
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

262

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

Software Reuse : Ontological Approach to Feature Modeling

Vinod Babu Matcha*,
Prof. Prasad Reddy P.V.G.D **,

 Ch.V.M.K.Hari ***, G.Srinivas ***, N.SanjeevaRao ***, B.Jayachand ***, J.N.V.R. Swarup kumar***,
G. SriRamGanesh***, N.V.R.V.Vamsi Krishna***, I.kali Pradeep***,

Prof. Ch.Ramesh****

* Dept of Systems and software engineering, Blekinge Institute of Technology Ronneby, Sweden.
** Dept of CS & SE, Andhra University, Visakhapatnam,

*** Dept of Information Technology, GITAM University, Visakhapatnam,

**** Dept of Computer Science, AITAM College, Tekkali,

Abstract
Domain Engineering is a software reuse approach in application
domain mainly used to deliver high quality software under
budget and time constraints. In domain engineering the feature
models play a vital role by providing common and variant
concepts. However, feature models hamper the development of
domain due to lack of formal semantics and at the same time
consistency checking of the feature configuration is ambiguous
to the stakeholders. In this paper we captured the relationships in
OWL using JENA and a pallet for consistency checking of the
feature configuration.
Key words:
Ontological, Approach, Reuse.

1. Introduction

In software engineering, Domain engineering is a
software reuse approach in the application domain.
Domain analysis, domain design and domain
implementation are performed in domain engineering.
Why organizations use reuse approach in domain
engineering? Because to deliver a new product within a
shorter time and at a lower cost. Feature modeling is one
of the software reuse approach in the domain engineering.
We can identify the common and variant features in the
particular domain through graphical representation of the
feature modeling. We have many methods in the feature
modeling like FORM (Feature Oriented Reuse Method)
and FODA (Feature Oriented Domain Analysis) but there
is lack of ontology concept in the features and feature
modeling. Due to this, there is no automated tools to
check the correctness of the particular feature
configuration depend on the constraints specified in
feature model [1].

2. Background

In nature no object exists in isolation. ‘Software reuse’ is
a method for developing new is component adding some
extra functionalities to the existing ones. Domain
engineering lets the organization produce products in a
particular domain in shorter time and at a lower cost. In
domain engineering we perform domain analysis and
capture domain knowledge in the form of reusable assets.

Feature modeling is one of the ways for domain
engineering and it is widely used in industry. It is very
helpful in creating product lines. Products can be rapidly
developed using the product lines. The products that come
from the same product line vary in few features. So, all
the products that are derived from the same product line
have some common features and vary in some features.
So, making products from product line is nothing but
reusing of assets.

So, far it is good and people are using different tools to
configure the features of a product. Feature configuration
is the selection of a set of features for producing a product
from the product line. But in mass customization of
products, feature configuration is difficult as the
stakeholders misinterpret the features some times and
sometimes even the customer forgets to tell some of his
required features for his desired product. For example if a
customer wants to have a Mercedes-Benz C-class with a
customization for racing. Then vender has to check all the
features of C-Class and at the same time he has to check
whether the new customized features are affecting the
ultimate product. For example if a car product line offers
either manual control or automatic control, and let
suppose C-class car is offered with manual control and
racing car offered with automatic control, but the ultimate
product that was needed by the customer is C-class with a

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

263

customization of racing then, we will find both the
features, then the product can not be delivered. This is
happening because either vendor or customer or both
misinterpret the feature configuration. This is happened
due to lack of proper semantics for feature models. For
mass customization of products we need tools but, no tool
is supporting semantics. Here we try to project an
ontological approach to solve this problem. Before going
to discuss the ontological approach we will discuss some
of the concepts of future model (car feature model shown
in fig 1).

Fig 1: Car feature model [8].

2.1 Feature and Concept:

Feature represents a noticeable characteristic of a concept
where as concept is a set of related features with
constraints.

Table 1: Feature types [1].

In Table 1, we are assuming the concept C is selected and
explaining its child features as follows:
Mandatory means the feature F must compulsory be
required in the description of a conceptual instance.
Optional means the feature F may or may not be required
in the description of a conceptual instance. Alternative
means we have two features F1 and F2 in the diagram.
Exactly one feature required from a set of features in the
description of a conceptual instance. Or means we have
two features F1 and F2 in the diagram. One or more

features required from a set of features in the description
of a conceptual instance.

