
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

277

Manuscript received August 5, 2009
Manuscript revised August 20, 2009

The Architectural Review of Web Security in Static and Dynamic
Analysis

Raymond Wu and Masayuki Hisada
Department of Research and Development, NST, Inc.

Aizuwakamatsu, Fukushima, Japan

Abstract
Our objective in web security is to move black box to white box in
enterprise practices. In this paper, we explain how our approaches
achieve the goal in terms of static and dynamic analysis. To better
explain the framework and roadmap of analysis work, we
describe our approaches by using macro and micro views
individually. Based on this foundation, we explore dynamic
analysis in string validation and node tracking, and introduce
micro and macro views to architect comprehensive approaches.
Micro view is related to the mechanism inside the node, so the
event triggers and string validation are both under its coverage.
Macro view is related to the node tracking which is under
investigation of pattern benchmarking. Our evaluation reflects
that a configurable and well-tuned topology helps architectural
collaboration, consequently it achieve a better security
governance. This paper further explains the architectural
coherence of identification, validation and tracking. It started
with node identification with further exploration to the issue
identification.
Keywords:
vulnerability, web security, validation, tracking, dominant, static
analysis, dynamic analysis, automata

1. Introduction

To envision the disciplines of web security, we proposed
the following techniques. They can support the analysis in
generic format in achieving the goal; 1) to build up
abstract syntax tree (AST) in syntax format to take most
key language codes for analysis, 2) to provision event
trigger common practices, and apply flagging and logging
techniques in node identification, 3) to implement
messaging carrier as common format in metadata
transmission, 4) to explore event based automaton for
input string validation. These techniques rely on a specific
technical architecture for realization. From the overview of
technical architecture requirements, our security
approaches of static and dynamic analysis, is divided into
front end and back end processors. Front end processor
manages incoming event, and provide adaptive automation,
syntax abstraction, and flow analysis services. The back
end server handle the computing algorithm, string
validation and repository management for extensive
analysis.

Web security has caused tremendous disaster in the decade
due to the ambiguity of issue identification and tracking
mechanism. Furthermore, the solutions are not in a
collaborative mode from the architecture stand points. In
reviewing the fundamental disciplines in web security, we
investigated the key factors of web security to encompass
the research work. Instead of working on a specific domain,
our research oversees the major concerns of web security
with an architecture overview. Our research produced key
concepts in flow, system, process and roadmap. In order to
demonstrate the framework it has been built, this paper first
try to itemize these conceptual aspects, with descriptive
outlines stated as followed:
Flow - In order to achieve a full coverage of static analysis,
we apply the common abstract syntax to produce nodes as
basic element [1]. This enables us to identify an arbitrary
physical element by using a symbolic notation. We further
apply string validation automaton to enhance dynamic
analysis in addressing real-time data transmission. To shed
more light on the architecture view in flow analysis, the
flow ontology is classified into macro and micro view.
Macro view stands for the system level topology such as
control flow analysis or data tracking over node
configuration, while micro view deals with the
interoperability beneath the node level, such as string
validation automata. The contribution of our vision has
achieved many successful deployments based on the
unique visions of enterprise coherence between backbone
and branches.
System - From system architecture perspective, our scope
covers back-end server, front-end server, and client site as
a full domain. The full coverage enhances individual site to
perform its specific function at service contract level. In
order to perform a full diagnostics, none of these three
should be missing as all of them play critical role in
security governance.
Process - Our operational view maps the attacking patterns
onto the use-cases and works on the resolutions. Firstly, the
process of attacking events is considered for both client
and server sites. Client site consists of attackers and users.
Attackers may engage in security violation directly or
indirectly, while users include those victims who are used
as vehicle for that illegal transaction. Server site consists of

