
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

247

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

Proposed Protocol to Solve Discovering Hidden Web Hosts
Problem

Mohamed A. Khattab, Yasser Fouad, and Osama Abu Rawash

Department of Mathematics (Computer Science), Faculty of Science, Alexandria University, Egypt

Summary
Web search engines use web crawlers that follow hyperlinks.
This technique is ideal for discovering resources on the surface
web but is often ineffective at finding deep web resources. The
surface web is the portion of the World Wide Web that is
indexed by conventional search engines whereas the deep web
refers to web content that is not part of the surface web. The deep
web represents a major gap in the coverage of web search
engines as believed to be of a very high quality and is estimated
to be several orders of magnitude larger than the surface Web.
Understanding the nature of the deep web resources as being
massively increased give us a conclusion that to be efficiently
explored need an approach based on two main concepts, the first
concept is to solve the problem from the side of web servers and
the second concept is to automate the discovery process. In this
paper we developed and implemented the Host List Protocol
model that is depending on such approach to discover hidden
web hosts and provide a way to be indexed through web search
engines.
Key words:
Deep web, hidden web, invisible web, search engines, web
crawlers, host list protocol, deep web resources, discover web
resources, discover hidden web

1. Introduction

The World Wide Web has been considered as the largest
digital library in recent years. People all over the world use
the web to find all sorts of information. The web is
inherently distributed and the data on the web is stored in
numerous sources. Often, these sources have central points
that provide search capabilities which are web search
engines [1]. Search engines are building their databases
through obtaining the entries from allowing authors of web
sites or webmasters to submit their own web URLs or
through using web crawlers. Crawlers are programs that
automatically traverse the World Wide Web, retrieving
pages and building a local repository of the portion of the
Web that they visit. Depending on the application at hand,
the pages in the repository are either used to build search
indexes, or are subjected to various forms of analysis (e.g.,
text mining). Traditionally, crawlers have only targeted a
portion of the Web called the publicly indexable Web (PIW)
[2]. This refers to the set of pages reachable purely by
following hypertext links, ignoring search forms, pages that

require authorization or prior registration and unknown
domains and hosts which is called “invisible Web”. Jill
Ellsworth [3] used the term “invisible web” in 1994 to refer
to websites that are not registered with any search engine.
Frank Garcia [4] used the term "invisible web" in 1996 to
refer to websites that are possibly reasonably designed, but
the designers of these websites did not bother to register
them with any of the search engines. So, no one can find
them. Another early use of the term “invisible web” was in a
December 1996 press release from Personal Library
Software Inc. (PLS) [5], the leading supplier of search and
retrieval software to the online publishing industry,
describing the AT1 invisible web search tool which was
considered the first tool of the second generation of web
search engines. The AT1 invisible web search tool combines
the best search agent of PLS and database extraction
technology to offer publishers and users something they
have never had before which is the ability to search for
content residing in hidden databases, those large collections
of documents managed by publishers not viewable by web
crawlers. AT1 also allows users to create intelligent agents
to search newsgroups and websites with e-mail notification
of results. The first use of the specific term "deep web"
occurred 2001 in a study by Michael Bergman [6] in which
Bergman avoided the term "invisible web". The objectives
of this study were to quantify the size and importance of the
deep web, characterize the content, quality, and relevance to
information seekers of deep web, discover automated means
for identify deep web search sites, direct queries to them and
begin the process of educating the internet searching public
about this heretofore hidden and valuable information
storehouse. S. Raghavan, H. Garcia-Molina [7] proposed an
application specific approach to hidden web crawling which
was a simple operational model of a hidden web crawler that
succinctly describes the steps that a crawler must take to
crawl deep web and found, it is estimated that the deep web
is several orders of magnitude larger than the surface web
which places the size of the hidden web (in terms of
generated HTML pages) at around 500 times the size of the
surface web or publicly indexable web. The deep web
resources may be classified into one or more of the
following categories

