services

Sujala D Shetty * , Dr S Vadivel**
*Senior Lecturer, BITS, Pilani - Dubai, Dubai UAE

** Associate Professor, BITS, Pilani - Dubai, Dubai UAE

Abstract
Web services are applications that enable internet based
distributed computing. There are broadly two types of
tools say J2EE and .NET for hosting and consuming web
services. Because of the heterogeneous nature of the
internet it is mandatory that a J2EE client should be able
to invoke a .Net web service or the other way round. But
in reality the feasibility of above is not always possible.
In this article the state of art in web services
interoperability issues have been extensively discussed
and good practices for interoperability have been
suggested.
Keywords: J2EE, .NET, web services, interoperability

1. Introduction

Today, distributed computing together with the growth of
the Internet make the Web services possible for their
users.Component based technologies like CORBA and
RMI are connection oriented and use non standard
communication ports, which may cause problems for
accessing due to the security issues.Furthermore these
technologies cannot handle the network interruption
successfully so it costs a lot for reconnecting to the
remote server after corruption.While Java RMI supports
cross platform interoperability, it is difficult to achieve
interlanguage interoperability with Java RMI[1].
On the other hand, when it comes to connecting
applications together that were written for different
languages, Web services technology come to the
picture.Web services are peices of functionalities that can
be accessed by sending them messages formatted in XML
over a network.All messages are sent through standard
internet protocols like HTTP.Messages sent between the
client and server are encoded in a XML formatted
protocol , say Simple Object Access Protocol (SOAP),
which defines the standardized way of accessing web
services on remote machines.Web services provide
interoperability across platforms and languages.The Web
Service Description Language(WSDL) can be used to
describe the interface a web service offers, also based on
XML[2].

1.1. Defination of Interoperable Web Services
An interoperable web service is one which can work
across platforms, languages, applications and with web
services from different vendors.

1.2. Why Interoperability ?

Once achieved, the ability to seamlessly integrate Java
Enterprise Edition (Java EE) and .NET environments
will help developers create applications on a diverse
range of operating systems including the Solaris
Operating System (OS), Windows and Linux, that can
co-exist and interoperate across heterogeneous
computing environments. Seamless integration will also
enable greater collaboration for enterprises, by allowing
them to leverage a larger ecosystem of partners in
application development. Additionally, interoperability
between the two platforms will help pave the way for
greater adoption of web services and service-oriented
architecture (SOA) -based application development by
reducing the associated cost, complexity and risk [3].

1.3. Examples of Interoperability

e.g.1
In a real life scenario it is seen that organizations
comfortable in .NET would develop their web service
using a .NET platform.Now the client which invokes
the web service could be a ASP.Net client, a pearl cient
or a java client, similarly organizations comfortable in
Java could have a web service developed in Java and
this service could be invoked by a client developed on
any programming language platform.As a simple
example we could consider a simple web service for
currency conversion which is developed in Java with
Axis which is consumed by a ASP.Net client created in
C# .

e.g.2
 We could also consider multiple web services
interacting with each other as an example we could
consider a supply chain application where we have the
supplier, warehouse, manufacturer and the retail stores
interacting with each other. Developers could be using a
Java2 Enterprise Edition (J2EE) based web service
deployed on Oracle 9i application server with web
services deployed on other platforms such as .Net and
J2EE application servers from other vendors.
e.g.3
We could consider a purchase order scenario. In this
scenario, a potential buyer (that is, the "Customer")
retrieves a catalog of products offered by a particular
buyer and selects which products will be purchased in

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

161

which quantities. When a purchase is complete, an order
is sent to the supplier with the types and amounts of
products that the buyer requested.
The supplier will then check if the requested products are
available to be shipped to the customer. This is achieved
by querying the warehouse. If there is insufficient stock to
fulfill the order, the order's status is set appropriately and
an error is returned. If the available stock is sufficient, the
supplier will then check the customer's credit to execute
the purchase. Each buyer is associated with a particular
bank that can provide information about the account
status, as well as deduct the required funds from that
account.
Finally, assuming that the bank account status is good, the
supplier sends a request to the warehouse to ship the order.
The customer, in the meantime, can check on the status of
a particular order with the supplier, or retrieve an invoice
for a confirmed shipment.
Each of the participants in the application scenario
described above, namely Customer, Supplier, Warehouse
and Bank, is implemented as a Web service. These
services can run on the same machine or on different
machines, with different implementations, showing the
value of Web services technology in a heterogeneous
environment.
Which implementation of a role is used when running the
application is determined by a set of XML files that
describe combinations of, for example, a particular
warehouse service with a particular supplier. This way,
any permutation of role implementations by the different
vendors can be configured. The XML configuration files
are kept in a central place and, typically, cannot be
changed [4].