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

278

front-end server and back-end server. The front-end
basically deals with metadata activities for flow analysis
and adaptive interfaces, while back-end manages the
knowledge based repository and intelligence of run-time
validation.
Roadmap - By taking the view into practices, we propose a
three-step solution as implementation roadmap, which
consists of identification, validation and tracking. Our
approaches in identification are sound and the deployment
has been smooth. The systems are up and running, and
performing their expected functions such as; node
identification, run-time metadata capturing,
knowledge-based repository, and client/server messaging.
The validation process which is the second step, is a typical
micro architecture process dealing with input string
validation. The process applies automaton in state transfer,
so the string can be decomposed into token and being
validated against a rule-based policy. Finally, the tracking
process explores the results from identification and
validation from a comprehensive macro view standpoint. It
involved in metadata analysis, suspects prediction, and
knowledge-based repository construction. It predicts those
suspect input string and data transmission over flow graph,
and performs messaging between clients and servers for
those ambiguous events.
The reason we proposed three-step approach as a roadmap
was that our research aims to turn black box into gray box
initially, and to achieve web security governance as the
final result in achieving white box. Followed by the
introduction, this paper starts with the concept of three-step
approach to highlight our milestone in identification
process, it then addresses the policy-base validation
automata, and explores the feasibility of tracking pattern in
terms of the configurable flow graph topology. The paper
also takes the experimental benchmarking and modeling,
into the architecture review, it finally ended by conclusion.

2. Identification

Node discovery - Our techniques for the static analysis are
based on the processes of abstract syntax generation, node
identification, and metadata coordination. Empirical
experiments and literature review led us to a conclusion
that a common abstract syntax is required for identification
process. Based on this assumption, the mediation between
logical and physical world can be taken place in working
toward a coherence of macro and micro architecture. The
foundation of robust interoperability supports flow
analysis, data validation and vulnerability tracking.
Consequently, the deployment of identification process
produced a clear picture of static analysis by using pointers
as bridge in mediating physical and logical world. Further
more, the design applies recursive refining process, to
work effectively on the mediation mechanism of metadata

messaging. It dynamically produces metadata for static
analysis, and takes run-time messaging, and tracking on
data transmission into encapsulated knowledge-based
information for further analysis.
The knowledge regarding a node is defined like this; the
symbolic notation of a node is represented as a string
constructed by a node id and attributes such as program
name, starting and ending line, and other run-time
generated information. Node is a pointer mapped to a
physical block of the code which should be identified
before any analysis task can be performed. Since node
identification build up the foundation of flow tracking as
an atomic element, this task was set as our first step in our
research roadmap. The techniques in provisioning node
identification are crucial as it gives us opportunities to
embed the arbitrary messaging trigger into the node
structure. By using this embedding mechanism, the event
trigger generates metadata message at run-time when the
node is executed. The messaging features mediate macro
and micro architecture view and create linkage between
symbolic metadata and descriptive node information.
Adhered to the construction of abstract syntax analysis,
techniques in flagging, logging, and metadata messaging
are fundamentals. The objective of flagging and plug-in is
to embed the message into each program block, so we can
create the linkage between nodes, the run-time path, and
the necessary message produced at run-time logging. We
introduced the flagging and logging approach in the initial
step of static analysis, has been recognized as a pilot in
security identification solution [2]. This is shown in Figure
1.
Metadata strategy for static analysis - Metadata messaging
can be in the form of the aggregated data, symbolic
notation as a pointer, structure of systems, or the abstract of
a data object. The message, embedded in the statement
block as a node, capture the snapshot information when
executed, so the logging messages can be generated at
run-time process in HTML form, and represent the traces
of an individual execution path. The capsulation of static
and dynamic metadata forms event based messaging, and
plays critical role in our analytical approaches from the
uniqueness of its generic format and enterprise coherence.
To this ends, we embed the event triggers as plug-in of the
codes to capture necessary information for analysis.
The messaging format is generic and languages
independent. However, in term of abstract syntax, we are
still trying to manager the dependencies at this time, in
consolidating each language’s abstract syntax into one
higher format or group of formats. This imply, initially we
need to categorize the syntax format into sub-categories
such as, java based object oriented (OO) and un-typed PHP
based structure programming as separate AST formats, so
finally we can consolidate them into a generic AST format.
This allows the universal adaptor, once finish language
recognition, to initiate the parser, to analyze the syntax, and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