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

248

Hidden web hosts – web sites that had been designed and
published on the internet but not registered with any of the
search engines.
Dynamic content - dynamic pages which are returned in
response to a submitted query or accessed only through a
form.
Unlinked content - pages which are not linked to by other
pages.
Private web - sites that require registration and login.
Contextual web - pages with content varying for different
access contexts (e.g. ranges of client IP addresses or
previous navigation sequence).
Limited access content - sites that limit access to their
pages in a technical way (e.g., using the Robots Exclusion
Standard).
Scripted content - pages that are only accessible through
links produced by JavaScript as well as content
dynamically downloaded from web servers via Flash or
AJAX solutions.
Non-HTML/text content - textual content encoded in
multimedia (image or video) files or specific file formats
not handled by search engines. Our interest in this paper is
to minimize the burden on web search engines as being the
mostly used point of view in solving the problem of deep
web resources and trying to solve the problem from the
side of web servers in an automated manner.

2. Related Work

One way to access the deep Web is via federated search
based search engines. Search tools such as
"worldwidescience.org" [8] and "science.gov" [9] are
global science gateways connecting users to national and
international scientific databases and portals and accelerates
scientific discovery and progress by providing one stop
searching of global science sources through a web based
query interface. Their crawlers identify and interact with
searchable databases, aiming to provide access to deep Web
content. Web harvesting is another way to explore the deep
web in which human crawlers are used instead of
algorithmic crawlers. In the paradigm of web harvesting,
humans find interesting links of the deep web that
algorithmic crawlers can not find. This human-based
computation technique to discover the deep web has been
used by the "StumbleUpon.com" [10] service since
February 2002. StumbleUpon is a web discovery service
that allows its users to discover and rate web pages, photos,
and videos through a web based interface. In 2005, Yahoo!
made a small part of the deep web searchable by releasing
Yahoo! Subscriptions [11]. Yahoo search subscriptions
enable users to search access-restricted content such as news
and reference sites that are normally not accessible to search
engines. Some subscription websites display their full

content to search engine robots so they will show up in user
searches, but when they click a link from the search engine
results page a login or subscription page will be shown.

Researchers have been exploring how the deep web can
be crawled in an automatic fashion. Raghavan and Garcia-
Molina [7] presented an architectural model for a hidden
web crawler that used key terms provided by users or
collected from the query interfaces to query a web form and
crawls the deep web resources. Ntoulas et al [12] created a
hidden web crawler that automatically generated meaningful
queries to issue against search forms. Their crawler
generated promising results, but the problem is far from
being solved. Since a large amount of useful data and
information resides in the deep web. Web search engines
have begun exploring alternative methods to crawl the deep
web. Google’s Sitemaps protocol [13] is an easy way for
webmasters to inform search engines about pages on their
web sites that are available for crawling. The simplest form
of the Sitemaps protocol is an XML or a TEXT file that lists
URLs for a site along with additional metadata about each
URL (when it was last updated, how often it usually
changes, and how important it is, relative to other URLs in
the site) so that search engines can more intelligently crawl
the site. Web crawlers usually discover pages from links
within the site and from other sites. Sitemaps supplement
this data to allow crawlers that support Sitemaps to pick up
all URLs in the Sitemap and learn about those URLs using
the associated metadata. Using the Sitemap protocol does
not guarantee that web pages are included in search engines,
but provides hints for web crawlers to do a better job during
crawling web site. The Apache module mod-oai [14, 15]
that allows web crawlers to efficiently discover new,
modified, and deleted web resources from a web server by
using OAI-PMH, a protocol which is widely used in the
digital libraries community. Also, the mod-oai module
allows harvesters to obtain archive-ready resources from a
web server. The Sitemaps protocol and mod-oai module are
mechanisms that allow search engines and other interested
parties to discover deep web resources on particular web
servers. Both mechanisms allow web servers to advertise the
URLs that are accessible on them, thereby allowing
discovery of resources that are not directly linked to the
surface web.