2. BASIC PROFILE

Interoperability is an important factor in the success of
solutions that are based on Web Services and Service
Oriented Architecture (SOA), along with other key factors
such as contracts, loose coupling, and reuse.
Interoperability is generally accomplished by developing
your Web Services using the well-established guidelines
for implementing Web Services and by following industry
standards such as XML, WSDL, SOAP, and UDDI.
However, just following Web Services standards and
guidelines during the development phase of a project isn't
sufficient to achieve interoperability.
The different products used for development also have to
comply with many requirements such as the need to have
similar implementations (data types, formats, and
schemas) of the standards that you want to use. As
different products are provided by different vendors,
developed by several sets of people, and employ various
types of underlying technologies, achieving a common
understanding often becomes very difficult, which makes

the products likely to be non-interoperable with each
other.
Over the last few years, the basic Web Services
standards like XML, WSDL, and SOAP have matured a
lot and WS-I have released a Basic Profile that contains
implementation guidelines for basic Web Services
standards. Today, most vendors provide products that
comply with the Basic Profile and support the standards
included in the profile. With the wide adoption of the
Basic Profile, software vendors have been able to make
their products interoperable to a great extent.
There are four deliverables produced by the WS-I for
the Basic Profile version 1.0. Briefly, they are:

● The Basic Profile, which contains requirements and
guidelines for writing
interoperable Web services.
● The Basic Profile usage scenarios, which describe
fundamental ways that
providers and consumers interact.
● The sample application, which is an implementation
of an interoperable Web
service that demonstrates the requirements and
guidelines presented in the
Basic Profile.
● The testing tools, which help developers verify that
their Web service
implementations conform to the requirements in the
Basic Profile [5].

Achieving interoperability for scenarios involving only
basic standards is relatively easy if you follow the
guidelines set by the Basic Profile (BP) 1.0 or 1.1 of the
Web Services Interoperability Organization (WS-I). The
Basic Profile consists of implementing guidelines
recommending how a set of core Web Services
specifications should be used together to develop
interoperable Web Services. The guidelines address
technologies that cover four core areas: Messaging,
Description, Discovery, and Security. BP1.0 covers the
following core Web Services specifications and
provides constraints and clarifications to these base
specifications, along with conventions about how to use
them together [6].

2.1. Interoperability issues seen with
Java applications developed with
different tools

Since Java can be developed by different vendors
there is a problem with interoperability between
these platforms itself. There are a number of
proposals to increase interoperability.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

162

a. Make it possible for Java engineers to use the
same add on tools with programming applications
from different Java providers, but most of the
large java providers including IBM are not in
favor of this suggestion.

b. Leading Java tool companies have tried to
encourage independent software providers to
build plug-ins for their respective products. But a
standardized system for plug-in interoperability
does not exist.

c. A Java tool called Eclipse is an open source effort
started by IBM . The eclipse project has created a
‘framework’ in which several development tools
can operate. The eclipse tool allows a Java
programmer to combine a coding tool with a
source code management system from different
providers, but eclipse is not pursuing outside its
own.

d. Oracle spearheaded Java Specification request
(JSR) which creates a standardized way to plug
third party utilities into java tools which are
already under way.

e. It was noted that the technical approach of JSR
198, which reflects Oracle's beliefs, differs from
that of Eclipse. Rather than advocate one single
foundation that third-party tools can connect to,
the JSR 198 is proposing a plug-in system that
would allow Java programmers to choose
between different frameworks from tools
companies such as BEA, Borland Software, IBM
and Oracle. While Eclipse wants to be the
framework for all tools. Oracle disagrees with
that [7].

3. .NET and J2EE

Similarities

1. Both technologies provide a number of API’s
that serve a common purpose e.g. IO, reflection,
serialization, networking etc.

2. Both technologies support primitive data types,
e.g. integer, float, Boolean, double, long etc.
However since .NET supports multiple
languages primitive data types have been
mapped to a specific class in the .NET
framework.