279

to generate a generic syntax for flagging purpose. The
reverse engineering further take the AST, after flagging
process, into source code plug-in process, so the embedded
triggers can perform the logging as an event trigger for
each incoming event, and generate messaging, and flow
path semantics. The node notation is built on top of map of
the node transfer (S_map) which consists of two basic
elements; the program description (P-map) as a pointer of
physical program name, block location and level in a
hierarchical structure, and the tracking description (T-map)
as a snapshot of thread, sequence, language being used,
and the status of violation and suspect classification.

Figure 1 Node Identification process

Table 1 further illustrates the encapsulation of physical,
logical, process and semantics factors into a generic
metadata format. It is generated once the event trigger is
incurred in particular node transfer. Generic format means
that the metadata of information, algorithms and
visualization are all in same format which is language
independent. Given the language dependency in front end
analysis, the individual AST apply a generic format
through metadata transformation, and commits full
transparency in mediation principles.

Table 1. Metadata Messaging generic format

Figure 2. Automata in analyzing SQL based tokens

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

280

3. Validation of input data

Reason of input validation - In order to extend the macro
view tracking mechanism into micro view detection, we
apply automata validation to take the foundation of node
based analysis into a micro view. This has been focused on
the incoming event tracking and string value validation.
We further introduce a state-transfer automata method, on
top of the control flow foundation to deal with the tracking
of data transmission. This was completed by some
collaboration work between static analysis and dynamic
analysis. The approach builds up policy-based validation
automata to bridge context-free flow analysis and the
semantics of violation identification.
As a complementary of knowledge-based implementation,
semantics repository is applied to hold the validation rules,
to detect violation and that suspicious path, and to
coordinate between macro and micro architecture in
maintaining a coherence of security governance. The flow
analysis uses node as a pointer, to map the physical world
to symbolic notation which apply messaging carrier across
ontology of macro view of tracking and micro view of
validation [3]. From vulnerability tracking objective, the
physical environment require descriptive notation in
pushing the AST metadata into a symbolic world as first
step, we then identify those “hotspots” onto the flow graph
and validate the argument against the flow branch [4].
This gives us opportunity to develop the validation process
beneath the control flow, and to realize micro view of data
flow tracking through state transfer. In addition, it creates a
modulized elements which are reusable which is sharable
within enterprise. In order to create an implicit linkage
between inter-procedural input and output parameter
transfer, a mediator component was proposed to de-couple
the binding between sites. Under such circumstances, the
data flow transmission between calling, mediator, and
called sites form a loosely-coupled architecture for data
flow analysis.
State transfer - The coordination of node tracking and state
transfer forms a robust coherence of enterprise governance,
as we can save system overhead and perform detection for
those suspect nodes in extensive investigation [5].
Automata in security component interoperability has
similarity in state transfer of Tuning Machine [6]. The state
transfer in the string validation applies validation rules
which is stored in metadata repository, this is similar to a
reading tuning machine in state transfer and output analysis
[7] [8]. The alphabets from user input, read in automata, is
validated by certain point of recognizer which is leveraged
to security event trigger and being executed when the state
change is recognized through the knowledge base
repository.
Figure 2 illustrates the validation process of following
SQL-based vulnerability.