Reviewing the proposed methods will give us a
conclusion that all solutions depending on collecting data
from users through web based interface, behavior of users
and ratings, specialized harvesting technique like mod-oai
or depending on the webmaster of the site like Sitemap
Protocol which still did not provide a way to discover
hidden web hosts. Most of the provided solutions to
discover deep web resources focus on the web search
engine point of view and try to solve the problem from the
side of web search engine.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

249

3. Specification and Design of the Host List
Protocol Model

Sitemaps Protocol logically considered being the second
phase of our Host-List Protocol as we need first of all to
have a frontier of unknown sites or hidden hosts then
provide a way to help crawlers of the web search engines
learning about the entire links of the site to be crawled more
intelligently. The role of the model is informing web search
engines about unknown sites or hidden hosts in an easy and
automated manner by proposing a protocol called Host-List
Protocol (HLP), a new developed protocol, to enhance
discovering techniques of deep web resources. Our model is
designed to be implemented as a periodical script providing
a way to inform web search engines about hidden hosts or
unknown hosts. The virtual hosting feature, applied in
Apache web server [16], allows one Apache installation to
serve many different actual websites. For example, one
machine, with one Apache installation could simultaneously
serve www.example.com, www.example2.com. This
feature, actually the virtual hosts, will be our target during
the implementation process of our model. The algorithm of
the HLP model is extracting hidden hosts, in the form of
virtual hosts, from Apache web server using one of the open
source technologies [17] which is PHP scripting language
[18] and through utilizing an open standard technology in
the form of XML language [19], building a frontier of
extracted hosts then sending such hosts frontier to the web
search engines that support our protocol via HTTP request
in an automatic fashion through a cron job [20]. Hosts
frontier is an XML file that lists virtual hosts extracted from
the configuration file of the Apache web server "httpd.conf"
after checking its configuration to make a decision about
from where to extract virtual hosts, from "httpd.conf". This
combination of open-source software and Apache web
server, the most widely-installed web server in the world as
of October 2008 Apache served over 51% of all websites
according to Netcraft [21] which conducts a monthly web
server survey, makes our model a suitable model for
providing Host-List functionality to a broad segment of the
web market.

3.1 The Architecture of the Model

The architecture of the model composed of five
components which are cron job, "httpd.conf" configuration
file, multi-functional PHP script, Host-List XML file and a
list of search engines that support HLP protocol as shown in
figure 1.

Let’s take a closer look to each component of the model as
illustrated in figure 1:

Figure 1 The architecture and main components of the HLP model

Cron job – is executed when the time/date specification
fields of the crontab file, that controls the cron jobs, all
match the current time and date. The role of our cron job is
to initiate the multi functional php script and to repeat that
automatically at a specified time/date.
"httpd.conf" –"httpd.conf" is the configuration file of the
Apache web severs which contains the seeds of our model
in the form of virtual hosts and has different configurations
to represent these virtual hosts, using multiple virtual
hosting systems on the same server (<VirtualHost>
Directive) inside "httpd.conf" or using a separate virtual host
configuration file “vhost.map”.
Host-List XML file – "hosts.xml" consists of XML tags
that represent the list of virtual hosts extracted from
"httpd.conf" or from "vhost.map" file. The structure of the
file is illustrated in figure 2.

Figure 2 Structure of the Host-List XML file

Multi-functional php script – is the brain of our model as
being responsible for all tasks after has been initialized by
the cron job which will have been run periodically on a
given schedule. The PHP script is divided into four modules,
the checker module, the extractor module, the builder
module and the submitter module. The script moves from
the initialize phase to the submit phase through a series of

<?xml version="1.0" encoding="UTF-8"?>
<hostsset>
 <host>www.site-1.com</host>
 <host>www.site-2.com</host>
 <host>www.site-n.com</host>