2.2 Feature Configuration:

Future configuration is an instance of a set of futures that
a concept holds. From the Figure.1 we can derive a set
(CarBody, Transmission, Engine, Automatic, Electric).
This set is a valid feature configuration and the number of
valid feature configurations that can be derived from the
above diagram are 12. Those are the cars with two types
of transmission, three kinds of engines (electric, gasoline,
both) and with a optional trailer coupling feature.

2.3 Ontology:

Ontology is a shared knowledge between people or
software agents under common agreement [2]. We have
different ontology languages like OWL (Web ontology
language), OWL-S (Web ontology language for services),
OWL-R (Web ontology language for Rules)...Etc. We are
using OWL for the development of feature ontology.

OWL is the extension of RDF Schema [4], [5] and it is
endorsed by World Wide Web consortium. Most of the
elements of the OWL concerns with the classes, properties,
instances of class and relationship between the instances.

3. Related Work

H Wang et.al., proposed theory about the feature
modeling for domain engineering with respect to OWL
and they have proposed a protégé tool and racer inference
engine [1] [7]. But here we tried to use JENA through
which we can construct ontology programmatically unlike
the protégé where construction of ontology is done in tool.
When coming to inference engine we have used a pallet
which is supported in JENA. Besides that we have
explained the whole process briefly using an example and
reference [1].

4. Ontology Vs Feature Modeling:

Every feature in future diagram is mapped to OWL class
and every attribute in the feature are mapped to object
attribute. With reference to above feature diagram (Figure
1) we are going to explain mandatory, optional,
alternative, or; features. These are discussed below by
referencing [1], [3], [4], and [6].

Conceptual Modeling

1. First we need to build OWL ontology for nodes and
edges in the diagram. Then we model the feature relations

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

264

in the diagram. We are going to construct ontology using
parent node and child nodes. By taking the above diagram
we draw the table 2 for parent and child relations and we
shown child nodes in table 3.

Table 2.

Parent Node Child Nodes

Car CarBody, Transmission,
Engine, TrailerCoupling

Transmission Automatic, Manual
Engine Electric, Gasoline

Now each node is modeled as OWL class (owl:Class) and
we make them these nodes are mutually disjoint. We have
to be noted that every class is subclass of owl:Thing in
OWL.

Table 3.
Car owl:Class

CarBody owl:Class
Transmission owl:Class

Engine owl:Class
TrailerCoupling owl:Class

Automatic owl:Class
Manual owl:Class
Electric owl:Class
Gasoline owl:Class

We make all these classes mutually disjoint to each other.
(owl:disjointWith Car CarBody),
(owl:disjointWith CarBody Transmission)
(owl:disjointWith Transmission Engine)
(owl:disjointWith Engine TrailerCoupling)
(owl:disjointWith TrailerCoupling Automatic)
(owl:disjointWith Automatic Manual)
(owl:disjointWith Manual Electric)
(owl:disjointWith Electric Gasoline)

We can use owl:AllDifferent to make all classes mutually
disjoint to each other.
2. Now we are going to model the feature relations in the
diagram. These relations are edge types in the diagram.
These features are modeled as object properties in OWL
(owl:ObjectProperty) and at the same time we give ranges
to every object property. We define ranges in OWL as
rdfs:range. We define range of every property is its
corresponding class. We have defined these properties in
the below table4.

Table 4.
Property Name Property Type Range

hasCar owl:ObjectProperty Car
hasCarBody owl:ObjectProperty CarBody

hasTransmission owl:ObjectProperty Transmission
hasEngine owl:ObjectProperty Engine

hasTrailerCoupling owl:ObjectProperty Trailer
Coupling

Has Automatic owl:ObjectProperty Automatic
hasManual owl:ObjectProperty Manual
hasElectric owl:ObjectProperty Electric
hasGasoline owl:ObjectProperty Gasoline

3. We create Rule class for each node that is there in the
feature diagram. We create the Rule class using with
existential restriction. The restriction will be on the
corresponding property with a restriction value of the
corresponding feature class in table 5.