SELECT * FROM mytable WHERE id=? and pwd=? $id =
addslashes($_GET['id']); $pwd =
addslashes($_GET['pwd']); (Id = "1 or 1=2” pwd=‘’ is
entered as input value)
The SQL command firstly, is decomposed by token
analyzer into tokens consist of command–based elements,
operands, functions and values. The analyzer then applies a
policy-based push-and–pop algorithm to initiate the
automaton. The state transfer can only happen when the
analyzer read a recognized value according to a general
rule of algorithm. The algorithm validates the type, length.
Furthermore, the tautology policy can be implemented as
special rule.
The design of security components complies with
enterprise strategy by using semantic mediation to take the
business context into micro processes design; by this
means each component has its contract level responsibility
in provisioning a subset of service, so does a security
component. The validation process relies on a common
service to take the event into validation against the input
strings. Consequently the malicious data can be detected
through data validation tracking.

4. Tracking on a configurable topology

Eigenvalue in attacking matrix - In order to eliminate the
risk caused by vulnerability, web application validation
against each input string become necessary to remove
malicious data. The concerns raised as many service
providers do not fix server problem, and client site
protection become mandatory [9]. In penetration test,
source code is analyzed against known patterns to find
vulnerabilities which we called black box. The reason of
black box is due to the test result doesn’t provide detail
information of the vulnerability in terms of location or
characteristics. Consequently, it doesn’t achieve our goal
from identification, validation and tracking perspective.
Based on the foundation of identification and validation it
achieved, we explore the flow tracking in a macro view
architecture. To perform tracking, firstly let E be the matrix
sets of Cartesian space consists of the edge eij from node
ni to node nj. Let E further denotes the product of flow
analysis, which involved in variant flow topology with
fixed eij values until a new configuration is involved. eij
has a flip-flop value of either “0” for non-exist, or “1” for
exist. Matrix E represents a pre-determined control flow
graph, which is independent from those attacking events
In contrary to matrix E, let X denotes the vector from
attacking site, and xi corresponds to node i. X from
attacking site is independent of flow matrix E, as the factor
is under attacker’s control and out of configuration. From
the eigenvalue base equation EX = λX, X represents the
eigenvector and λ represents the eigenvalue. Thus, we can

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

281

derive the base equation into a full representation as
followed.
Among all factors, λ is the weight coefficient or, in
security’s term, “risk amplifier” of the vector X which
affect the attacking strength.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

λ

λ

λ

k
kkk

k

eee

eee

eee

...

...
...

21

1
2

1
2

1
2

1
2

1
1

1

.....

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

kx

x
x

..
2

1

 =
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

..
0
0

The configurable topology of E actually can be a λ value
affecter from those combinational attacking perspectives.
In order to derive a lower value of λ, two approaches were
studied as means of risk-eliminators. They are discussed as
followed.
Common Component and Dominant Hub - The first
approach, we term Common Component Discovery (CCD)
which is based on the convergence of node base topology,
to consolidate the different nodes, of identical or similar
functions, into the simplicity which we term “common
components”. This reconfigured E graph helps the
minimizing of λ value as many “peripheral side-effects”
will be diminished.
The second approach is the hub-like node generation,
which we term Dominant Hub Identification (DHI). From
control’s standpoint, if all of the path transverse from node
ni, can reach node nj, we term nj the dominant of ni., and nj
is the immediate dominant of ni if there is no other
dominant can be found between ni and nj. By taking
example as followed, node “8” is the dominant and
immediate dominant of “1”.

branch 1: 1-3-5-2-7-9-8-4 . . .
branch 2: 1-3-5-2-8-4 . . .
branch 3: 1-6-9-8-4 . . .

The objectives of CCD and DHI are try to take the
validation result and node identification into the coherence
of macro view tracking. So the combination scenarios of
vulnerability issues can be investigated at a single point
supported by metadata techniques.
Apart from the node tracking and issue detection, CCD and
DHI contribute the elimination of attacking risk. Besides,
the easy configuration and topology simplicity are all
advantages in a component-based design and can be the
foundation of service base construction such as service
oriented architecture (SOA).
Algorithms - The algorithm for CCD identification cannot
be automated at this time by means of model based
computing. This implies human effort need be involved in
identification. However the visibility of a clear alignment