3. Both technologies do not support multiple
inheritances.

4. Applications written in both technologies get
compiled to an intermediate language.

5. Both technologies have a garbage collector for
managing their resources. The garbage collector
deletes resources once they go out of scope.
Though the garbage collector performs the same

function in both the technologies their
approach is very different.

Differences
The differences in approach between .NET and J2EE
and the technical challenges accompanying them are
sometimes significant hindrances to interoperability.
The following are some of the differences
between .NET and J2EE.

1. J2EE is a set of open standards not a
product. .NET on the other hand, is a product
suite with some features built on standards and
other features that extend standards.

2. .NET provides runtime support for SOAP and
UDDI as native .NET protocols.

3. Integrated support is provided in .NET to build
and deploy XML based web services.J2EE
vendors must provide integration between
J2EE products and an IDE offering.

4. .NET provides business process management
and e-commerce capabilities. These
capabilities may be provided in J2EE
implementation but are not part of the standard.

5. J2EE is focused on application portability and
connectivity between platforms supporting
Java..NET targets application integration using
XML.

6. Application and backend integration
approaches differ. Java uses JCA (Java
connector architecture) to connect to specific
systems and applications. Connections across
disparate applications is through JMS..NET
provides integration through several
mechanisms, the host integration server 2000,
COM Transaction Integrator (COM TI),
Microsoft Messaging Queue (MSMQ) and
Biztalk Server 2000[8].

3.1.Interoperability Issues seen between Java
and .Net Web Services

• Using vendor tools to derive the Web services
semantics in WSDL from implementation code
is convenient, but this approach ignores the
design of the message schemas which is central
to Web services interoperability in
heterogeneous environments (J2EE technology
versus .NET, for example).

• The ease, flexibility, and familiarity of the
popular RPC/encoded style makes it an
attractive choice for developers; however, the
difficulty in synchronizing the implementations
of the abstract SOAP encoding data model

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

163

among vendors presents a difficult challenge for
Web services interoperability.

• Weakly-typed collection objects, arrays
containing null elements, and certain native data
types all pose special problems for
interoperability. Specifically:

o It is impossible for vendor tools to
accurately interpret XML Schemas
representing weakly-typed collection
objects and map them to the correct
native data types.

o The XML representations of an array
with null elements differ between .NET
and WebSphere.

o Because native data types and XSD data
types do not share a one-to-one
mapping, information or precision can
be lost during the translation.

• Different naming conventions in .NET and Java
technology can result in namespace conflicts, as
can the use of relative URI references [9].

4. Test Results

Results seen in implementation of
Interoperability Issues

Web services exchange data by exchanging XML documents.
As soon as data objects are pushed into the Web service stack
they are represented as XML documents. Thus, the Web
service stack on the receiving end should know how to
interpret the XML document sent by the sender. The XML
Schema, which provides an outline of the XML document,
helps the receiver to map the data which is represented in
XML. But the implementation difference in the underlying
technologies of J2EE and .NET results in different mappings
between the schema and native data types on both the
platforms. This may lead to information distortion and de-
serialization failure. [10]

We have tested interoperability issues by creating a reliable
web service in Java using Netbeans 6.5 and deploying it on
Glassfish server (v2). We than create a C# client in .NET and
a Java web client, in order to compare the performance of a
Java web service and a Java client and a Java web service and
a .NET client we allow the client to invoke the web service
and pass data to the web service the web service processes this
data and sends it back to the client. We shall see the output for
various cases like primitive data types, arrays with null
elements, and complex data types. We can check the
communication between the web service and the client by the
exchange of SOAP messages using the TCP Monitor.

4.1. An Array with Null Elements

The XML representations of an array with null elements
are different between .NET and Java. Consider a Java
web service which returns an array with a null element.
A java client can correctly interpret the null string in an
array. However, a .NET client interprets the null string
as a string of length zero or an empty string. Empty and
null strings are completely different from each other in
object oriented programming language[11].

Output from Java and .NET clients

The screenshots below show the difference in the
interpretation of null values by Java and .NET clients.
The output of the Java client is Disha, null, Vinita.
Hence, we infer that Java clients infer the null values
correctly. Whereas the .NET client displays null as an
empty string and cannot deseialize null values correctly.

Fig.1. Output of an array with null element when
invoked by a Java client

Fig.2. Output of an array with null element when
invoked by a .NET client

4.2. Primitive Types

Primitive data types can cause trouble. Each
programming language has a set of native data types. A
one-to-one mapping is not available between native data
types and XSD data types. Therefore, information can
be lost during the translation, or the receiver is not able
to do the mappings for certain native data types[11].