Table 5.
RuleClass

Name
Restriction

type
On

Property
Restriction

Value

CarRule owl:some
ValuesFrom hasCar Car

CarBodyRule owl:some
ValuesFrom hasCarBody CarBody

Transmission
Rule

owl:some
ValuesFrom

Has
Transmission Transmission

EngineRule owl:some
ValuesFrom hasEngine Engine

Trailer
Coupling

Rule

owl:some
ValuesFrom

hasTrailer
Coupling

Trailer
Coupling

Automatic
Rule

owl:some
ValuesFrom

has
Automatic Automatic

ManualRule owl:some
ValuesFrom hasManual Manual

ElectricRule owl:some
ValuesFrom hasElectric Electric

Gasoline owl:some
ValuesFrom hasGasoline Gasoline

Now we are going to model the feature relations
(mandatory, optional, alternative, or) as fallows:

Mandatory:

In the feature diagram we have mandatory features
namely for Car are CarBody, Transmission and Engine.
The mandatory relation says that, if parent node is
included then, we have to include its child nodes. This can
stated in another manner like, for ever instance of PRule
(parent rule class) there should be some instance of Fi
Class(child feature class where 1≤ i ≤ n) on property
hasFi(property of corresponding class Fi) . This can be
realized as, every PRule is subset or equal to
owl:someValueFrom restricted type of Fi Class on
property hasFi. The mandatory features in the given
diagram are realized in the table6.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

265

Table 6.
Parent
Rule
Class

Subset of

CarRule (owl:someValuseFrom hasCarBody
CarBody)

CarRule (owl:someValueFrom hasTransmission
Transmission)

CarRule (owl:someValueFrom hasEngine Engine)

Optional:

We have only one optional feature in the diagram, which
is TrailerCoupling. The optional feature indicates that if a
parent is included then a child may or may not be
included. We can think in logical perspective that if a
child is included then we have to include parent. Because,
in feature configuration if you find any optional feature
then have to see whether parent is included for the
consistency of the ontology. This can be accomplished by
making every Fi Rule (Child feature rule class where 1≤ i
≤ n) is subset or equal to owl:someValueFrom restricted
type of PRule (Parent Rule Class). The optional feature in
the diagram is realized in the table7.

Table 7.
Optional Feature name Subclass of

TrailerCouplingRule (owl:someValueFrom hasCar
Car)

Alternative:

We have two alternative features that are Automatic and
Manual. Alternative relation indicates that only on of the
feature is to be included if the parent is included. This we
can think in logical perspective that, if PRule (Parent Rule
Class) is included then there is some feature Fi should be
include. This can be realized as PRule is subset or equal to
union of owl:someValueFrom restricted type of Fi Rule
(Child feature rule class where 1≤ i ≤ n) and PRule is
subset or equal to intersection of owl:someValueFrom
restricted type of Fi Rule (Child feature rule class where
1≤ i ≤ n). This is shown in below table8.

X≡ (owl:uinonOf {(owl:someValueFrom hasAutomatic
Automatic), (owl:someValueFrom hasManual Manual)})
Y≡ (owl:intersectionOf {(owl:someValueFrom
hasAutomatic Automatic), (owl:someValueFrom
hasManual Manual)})

Table 8.
Parent Feature Rule class Subclass of
TransmissionRule X
TransmissionRule Complement of Y

We use complement of Y in order to ensure only one
feature is included.

OR:

We have two feature as optional in the diagram those are
Electric and gasoline. The or-relation indicates that any
number of the features can be included if the parent is
included. The logic is similar to alternative but here we do
not use negation of the conjunction. That is Y as
described above. Because, here can include more than one
feature if parent is included. This can be realized as
fallows and it is shown in below table9.

X≡ (owl:uinonOf {(owl:someValueFrom hasElectric
Electric), (owl:someValueFrom hasGasoline Gasoline)})

Table 9

5. Feature Configuration Model

In the feature configuration we will set the features and
check for its consistency. It is impertinent to check
consistency in order to verify whether the set has any
contradictory features. Suppose if we take a feature
configuration set as (CarBody, Transmission, Engine,
Automatic, Manual, Electric), then we can say that it is
inaccurate. This is because, both Automatic and Manual
features should not be in the configuration set as these two
features are alternatives. Then this type of sets should be
shown as inconsistent set. The consistency checking
should be done using inference engine. The feature
configuration is done as follows.
- We are going to make concept class as subclass of Rule
class root node. In this context the Rule class of the root
node is CarRule.
- We put existential restriction to each and every feature
that is there in configuration for the features that are not
included can not be have existential restriction.
- While configuring the future set we should explicitly
state whether a feature is included or not. This is because
OWL adapts open world assumptions, due to this
reasoning engine can infer wrongly. To make a feature
obscene we should use “cardinality=0”. OWL element for
cardinality is owl:cardinality.
- The concept class should be made of conjunction of the
above constraints.
Now we will take a valid configuration, that is (CarBody,
Transmission, Engine, Automatic, Electric). This can be
realized in the ontology as fallows:

(owl:subClassOf C CarRule) where

Parent Feature Rule class Subclass of
Engine Rule X

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

266

C ≡ (owl:intersectionOf {(I,J,K,L,M,N,O,P)}) where
I,J,K,L,M,N,O,P are there in table 10.