between business context and nodes helps the
identification as the validation rule is based on the
assumption that a business function should be supported by
an unique functional node, and reversely cannot be always
true as a node actually can support identical business
functions aligned with different business components.
CCD consolidation can be the foundation of DHI, as from
topology’s viewpoint as node configuration is simplified
and each node perform unique function.
The discovery of DHI, is based on a peer-to-peer node base
configuration, which can be automated through a matrix
based algorithm. Firstly, we create a matrix to hold the
sequence metadata, and have it stored in repository. Figure
3 gives example of the matrix that when the control flow
passing through node of 1-9, we use Boolean (1/0) value to
note visiting status for either “visited” or “bypassed”.
Secondly, we perform dominants identification based on a
string-matching algorithm. The algorithm uses a static
analysis matrix to map node and flow, and to generate a
string code such as “0101101” at run-time. The string
match of “0101101” case for node 2, 4 and 7 means “all
the visiting flow of node 2 reaches node 4 and 7”, and
reversely “all flow reaches node 7 passing through node 2
and 4” is always true.
The concept of the algorithm in transverse pattern
matching is critical for us to identify DHI, as our vision in
static analysis is not limited to the “event based model”,
instead we add “node centric model” to capture the
transversal metadata passing through each node, to
complement the weakness from current topologies
viewpoint.

Figure 3. DHI Transverse pattern matching

Transformation - By taking CCD and DHI into a close
watch of flow graph for how the transformation being
taken place. It is shown in Figure 4, that initially, the
general state transfer of base equation can be expressed as
followed; XXE λ= which should be true for any case.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

282

Figure 4 Original topology of node transfer

The figure is a non-DHI case and the node transfer is
randomly distributed. The mathematical model of general
case can be further derived to the following form;

Figure 5 gives an example of DHI. Originally the space
consists of 9 nodes, and the patterns of CCD and DHI
firstly conduct the flow domain decomposition, so the
domain will be split into more than one area. Through CCD
and DHI processes, the domain is separated into two areas
(21 EandE), and both areas can be viewed as
independent from tracking perspective.

Figure 5 DHI-type topology for node transfer

The mathematical model of E1 and E2 derived from DHI
cases can be expressed as followed;

Let XEXEXE 21
* U= be a DHI case, and 21 XXX U= be

always true for any case. In a DHI case; a generic eigen
base equation can be expressed as

)()()()(122122112121 XEXEXEXEXXEEEX UUUUU ==

and the eigen characteristics of XXE λ= applied for

both 22221111 XXEandXXE λλ ==

Let ""ψ represents)(1221 XEXE U which is the
peripheral residue of E. This gives the following equation:

XXEXEXXEX λψψλλ ===)()()()(221121 21 UUUU

as a general case, and can be applied to DHC case. In a
DHC, as the vulnerability can be easily detected at hub,
thus the coefficient 1λ doesn’t affect 2X deriving 21 Xλ = 0,

and similarity applied to 12 Xλ . Thus for DHC, the
equation can be simplified to an expression of

)()(21
* ψλλ UXXE += = Xλ when)(21 21 XX λλ U

is

nullified.
We therefore derive (21 λλλ +≥) and further derive

(1λλ ≥ and 2λλ ≥) as λ ≥ 0 is always true, and
this applied to an arbitrary coefficient, or minimum value
“ minλ ”. This implies the attacker’s weight coefficient
against each node diminished in DHI effect, and the
security risk can be eliminated under such circumstances.

As mentioned previously, in addition to web security, CCD
and DHI achieve additional advantages from service based
design and can be the portfolio foundation of SOA. The
main reasons are that CCD and DHI contribute the
simplicity of component base design in achieving
advantages of “loosely-coupled” and “reusable”. It also
helps a easy-routing process configuration from hub-like
topology perspective.

5. Architecture review

Architecture components - As it is stated in the
introduction, this paper mainly conduct an overview of
architectural strategy in reviewing our recent
implementation. From the architecture viewpoints, we
introduced the macro and micro views. Our research

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

k
kkk

k

eee

eee

eee

...
...
...
...
...