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

164

 Unsigned Numbers
For example, unsigned numerical types, such as
xsd:unsignedInt, xsd:unsignedLong, xsd:unsignedShort ,
and xsd:unsignedByte , are the typical examples of xsd
types. In .NET, the uint, ulong, ushort , and ubyte types
map directly to the xsd types, in Java language unsigned
types are not defined.

[WebMethod]

Public uint getUint(uint ui)

 { Return ui; }

This is a .NET Web Service which returns the unsigned
integer passed to it. Since unsigned types are not defined
in Java, it leads to an interoperability issue when a Java
client tries to call this Web service.

To solve this, use the WebServicesAssembler tool to map
the request input type to the Java native type long and
then call the web service. Another thing to do is use
wrapper methods to convert these unsigned data types to
xsd:string type so that interoperability is achieved.

4.3 Precision issues

For xsd:decimal, xsd:double , and xsd:float types, each
platform might have different precision support. This may
lead to loss of precision. Let’s consider the following
example in which a Java Web Service returns the sum of
two float numbers. Java has a precision of 6 digits after
decimal whereas .NET has a precision of 5 digits after
decimal. Therefore, rounding off takes place in the .NET
client and it loses precision[12].

Java Client

The Java client which calls the add method of the
testprecsion web service and passes the float values
4.111111 and 8.888888 to the web service and dislays the
sum that is returned by the web service i.e. 12.999999.

.NET client

The .NET client also passes the same values and displays
the sum returned by the service. But because.NET is less
precise the value 12.999999 gets rounded of to 13 and this
is displayed.

Output from Java and .NET clients:

Fig.3. Precision testing with a Java client

Fig.4. Precision testing with a .NET client

4.4 Collection of complex data types

In both Java and C# there are rich libraries of collection
types. For example, Java supports collection types like
java.util.Hashtable, vectors, Set, ArrayList, etc.
Whereas, in C# there’s Systems.Collections.Hastable,
SortedList, Queue, Stack, ArrayList,etc.]12 These
collection objects contain elements of different data
types. Due to this, they may also be considered as
weakly typed data structures.

When exposed across Web services they create
problems. The receiving side may not be able to
understand the SOAP messages that contain weakly-
typed object elements and native data types. For
example, an ArrayList in a .NET web service is taken to
be data of ‘anytype’ in the XML Schema. This makes it
ambigious. Therefore, when the Java client sees the
Schema, he wont know which collection type to map the
data to at the receiving side. This can be resolved by
sticking to simple data types as much as possible and
avoiding the use of complex data types.

c. Collection of complex data types
Collection objects might contain elements of any data
types. Thus, many consider them as weakly-typed data
structures. That makes them a wonderful programming

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

165

tool. In object-oriented programming, there are rich
libraries of collection types. In Java for example, there
are:

• java.util.Hashtable
• Vectors
• Hashmap
• Set
• ArrayList

While in C#, there are:

• System.Collections.Hashtable
• SortedList
• Queue
• Stack
• ArrayList

If exposed across Web services, these collection
types can cause insurmountable problems. The
problem lies in how the receiving side is able to
understand the serialized Simple Object Access
Protocol (SOAP) messages that contain the weakly-
typed object elements and native data types. Even

though some collection types look extremely
similar between languages, such as
System.Collections.ArrayList in C# and
java.util.ArrayList in Java, remember that the
elements in the collections are generic references.
To accurately unmarshall the XML representation
of a collection, consumers must have prior
knowledge of the original concrete types. The
burden is on the toolkit developers to interpret the
XML Schemas published by the Web services
providers and map the SOAP messages to the
native data is not an easy task for the weakly-typed
collections[10].

An object of student was created, the object contained
details like id_no which was of type int, name of type
string, dob of type date, gender of type char, subjects an
array of type string, marks an array to store float values
and a Boolean value, the object containing the mixed
data types could be successfully sent from the client to
the web service and the object could be successfully
displayed in the hash map table on the web service.