Table 10.

Restr
icted
Class
Name

Restricted
type

On
Propery

Resricted
Value

Car
di

nali
y

Feat
ure
Incl
uded

I owl:some
ValueFrom

hasCarB
ody CarBody Yes

J owl:some
ValueFrom

hasTrans
mission

Transmis
sion Yes

K owl:some
ValueFrom

hasEngin
e Engine Yes

L No need of
Restriction

hasTraile
r

Coupling
 0 No

M owl:some
ValueFrom

Has
Automati

c

Automati
c Yes

N No need of
Restriction

hasManu
al 0 No

O owl:some
ValueFrom

hasElectr
ic Electric Yes

P No need of
Restriction

hasGasol
ine 0 No

Here we L,N,P corresponds to features TrailerCoupling,
Manual and Gasoline. These are not included in the
configuration, that is reason we make those cardinalities 0,
but we will input these features to inference engine as we
stated before that every feature presence(present/absent)
should shown explicitly. Now the inference engines
checks its consistency and it will not contradict as it has
no contradicted statements.

6. Tools

We have used JENA-2.5.7 for ontology construction
which is a java frame work for OWL. For, to check
consistency we have used inference engine pallet-1.3
which is compatible with JENA and it also supported in
JAVA.

7. Conclusion And Future Work

In this paper we have enumerated about the construction
of feature model in ontology and checked the consistency
of the feature configuration with an appropriate example.
We have also mentioned the tools that we have exerted.
Software reuse is the best practice for deliver product
facility. Briefly we want to conclude that ontological
approach for feature modeling is very much beneficial in
order check the consistency of the feature configurations
as there is no formal semantics available for domain
engineering.

So far we have worked on a prototype, but in near feature
we want to apply this for lager features set.

References

[1] Hai Wang, Y F Li, J Sun, H Zhang and J Pan, “A

Semantic Web Approach to Feature Modeling and
Verification”.

[2] G. Antoniou and F.V.Hermelen, A Semantic web
Primer. London: The MIT Press, 2004

[3] M.K. Smith, C. Welty and D.L.Mc.Guinness (2004),
OWL Web Ontology Language Guide,
http://www.w3.org/TR/owl-guide

[4] D.L.Mc.Guinness and F.V.Harmelen (2004), OWL
Web Ontology Language Overview,
http://www.w3.org/TR/owl-features

[5] B. Lee, Godel and Turing, Thinking on the web.
United States of America: Wiley interscience
publication, 2006

[6] http://www-ksl.stanford.edu/software/jtp/doc/owl-
reasoning.html. [Online][Cited: 11 02, 2008.]

[7] H Wang, Y F Li, J Sun and H Zhang,” Verify Feature
Model using protégé –owl”, ACM, Japan,MAY-2005.

[8] Czarnecki, K. and Eisenecker, U. Eomponents of
Generative Programming. Proc. Of the 7th European
Software Engineering Conference, September 1999.

Appendix A

The JENA implementation is
package featuremodelconsistancy;
import com.hp.hpl.jena.ontology.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.vocabulary.OWL;
import java.io.FileOutputStream;
import org.mindswap.pellet.jena.PelletReasonerFactory;
public class Main {
 public static void main(String[] args) {
 try{
 String
filepath="F:\\FeatureModel\\OwlFiles\\fmont.owl";
 String uri="http://FeatureModel/OwlFiles/fmont#";
 String
namespace="http://FeatureModel/OwlFiles/fmont.owl";
 OntModel
m=ModelFactory.createOntologyModel(OntModelSpec.O
WL_MEM_MINI_RULE_INF);
 // OntModel
m=ModelFactory.createOntologyModel(OntModelSpec.O
WL_DL_MEM_RULE_INF);
 m.setNsPrefix("",uri);
 Ontology fmont=m.createOntology(namespace);
 //******Classes**********