</hostsset >

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

250

actions until the goal is achieved, sending the virtual hosts
frontier to the search engines that support out HLP protocol.
The main steps of our algorithm can be outlined as follows:
Step 1 – defines the Apache configuration file that will be
used to check if the Apache web server is configured using
multiple virtual hosting systems on the same server or using
a separate virtual host configuration file.
Step 2 – defines the XML file that will contains the
extracted virtual hosts and acts as the frontier file that will
be send to the web search engines that support our HLP
protocol.
Step 3 – defines the list of the web search engines that
supports our HLP protocol and will receive the frontier file
Step 4 – initializes the virtual hosts file with an empty value
and will be assigned a value later if the Apache web server
is configured using a separate virtual host configuration file
with such file.
Step 5 – declares the checker module that checks the
Apache web server configuration, as mentioned above, and
takes the configuration file defined above as an input,
returns the value of the virtual hosts file depending on the
result of checking.
Step 6 – declares the extractor module that extracts the
virtual hosts from the virtual hosts configuration file or from
the Apache configuration file according to the value
returned from the checker module. The extractor module
takes the configuration file and the virtual hosts file as
inputs and returns the list of the extracted virtual hosts.
Step 7 – declares the builder module that builds the frontier
XML file containing the extracted virtual hosts that returned
from the extractor module. The builder module takes the list
of the virtual hosts returned from the extractor module and
the XML file declared above, in step 2, as inputs and returns
XML frontier file formatted and structured to be sent to the
list of web search engines.
Step 8 – declares the submitter module that submits the
XML frontier file returned from the builder module to the
list of web search engines. The submitter module takes the
frontier XML file and the list of web search engines file as
inputs, loops on the list of the web search engines sending a
copy of the XML frontier file to each item of the list through
sending an "HttpRequest" utilizing "client URL library
(cURL)" [22].
Step 9 – is the main statement of our script that calls the
above mentioned modules and executes each of them,
passing the output of each module as an input to the other
module.
List of supported search engines – is a file contains a list
of web search engines that support our HLP protocol and
will receive the frontier file of hidden hosts.

3.2 Modules of the Multi-Functional PHP Script

The four modules are run in a successive way during the
execution of the multi-functional PHP script. The role and
the architecture of each module as follows:
1. The checker module – The first module in action after
the initialization process of the multi-functional PHP script
by the cron job. The role of the checker module is
considered to be as the role of the road sign in driving
people to take a decision and be directed to a certain
direction. The checker module is starting by checking the
configuration file of the Apache web server, "httpd.conf", to
find if the Apache is configured using multiple virtual
hosting systems on the same server or using a separate
virtual host configuration file and returns the value of the
virtual hosts file. The checker module uses a list of C
conditions C={C1, C2} in the checking process of the given
F1 configuration file and make a decision D about from
where to extract the list of H hosts H={H1, H2,H3, …..,
Hn}. Depending on the value of D the extraction process
will be done using a given file list F= {F1, F2}.

Figure 3 The process outline of the checker module to generate a
decision D

 A hypothetical scenario for the checker module F =
{"httpd.conf", "vhosts.map"}, C= {"^Rewrite Map",
"^#Rewrite Map"} is depicted in figure 3.
2. The extractor module – The second module in action
after the execution of the checker module. The role of the
extractor module is considered to be as the role of the
explorer who searches for the treasures as being responsible
for searching and extracting the virtual hosts that will be
used to build the frontier file which will be sent to the web
search engines that support our HLP protocol. The extractor
module receives the decision D from the checker module
and depending on the value of D the extractor module will
execute a certain procedure. The value of the decision D
will be assigned to one element of the set F which represents
the file that contains the virtual hosts. The extraction process
will vary in each procedure according to the value of F and
uses a condition that belongs to the set C= {C3, C4} as
follows:
[i] The set F of given files means that F1 is assigned to the
first value of the set when the Apache is configured using
multiple virtual hosting systems on the same server. The
extraction criteria is depending on the F1 file format,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

251

filtering the contents of the file according to a condition C3
€ C and extracting the values of the list H as H1, H2, H3,
…, Hn. A hypothetical scenario for the extractor module
with F1 = {"httpd.conf"} and C={"^servername "} is
depicted in figure 4.