Fig. 5. Initial Screen to enter Student Details (Java Client)

Fig.6. Result displayed after successful invocation (Java Client)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

166

Fig.7. Output showing hash map contents of StudentDetails (Java Client)

Fig.8. Initial Screen for entering Student Details(.NET
Client)

Fig.9. Result displayed after successful invocation(.NET

Client)

Fig.10. Output showing hash map contents of

StudentDetails(.NET Client)

4.5 Relative URI reference as a namespace
declaration in WSDL
XML namespaces help in creating universally unique
URIs. They resolve naming conflicts in the XML
documents. However, the way that URIs are interpreted
and mapped in the native code differs between
platforms. It is usually relative URIs which cause a
problem. In Java, it’s not a problem when the WSDL
file is generated by the Web service itself. This is
because the target namespace is derived from the
package and the tool automatically qualifies them with
the schemas. But, when the web service is on .NET and
it generates the WSDL then the target namespace comes
directly from what is mentioned in the code. In .NET,
the process of qualifying with the schema is not done
and the relative URIs sometimes cause conflict when
the target namespace is the same. Therefore, to avoid
this, the best practice is to always make the namespace
unique by qualifying it with its own organization
domain name[11].

4.6. DateTime Issues

We have a schema data type called xsd:dateTime. This
too is one of the primitive data types, but is discussed as
a separate issue here due to a variety of problems

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

167

occurring when this schema type is used, if not
careful[12].

4.7. Null Values in Date data type

The communicating parties could pose problems if one of
their data types is a reference type and the other is a value
type. The xsd:dateTime is mapped to System.dateTime
in .NET. This is a value type, whereas it is mapped to
java.util.Calendar or java.util.Date, which is a reference
type, in Java. We know that the object of a value type is in
a stack and the object of a reference type is in a heap.
Hence a null reference is allowed as it signifies that the
object has a null pointer but a value type cannot have a
null value.
In Java when the reference type is not referencing any
object, we can assign a null value to it. Whereas, .NET
Web services will throw a System.FormatException in
case it receives a null value to its value type of data from
a Java client.
If the Calendar or Date object is initialized with a null
value in a Java client, then a null xsd:dateTime is sent in
the SOAP message. When the Web service built on
the .NET platform receives the SOAP message, correct
deserialization of the message is not possible. This is
because the System.DateTime type is not nillable.

4.8. Precision problem in date data type

Different platforms use different precisions when
interpreting the native dateTime types. When translating
values of an XML dateTime simple type to different
platforms, loss of precision can occur. The .NET platform
uses four digits for the year value and seven digits for the
milliseconds and the Java platform uses five digits for the
year value and three digits for milliseconds. This can be
cleary illustrated in the following example:
Here is a .NET Web method that returns a System
MAX_VALUE of the DateTime data type.

The Java client then gets a SOAP Response from the .Net
Web Method returning the MAX_VALUE of the
DateTime datatype.

<?xml version="1.0" encoding="utf-8" ?>
 <dateTime xmlns="http://tempuri.org/">9999-12-
31T23:59:59.9999999 08:00</dateTime>

Since the Java platform uses only 3 digits for the
milliseconds and the MAX_VALUE has seven digits, it
rounds up the date. Therefore on the receiving side we get
the output as

January 1, 10000

5. Best interoperability practices for
developing web services.

 a.Use XSD First

Always define the data first. Than decide on what data
will be sent and create the XSD than use tools to
generate classes from the XSD file which will guarantee
interoperability

b. Use Unit Tests to Test Interoperability

It is always a good practice to test the units separately
(using NUnit for .Net and JUnit for Java) in a web
service, if datatypes change, than we can rerun the unit
tests.

c. Ensure Document/Literal when generating Web
Services

As per the WS-I profile 1.0 only Document / Literal
should be used as the default encoding mechanism.

d. Add Option to Change Host and Port

In order to make it easy to change the location of the
web service it is a good practice to add a helper method
to change the host and port value of the web service
location.

e. Use Trace Tool to Investigate

Trace tools are invaluable for investigating SOAP
requests and responses between web services.

f. Always use compareTo() when comparing
dates/times

If sending dates and times over a Web Service
between .NET and Java, always use the appropriate
compareTo() method in Java to compare dates (as
opposed to date == value). This will help ensure
accuracy for date comparisons between the platforms,
especially when trying to compare milliseconds values.

g. Null Dates and Times are recognized by Java, but
not by .NET

In Java, java.util.Date and java.util.Calendar are classed
as reference types. In .NET, System.DateTime is
considered a value type. Reference types can be null,
whereas value types cannot. If you are planning to send
null date values across a Web Service, always send the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

168

value in a complex type, and set the value of the complex
type to null. This will help prevent the null date value
being interpreted incorrectly (and raising an exception).

h. Watch out for empty arrays

Some toolkits recognize an empty array as a single null
value, but if you are sending an array of objects over a
web service, always ensure they contain valid data[13].