21

1
22

1
2

1
2

1
1

1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

kx

x
x

..
2

1

 =λ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

kx

x
x

..
2

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

4
9

3
9

2
9

1
9

4
8

3
8

2
8

1
8

4
7

3
7

2
7

1
7

4
6

3
6

2
6

1
6

eeee
eeee
eeee
eeee

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

9

8

7

6

x
x
x
x

 = 2λ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

9

8

7

6

x
x
x
x

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5
5

4
5

3
5

2
5

1
5

5
4

4
4

3
4

2
4

1
4

5
3

4
3

3
3

2
3

1
3

5
2

4
2

3
2

2
2

1
2

5
1

4
1

3
1

2
1

1
1

eeeee
eeeee
eeeee
eeeee

eeeee

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5

4

3

2

1

x
x
x
x
x

 = 1λ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

5

4

3

2

1

x
x
x
x
x

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

283

applied the mediation services to build up the security
framework, the metadata strategy and the interoperability
between nodes, event and state. In the following
paragraphs, we use the terminologies which have been
defined in previous research papers, we like to give brief
summaries before going further the details of the elements.

System Architecture in three-sites (Client, Front-end
Server and Back-end Server)
▪ Client: Web Browser and execution
▪ Front-end: Flow Control and Event handling
▪ Back-end: Event validation, Repository

Architecture View (Macro and Micro view)
▪ Macro view (Node based transmission): System and

process level view of architecture
 Abstract Syntax Tree (AST)
 Control Flow Graph (CFG)
 Data Flow Analyzer (DFA)

▪ Micro view (Node internal mechanism): Event
transaction and system function view of architecture
 Pattern Matching Techniques (PMT)
 Lexical Automata Parser (LAP)
 Validation Event Trigger (VET)

Universal Adaptor (the engine managing codes and syntax
in a common way)

▪ Analyzer - The static analysis uses analyzer to produce
abstract syntax tree as a macro view. This support
pattern match in syntax level instead of the sequence of
the token.

▪ Event message carrier - The abstract value of a pointer
and its attribute, together with the sequence, and
flow-sensitive information are capsulated into the event
message carrier.

▪ Pattern match - The tool parses the source codes and try
to detect the string match (i.e. strcpy, sprintf). The
micro mechanism can dicover vulnerability, with an
identification, by using a node pointer as notation of
physical code.

▪ Lexical analysis - Lexical analysis support pattern
match in a further step insight of arguments of
functions. So each identified node, which match a
particular pattern, can be analized for details of the
associated arguments.

▪ Parser - The static analysis is build on both macro and
micro mechnism by using parser to produce abstract
syntax tree as a macro view. This support pattern match
in syntax level instead of the sequence of the token.

Architecture mediator (Interoperability between nodes and
between elementse)
▪ Meta Messaging Carrier (MMC)

▪ Common Flow Abstract (CFA)
▪ Finite State Automata (FSA)
▪ Common Validation Algorithm (CVA)
▪ Knowledge Base Repository (KBR)