Figure 4 The process outline of the extractor module to extract the
H list from the F1 file

[ii] The value of F is assigned to the second value of the set
when the Apache is configured using a separate virtual host
configuration file. The extraction criteria is depending on
the F2 file format, filtering the contents of the file according
to a condition C4 € C and extracting the values of the list H
as H1, H2, H3,…, Hn. A hypothetical scenario for the
extractor module with F2 = {"vhosts.map"} and C=
{"^www "} is depicted in figure 5. The value of the set H=
{H1, H2, H3,…, Hn} represents the output of the extractor
module and the input of the successive module which is the
builder module.

Figure 5 The process outline of the extractor module to extract the
H list from the F2 file

3. The builder module – The third module in action after
the execution of the checker and the extractor modules. The
role of the builder module is considered to be as the role of
the lumber in building the blocks of a building. The builder
module is responsible for the creation process of the Host-
List XML file that contains the extracted virtual hosts as
adding each extracted host in the form of a block according
to the XML file format illustrated in figure 2. The builder

module receives the hosts set H from the extractor module
and makes a mapping process in a one to one
correspondence relationship to map each element that
belongs to the set H into an element that belongs to the set
B= {B1, B2, B3, …, Bn} where each element of the set B
represents a building block of the XML frontier file.

Figure 6 The process outline of the builder module builds the
frontier B file

 A hypothetical scenario for the builder module receives
the set of virtual hosts H={"www.host1.com",
"www.host2.com",…,"www.hostn.com"}and generates the
set of XML blocks B = {"<host>www.host1.com</host>",
"<host>www.host2.com</host>",…,
"<host>www.host2.com </host>"} is depicted in figure 6.
The value of the set B represents a partial output of the
builder module which is the core of the frontier file contents.
The final output V of the builder module, produced by
adding the main building block X of the XML file to the set
B, is the input of the successive module which is the
submitter module.
4. The submitter module – The last module in action after
the execution of the checker, the extractor and the builder
modules. The role of the submitter module is considered to
be as the role of the postman in delivering letters as being
responsible for the posting process of the frontier file to the
web search engines that support our HLP model.

Figure 7 The process outline of the submitter module sends the
frontier X file

 The submitter module receives the file V from the
builder module that contains the extracted virtual hosts and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

252

using a set of web search engines SE = {SE1, SE2, SE3, …,
SEn} opens a session between the model and each web
search engine and sending the X file through such session.
A hypothetical scenario for the submitter module receives
the file X and using the set of web search engines SE=
{"http://www.SE1.com", "http://www.SE2.com",…,
"http://www.SEn.com"} is depicted in figure 7.

4. Implementation and Final Results

As the objectives of our model are to solve the problem
from the side of web servers and to automate the discovery
process for the hidden resources then we need to proof that
our model is capable of extracting such hidden hosts during
posses the proposed solution in an automated manner. We
here demonstrate the validity of our model through
implementing the proposed solution during preserving the
reliability of the system. So the reliability of the model
according to the factor of execution time is another objective
for our model also, to identify the suitable server category
for the model from the analysis and evaluation of the
obtained results.

 The environment for the implementation of our
scenario houses about fifty servers classified into five main
categories according to their hardware configuration and all
servers are running the same platform including the
operating system, the underlying server daemons and the
development environment. The implementation of our
model was done using a virtual machine [23] simulator to
simulate the behavior of the hosting web servers that will
host our model and submit their hidden virtual hosts. The
choice of the simulator for the implementation was
"VMware Workstation 6.5.1" [24] was based on two
reasons. The first reason because the VMWare provides an
abstraction that is identical to the hardware underneath the
host operating system as the VMWare executes mostly on
the host hardware. The second reason because the VMWare
is regarded widely as providing excellent performance [25].
All implementation scenarios performed on the same
selected servers over VMWare according to their
classification categories but with variant number of virtual
hosts ranging from 103 to 593 hosts. The processors of all
servers are the same in speed and cash but the hardware
configuration differs in the number of running processors
between single CPU, dual CPU and the used RAM space as
ranging from 512MB to 3.264GB. The reason behind such
categorization is to study and demonstrate the effect of the
number of running processors and the used RAM space on
the execution time of the extraction process and illustrated
through analyzing the regression of the trendline of the data
series obtained during our experiments. We made 5 different
implementation scenarios according to the criteria

mentioned above ranging from 103 tp 593 hosts and from
512MB to 3.264GB of RAM space and the distribution of
the execution time relative to all server categories for all
scenarios is illustrated in figure 8.