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

267

 OntClass Car=m.createClass(uri+"Car");
 Car.addComment("Car Feature","EN");
 OntClass CarBody=m.createClass(uri+"CarBody");
 CarBody.addComment("CarBody Feature","EN");
 OntClass
Transmission=m.createClass(uri+"Transmission");
 Transmission.addComment("Transmission
Feature","EN");
 OntClass Engine=m.createClass(uri+"Engine");
 Engine.addComment("Engine Feature","EN");
 OntClass
TrailerCoupling=m.createClass(uri+"TrailerCoupling");
 TrailerCoupling.addComment("TrailerCoupling
Feature","EN");
 OntClass Automatic=m.createClass(uri+"Automatic");
 Automatic.addComment("Automatic Feature","EN");
 OntClass Manual=m.createClass(uri+"Manual");
 Manual.addComment("Manual Feature","EN");
 OntClass Electric=m.createClass(uri+"Electric");
 Electric.addComment("Electric Feature","EN");
 OntClass Gasoline=m.createClass(uri+"Gasoline");
 Gasoline.addComment("Gasoline Feature","EN");
 //******* Making all classes disjoint to each other
 RDFList Classlist=m.createList(new
RDFNode[]{Car,CarBody,Transmission,Engine,TrailerCo
upling,Automatic,Manual,Electric,Gasoline});
 AllDifferent
DisjointClasses=m.createAllDifferent(Classlist);
 //********** Making Feature Relations*******
 ObjectProperty
hasCar=m.createObjectProperty(uri+"hasCar");
 hasCar.addRange(Car);
 ObjectProperty
hasCarBody=m.createObjectProperty(uri+"hasCarBody");
 hasCarBody.addRange(CarBody);
 ObjectProperty
hasTransmission=m.createObjectProperty(uri+"hasTrans
mission");
 hasTransmission.addRange(Transmission);
 ObjectProperty
hasEngine=m.createObjectProperty(uri+"hasEngine");
 hasEngine.addRange(Engine);
 ObjectProperty
hasTrailerCoupling=m.createObjectProperty(uri+"hasTrai
lerCoupling");
 hasTrailerCoupling.addRange(TrailerCoupling);
 ObjectProperty
hasAutomatic=m.createObjectProperty(uri+"hasAutomati
c"); hasAutomatic.addRange(Automatic);
 ObjectProperty
hasManual=m.createObjectProperty(uri+"hasManual");
 hasManual.addRange(Manual);
 ObjectProperty
hasElectric=m.createObjectProperty(uri+"hasElectric");
 hasElectric.addRange(Electric);

 ObjectProperty
hasGasoline=m.createObjectProperty(uri+"hasGasoline");
hasGasoline.addRange(Gasoline);
 //************ Making RuleClasses
 SomeValuesFromRestriction
CarRule=m.createSomeValuesFromRestriction(uri+"CarR
ule",hasCar,Car);
 SomeValuesFromRestriction
CarBodyRule=m.createSomeValuesFromRestriction(uri+
"CarBodyRule",hasCarBody,CarBody);
 SomeValuesFromRestriction
TransmissionRule=m.createSomeValuesFromRestriction(
uri+"TransmissionRule",hasTransmission,Transmission);
SomeValuesFromRestriction
EngineRule=m.createSomeValuesFromRestriction(uri+"E
ngineRule",hasEngine,Engine);
 SomeValuesFromRestriction
TrailerCouplingRule=m.createSomeValuesFromRestrictio
n(uri+"TrailerCouplingRule",hasTrailerCoupling,TrailerC
oupling);
 SomeValuesFromRestriction
AutomaticRule=m.createSomeValuesFromRestriction(uri
+"AutomaticRule",hasAutomatic,Automatic);
 SomeValuesFromRestriction
ManualRule=m.createSomeValuesFromRestriction(uri+"
ManualRule",hasManual,Manual);
 SomeValuesFromRestriction
ElectricRule=m.createSomeValuesFromRestriction(uri+"
ElectricRule",hasElectric,Electric);
 SomeValuesFromRestriction
GasolineRule=m.createSomeValuesFromRestriction(uri+"
GasolineRule",hasGasoline,Gasoline);
 //*********Mandatory Features***********
 CarRule.addSuperClass(CarBodyRule);
 CarRule.addSuperClass(TransmissionRule);
 CarRule.addSuperClass(EngineRule);
 //************ Optional Features**********
 TrailerCouplingRule.addSuperClass(CarRule);
 //*********** Alternative Features*********
 UnionClass
XUnion=m.createUnionClass(uri+"XUnion",m.createList
(new RDFNode[] {AutomaticRule,ManualRule}));
 TransmissionRule.addSuperClass(XUnion);
 IntersectionClass
YIntersection=m.createIntersectionClass(uri+"YIntersecti
on",m.createList(new RDFNode[]
{AutomaticRule,ManualRule}));
 ComplementClass
YComplement=m.createComplementClass(uri+"YCompl
ement", YIntersection);
 TransmissionRule.addSuperClass(YComplement);
 //*********** OR Feartures**************
 UnionClass
ORUnion=m.createUnionClass(uri+"ORUnion",m.create
List(new RDFNode[] {ElectricRule,GasolineRule}));