6. Conclusion

Web services today are provided by the core UDDI,
WSDL, and SOAP protocols. On the immediate horizon
are a second layer of protocols that define workflow
automation (BPEL), Web service management services,
and vertical market protocols. Web services greatly help
developers build highly integrated solutions. So it should
be no surprise to see interoperability problems arrive
when workflow automation Web services are mixed with
vertical market Web services. For example when a client
developed using Microsoft .NET consumes a Web
Service supplied by an Apache-Axis server, probably
either because of ambiguities in SOAP specification or
server provider’s implementation differences
interoperability problems do happen. Generally the
problem happens if response of the service contains
empty arrays. If Web service toolkits are continually
improved to solve interoperability problems then
customers, users and businesses will more efficiently
solve system integration problems than using the existing
standards (CORBA, DCOM, and RMI). The more serious
Web service toolkits vendors have been diligent at solving
interoperability problems. If interoperability problems
linger or get worse then we are in for slower adoption of
web services and will lead to much bigger professional
services costs to implement intranet systems In this
article core issues involved in web services
interoperability among j2ee tools as well as .net Vs J2ee
tools have also been discussed and some issues involved
with interoperability like null elements in an array ,
primitive data types and complex data types have been
implemented. In addition to that best practices for web
services interoperability among j2ee and .NET also have
been suggested. Further efforts taken by vendors to
achieve web services interoperability also have been
highlighted.

7. References
[1] Ashish Banerjee, Arvind Corera, Zach Greenvoss, C# Web

Services building Web Services with .NET remoting and
ASP.net, Wrox pres Ltd, Birmingham, UK 2001.

[2] James Snell, ’Web Services Interoperability” ,
http://www.xml.com/pub/a/2002/01/30/soap.html]

[3] [http://www.sun.com/smi/Press/sunflash/2005-
11/sunflash.20051104.1.xml]

[4] [http://www.ibm.com/developerworks/library/ws-bpinter/]
[5] Web Services Specifications and SOA

InteroperabilityAchieving interoperability is neither simple
nor straightforward By: Sanjay Narang

[6] Building Interoperable web services WS-I basic Profile
1.0 , Microsoft

[7] Narayana Rao Surapaneni, Dhananjay Khatre, “Java
and .NET a developers guide to Interoperability and
Migration, Prentice Hall India”

[8] David A Chappel , Tyler Jewell, ‘Java Web services’,
O’Reilly publications

[9] [http://www.ibm.com/developerWorks] Wangming Ye
Web Services Interoperability between J2EE and .NET

[10] http://www.developerfusion.com/article/5155/web-
services-interoperability-between-j2ee-and-net-part-2/

[11] http://www.developerfusion.com/article/5155/web-
services-interoperability-between-j2ee-and-net-part-3/

[12]
http://download.oracle.com/docs/cd/B25221_04/web.1013
/b25603/interop.htm

[13] Arun Gupta, Project Tango : Adding quality of service
and .NET Interoperability to the Metro Web services
stack . http://blogs.sun.com/arungupta

Sujala Shetty has finished her
MTech from MIT, Manipal in 2002.
She is currently pursuing her PhD
from BITS, Pilani. She has worked
as lecturer in the Computer Science
Dept of MIT, Manipal from 1997 to
2002. She is currently working as
Senior Lecturer in the Computer
Science Dept of BITS, Pilani-Dubai
Campus from 2002.She has three
publications in International

conferences .Her current areas of interest are web services and
security.

Dr.S.Vadivel has got his PhD degree
in Computer Science and Engg from
I.I.T Madras, India by 1989.After
that he worked in Crompton Greaves
in Bombay as research executive for
3 years. Then he worked as
Assistant Professor in engg in Govt
college at Tamil Nadu, India for 4
years. Then he joined as Research
Lead in Think business networks a
multinational software company in

Tamil Nadu. He has joined BITs,Pilani-Dubai campus as
faculty in CSE by Jan 2003 and currently working as
associate professor in CSE in the same institute .He has 10
publications in various international journal and conferences.
His current research interest are in web services and security,
Embedded controllers ,data mining, and Architecture of
enterprise software applications.