Figure 8 Distribution of the execution time relative to all server
categories for all scenarios

 From figure 8 we got that the best execution time was
equal to 0.0476 seconds for a number of virtual hosts equal
to 103 and was obtained over the first server’s category.
Also the figure illustrates that the best execution time for all
other number of virtual hosts was obtained over the same
server category. We made a regression analysis for the
trendlines that represent the data series obtained through our
implementation scenarios as trendlines are a graphic
representation of trends in data series sloping upward to
represent increased or decreased execution time over a
change in server category. To determine the type of
regression that represents the trend of data series for each
implementation scenario we calculated the Coefficient of
Determination (R2) value, R-Squad value, for all lines
because it gives the proportion of the variance (fluctuation)
of execution time over changing in server category. As the
best R-Squad value for regression line that represents the
trend of data series when the value is equal or near to 1 then
we found that the logarithmic regression was the suitable
regression type that good fit to the data series for scenarios
1, 2 and 4 which means that the rate of change in the
execution time increases quickly as the hardware
configuration is being less in the number of used processors
or in the used RAM space. Whereas the polynomial
regression with order 2 (one hill) was the suitable regression
type that good fit to the data series for scenarios 3 and 5
which means that the execution time values fluctuates. By
evaluating the obtained results for the type of regression line
that good fit to the data series for each scenario we got that
about 98% of the total variation in execution time can be
explained by the variation in hardware configuration
according to the server category through scenarios 1, 2 and
4. Whereas the total variation in execution time can be
explained by the variation in hardware configuration
according to the server category for scenario 3 is about 95%

0

0.05

0.1

0.15

0.2

1 2 3 4 5

103
250
375
522
593

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

253

and 91% for scenario 5. Hence from the evaluation of the
obtained R-Squad values and the best execution time over
all scenarios we got that the suitable server category for our
model that preserve the system reliability is the first
category.

5. Conclusion and Future Work
The deep web is massively increased in size and the gap in
the coverage of web search engines for deep web resources
is inherently increased hence, the deep web to be efficiently
explored needs an efficient approach. The efficient approach
that have the ability to explore the deep web and index its
resources needs a smart characteristics and to be based on
two concepts, the first concept is to solve the problem from
the side of web servers not from the point of view of web
search engines and the second concept is to automate the
discovery process for such resources not to enforce
webmasters of the web sites to register their sites in web
search engines which means, automating discovery process
is the applicable solution for such problem and all that
concept needs is a smart way to do so. We enhanced the
discovering techniques of deep web resources and explored
an automatic fashion to bridge the gap in the coverage of
web search engines for deep web resources. The
enhancement was in understanding the nature of deep web
resources and providing an approach based on the two main
concepts mentioned above and done through the Host List
Protocol model. As most research, this paper leaves open
areas to be researched, recovered and enhancing the work
provided through this paper. The avenues for future work
are in many directions and we consider the following as the
two main directions:
Integrated web search engine model Propose and
implement the model of the web search engine to support
our Host List Protocol model and identify how to handle the
received virtual hosts' files. The handling process includes
algorithms for filtering process of the new submitted hosts
and the queuing process of such new hosts through the
frontier of the web search engine preparing them to be
crawled.
Protocol globalization As illustrated through our work the
model was designed and implemented over The Apache
web server. The proposed direction here is to propose and
implement the Host List Protocol model on the available
web server software other than the Apache web server.

References
[1] S. Lam, The Overview of Web Search Engines, University

of Waterloo, Canada, February 2001.
[2] S. Lawrence and C. L. Giles. Searching the World Wide

Web, Web Science magazine, 280(5360):98, 1998.