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

268

 EngineRule.addSuperClass(ORUnion);
 FileOutputStream out;
 out= new FileOutputStream(filepath);
 m.write(out,"RDF/XML-ABBREV");
 // ******Checking ontology consistancy********
 //************ Feature Configuration
 OntModel m1 =
ModelFactory.createOntologyModel(PelletReasonerFact
ory.THE_SPEC,m);
 //CardinalityRestriction
ManualRestriction=m1.createCardinalityRestriction(uri+"
ManualRestriction", hasManual, 0);
 // If we replace ManualRule with ManualRestriction
in FeatureConfiguration then FeatureConfiguartion
becomes valid configuration set
 IntersectionClass
FeatureConfiguration=m1.createIntersectionClass(uri+"Fe
atureConfiguration",m.createList(new RDFNode[]
{CarBodyRule,TransmissionRule,AutomaticRule,Manual
Rule,EngineRule,ElectricRule,GasolineRule,TrailerCoupl
ingRule}));
 FeatureConfiguration.addSuperClass(CarRule);
 // listing the inconsistent classes ...it means listing
equivalentclasses to owl.nothing which is complement of
owl.Thing(owl.Thing is superclass of every class)--null
argument indicates it matches anything
 StmtIterator i = m1.listStatements(null,
OWL.equivalentClass, OWL.Nothing);
 while (i.hasNext()) {
 System.out.println("Class " +
i.nextStatement().getSubject().getLocalName() + " is
unsatisfiable");
 } String
filepath_config="F:\\FeatureModel\\OwlFiles\\configurati
on.owl";
 out= new FileOutputStream(filepath_config);
 m1.write(out,"RDF/XML-ABBREV");
 }catch(Exception
e){System.out.println(e.getMessage());}}}

The above code generates product line ontology
(fmont.owl) and features confirmation ontology
(configuration.owl).

Vinod Babu Matcha received his M.Sc
in Computer science and M.tech in
Information Technology from Andhra
University in 2002 and 2007 respectively.
Currently he is doing his M.Sc in
software engineering from Blekinge
Institute of Technology (Sweden). He has
keen interest in ontology development
and researching semantic web.

Dr Prasad Reddy P.V.G.D Professor,
Over 20 years of Experience in Teaching
with Andhra University handled courses
for B.Tech, M.Tech, M.C.A and
specialized in Enterprise wide Computing,
XML based object models and scalable
web applications. Research areas include
Soft Computing, Software Architectures,
and Knowledge Discovery from

Databases, Image Processing, Number theory & Cryptosystems.

Mr. Ch.V.M.K. Hari, M.Tech., (Ph.D),
Associate Professor. Over 9 years of
Experience in Teaching with Andhra
University, Acharya Nagarjuna
University, Adhikavi Nannaya University,
GITAM university handled courses for
B.Tech, M.Tech, M.C.A and specialized
in Software Engineering. Research area
include Software Engineering,

Knowledge Discovery from databases.

Mr. G. Srinivas, M.Tech., (Ph.D) Assistant Professor, Over 5
years of Experience in Teaching with GITAM University,
handled courses for B.Tech, M.Tech and specialized in Machine
Learning and Image Processing.

Prof. Ch.Ramesh, Dept of Computer Science, Over 12 years of
Experience in Teaching with AITAM College of Engineering.
Research area includes Image Processing.

Mr. N. Sanjeeva Rao, B.Tech., M.Tech(IT) Assistant Professor,
Over 2 years of Experience in Teaching with GITAM University.

Mr. B. Jaya Chand, M.Tech(IT). Assistant Professor, Over 2
years of Experience in Teaching with GITAM University.

J.N.V.R. Swarup kumar, M.Tech(IT) from GITAM
University.

G. SriRamGanesh, M.Tech(IT) from GITAM University.

N.V.R.V.Vamsi Krishna, M.Tech(IT) from GITAM
University.

I. kali Pradeep, M.Tech(IT) from GITAM University.