Three layer’s interoperability (pointer-values- semantic) -
According to our recent research, the static analysis is
realized by a pointer-values-semantic (PVS) three-layers
interoperability. Pointer is symbolic notation in linkage of
symbol and code. Value is the input string pending on
validation. Semantic is the node based tracking based on
policy. Symbolic pointer means the labeling process by
taking the abstract syntax, produced from our syntax parser
into a symbolic notation. Patern matching algorithm is
based on the finite state automaton (FSA) to perform
matching task. Once an input string is sensed, the event
trigger initiates the patern matcher and parses through the
whole execuatble statement.
The pointer, which maps the physical code and a symbolic
identification, carries the metadata messaging across the
control flow for tracking purpose. The interference
between macro and micro view forms a robust error
detection as it contributes the knowledge base for that
suspect identification for further analysis. From
governance perspective, we applied the semantic
repository to maintain the metadata of validation rules,
suspicious path, and coherence of security governance for
both macro and micro architecture.
This implies the alignment control between physical,
logical, operational run-time and semantic is the key in
enterprise security transformation. Physical world consists
of physical codes, logical terms cover abstract syntax and
flow graph, operational run-time means event, while
semantics implies the alignment business context, and
metadata of logical and physical assets. Macro view is
based on the node interconnectivity as atomic level such as
state transfer, aggregation and metadata alignment, while
micro view require insight such as node definition,
component design, metadata format, event validation and
Context-Sensitive String Evaluation [10].
Architecture coherence - From system architecture
perspective, Figure 6. demonstrates the coherence of our
macro and micro view of front end, back end and
mediation services.
The mediation of the architecture achieves governance of
three-layer (pointer-values- semantic) interoperability. It
creates a transparent environment in common practices for
that abstract syntax, rule-based arguments validation in
automata algorithms, and generic metadata format in flow
tracking [11]. Our research distinguished unique
viewpoints from the coherence of macro and micro views
of integrated services as a whole. Macro view encompasses
the flow analysis in node based structure, while micro view
works on event analysis such as argument validation [12].

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

284

The front end has focus on macro architecture from
abstract syntax and node identification perspective, while
the back end shed more light on micro view. Among these,
the metadata strategy in creating the linkage between
physical, logical and semantics has been our creative
knowledge contribution in web security. To provide an
enterprise framework and to take major language codes

into node identification process, we launched universal
adaptor engine (UAE) to create a common AST view. The
experiments show that our pattern for that individual
language by using a universal adaptor to transform the
codes into a common AST view, to take key language
codes and analyze in a generic syntax format.

Figure 6. Web Security Architecture Overview

Figure 7 Complementary solution between validation and tracking

To further explain the concept of “the coherence of
integrated services”, Figure 7 illustrates the
complementary solutions of event validation (micro view)
and node tracking (macro view) in constructing a healthy
architecture. The metadata of node transfer, event state
transfer, as well as policy-based validation are stored in the
knowledge-based repository. The prediction of tracking is
either in static or dynamic form. Static information consists

of those static flow control, best practice topology (CCD
and DHI recommendations), and suspect node
identification. While dynamic information consists of
string validation automaton, data transmission tracking
over the nodes, and suspect value tracking. Apart from
DHI, binding variable is also a key factor in risk
minimizing as it eliminate the dependencies in data

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

285

transmission and consequently, the sensitivity of
vulnerability can be isolated in a fine-tuned topology.
Case study - The proposed PVS architecture can cope with
generic cases in Cross site scripting (XSS) and SQL
Injection (SQLI). We like to take further example of XSS
for how the three-layer PVS architecture deals with a
multi-sites attacking pattern.
Firstly, we studied the mechanism of interactivities.
Following SQL injection illustrates the malicious data of
SQL injection.

SELECT <col_1> from $TAB1 WHERE
<col_2> = <inp_1> and <col_3> = <inp_2> ;
inp_1 = ‘ “X”, inp_2 = ‘101 or 1 = 1 UNION
SELECT * from $TAB2; -- ’

inp_1 = “X”, inp_2 = ‘999; ! HOST INJ=
“INSERT INTO USER value (101, “evil”); --“
! HOST $INJ ’

Figure 8 Case study in multi-sites attacking

XSS is the other common way attackers take advantage of
“fragility” of web applications for sensitive data injection.
The malicious codes, caused by sensitive data, are
generated and embedded into web browser waiting for
execution. Basically XSS attackers apply either persistent
or ad-hoc models to automatically generate “tainted codes”.
The vulnerability can stay in the web browser and wait for
victims to execute, it can be embedded into distributed
messages and trap victims to click. So once the
confidentiality such as cookies or password intercepted by
attacker, it can be abused as means of illegal transaction.
Figure 8 illustrates the multi-sites attacking pattern
between client, front-end and back-end [13]. The
disciplines of vulnerability analysis outline a clear picture
of data flow, and mechanism of tracking. However, these
may not be sufficient for those sophisticated cases, and
further investigation of those combinations of attacking
patterns is required.