[3] Jill H. Ellsworth , Matthew V. Ellsworth, the internet
business book, John Wiley & sons, Inc., New York, NY,
1994.

[4] The size of the World Wide Web.
http://www.worldwidewebsize.com, retrieved on 2008.

[5] Garcia, Frank. Business and marketing on the Internet.
Masthead 9 (1), 2001.

[6] Personal Library Software. PLS introduces AT1, the first
'second generation' internet search service, January 1996,
http://web.archive.org/web/19971021232057/www.pls.com/
news/pr961212_at1.html

[7] Kobayashi, M. and Takeda, K. Information retrieval on the
web. ACM Computing Surveys (ACM Press), 32 (2): 144–
173. doi:10.1145/358923.358934, 2000.

[8] Carlos Castillo, Effective web crawling, ACM SIGIR
Forum, v.39 n.1, June 2005.

[9] Bergman, Michael K. The deep web: surfacing hidden value.
The journal of electronic publishing, 7 (1), Aug 2001.

[10] Sriram Raghavan , Hector Garcia-Molina. Crawling the
hidden web. In Proceedings of the 27th International
conference on very large databases, pp.129-138, September
11-14, 2001.

[11] Eichmann, D. The RBSE spider: balancing effective search
against web load. In Proceedings of the 1st World Wide
Web Conference, Geneva, Switzerland, 1994.

[12] Pinkerton, B. Finding what people want: experiences with
the web crawler. In Proceedings of the 1st World Wide Web
Conference, Geneva, Switzerland, 1994.

[13] World wide science federated search engine.
http://worldwidescience.org, retrieved on 2008.

[14] USA government science portal. http://www.science.gov,
retrieved on 2008.

[15] Human based web discovery service.
http://www.stumbleupon.com, retrieved on 2008.

[16] Yahoo subscriptions. http://search.yahoo.com/subscriptions.
[17] A. Ntoulas, P Zerfos, J Cho - proceedings of the 5th

ACM/IEEE-CS joint conference on digital libraries, p.100-
109, 2005.

[18] Sitemaps Protocol. http://www.sitemaps.org, retrieved on
2008.

[19] Michael L. Nelson, Joan A. Smith, Ignacio Garcia del
Campo, Herbert Van de Sompel, Xiaoming Liu. Efficient
automatic web resource harvesting. In Proceedings of the
8th ACM International Workshop on Web Information and
Data Management (WIDM), 2006 .

[20] Mod Oai Project. http://www.modoai.org, retrieved on 2008.
[21] About the Apache HTTP server project.

http://httpd.apache.org/ABOUT_APACHE.html, retrieved
on 2008.

[22] Open Source Initiative (OSI). http://www.opensource.org,
retrieved on 2008.

[23] "History of PHP and related projects", The PHP group.
http://www.php.net/manual/en/history.php, retrieved on
2009.

[24] Bray, Tim; Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler, François Yergeau. "Extensible Markup Language
(XML) 1.0 (Fourth Edition)-Origin and Goals". World Wide
Web Consortium, September 2006.

[25] GNU cron specification.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

254

 http://www.gnu.org/software/gcron/specification.html,
retrieved on 2008.

[26] Web server survey archive.
http://news.netcraft.com/archives/web_server_survey.html,
retrieved on October 2008.

[27] PHP client URL library (cURL) manual.
http://www.php.net/curl, retrieved on 2009.

[28] Jeremy Sugerman, Ganesh Venkitachalam, Beng-Hong
Lim: Virtualizing I/O Devices on VMware Workstation's
Hosted Virtual Machine Monitor. In Proceedings of the
2001 USENIX Annual Technical Conference, p.1-14,
Berkeley, CA, USA, June 2001.

[29] VMware Workstation.
http://www.vmware.com/products/ws, retrieved on 2009.

[30] Samuel T. King, George W. Dunlap, Peter M. Chen:
Operating system support for virtual machines. In
Proceedings of the annual conference on USENIX Annual
Technical Conference, p.6-6, San Antonio, Texas , June
2003.