6. Conclusions

Our research of static analysis shows that the identification
of node, by using symbolic notation, is the key to turn
black box to gray box, and the initial step for identification
was AST definition. To move the abstract syntax structure
(AST) and run-time information into encapsulation, we
apply metadata messaging to design a pre-defined format
as event trigger, and have it embedded to a certain point of
the node block. Our system architecture is based on a
three-site integration which is client, front-end and
back-end. We further apply pointer-value-semantic PVS in
explaining the architecture coherence.
The identification process has been successfully
implemented and the analysis helps two metadata based
branches of research.
The first branch is the validation process, which we term
micro view. We apply automata in input string check, so
the tokens, decomposed by the analyzer, can be screened
by the policy-based engine for a validation. The analyzer,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

286

for producing and analyzing token-base elements, reads the
tokens and performs state transfer until the defect or
terminator is detected. Defect means the violation of string
length, type or tautology regulation. The second branch is
node tracking in macro view. Based on the identification
process, we propose CCD and DHI models in a
configurable topology. The analysis reflects that a
component-based common service is the basis in risk
minimizing. Furthermore, discovery of the dominant nodes
against the configurable topology can be risk-eliminator of
web security. For this reason, node tracking, interference
between state and event, loosely-coupled architecture, and
binding variables are all key factors in our approaches.

Acknowledgement

The present research was supported through a program for
the promotion of Private-Sector Key Technology Research
by the National Institute of Information and
Communications Technology (NICT) of Japan, entitled
“Research and development concerning the web
application security with combination of static and
dynamic analysis”.

References

[1] TCS, IBM and EDS: Abstract Syntax Tree
Metamodel (ASTM), OMG Document (2007)

[2] Wu, R., Hisada, M., and Ranaweera, R., 2009, “Static
Analysis of Web Security in generic syntax format”,
July 2009, The 2009 International Conference on
Internet Computing, July 13-16 Las Vegas, USA

[3] Xu, W., Bhatkar,S., and Sekar, R.: Practical Dynamic
Taint Analysis for Countering Input Validation
Attacks on Web Applications, Stony Brook
University (2006)

[4] Livshits, B.: Improving Software Security with
Precise Static and Runtime Analysis, PhD thesis
Stanford University (2006)

[5] Pietraszek1, T., and Berghe, C.: Defending against
Injection Attacks through Context-Sensitive String
Evaluation, IBM Zurich Research Laboratory and
Katholieke Universiteit (2004)

[6] Wassermann, G., and Su, Z.: Static detection of
cross-site scripting vulnerabilities, ICSE pp.
171-180 (2008)

[7] Christensen, A., Moller, A., and Schwartzbach, M.:
Precise analysis of string expressions, In Proceedings
of the 10th Static Analysis Symposium (2003)

[8] Wu, R.: Service design and automata theory,
International Conference on Enterprise Information
System and Web Technologies (2007)

[9] Shoham S., et al.: Static specification mining using
automata-based abstractions, ISSTA pp. 174-184
(2007)

[10] Pietraszek, T., and Berghe, C.: Defending against
injection attacks through context sensitive string
evaluation, Recent Advances in Intrusion Detection
(2005)

[11] Gould, C., Su, Z., and Devanbu, P.: Static checking
of dynamically generated queries in database
applications, In Proceedings of the 26th International
Conference on Software Engineering (2004)

[12] Wu, R., Hisada, M., and Ranaweera, R., 2009, “Static
and Dynamic Analysis for Web Security in Generic
Format”, September 2009, ICGS3 (International
Conference on Global Security, Safety and
Sustainability) London, UK

[13] Vogt, P. et al. :Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis, NDSS
(2007) .

