
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

327

Manuscript received August 5, 2009

Manuscript revised August 20, 2009

Achieving Capability in Data Compression Using LZW++

Technique

 Yusof. Mohd Kamir Mat Deris. Mohd Sufian Abidin. Ahmad Faisal Amri Madi. Elissa Nadia

 mohdkamir@udm.edu.my sufian@udm.edu.my faisalamri@udm.edu.my elissa@udm.edu.my

 Universiti Darul Iman Malaysia Universiti Darul Iman Malaysia Universiti Darul Iman Malaysia Universiti Darul Iman Malaysia
 Kampus Kusza, Gong Badak Kampus Kusza, Gong Badak Kampus Kusza, Gong Badak Kampus Kusza, Gong Badak

 21300 Kuala Terengganu 21300 Kuala Terengganu 21300 Kuala Terengganu 21300 Kuala Terengganu

 Terengganu, Malaysia Terengganu, Malaysia Terengganu, Malaysia Terengganu, Malaysia
 Tel: +609 6653352 Tel: +609 6653412 Tel: +609 6653414 Tel: +609 6653411

 Fax: +609 6673412 Fax: +609 6673412 Fax: +609 6673412 Fax: +609 6673412

Abstract
The development of efficient compression software to compress

text and image is a challenging task. This paper presents the

enhanced LZW technique in data compression. The basic

framework of enhanced LZW technique is based on existing

LZW technique. Modification of existing LZW structure was

done in order to produce the enhanced LZW technique.

Enhanced LZW technique read three characters in time during

data compression while existing LZW technique read character

one by one. This project employs enhanced LZW technique on

data compression with text and image. Experimental test have

been done performed on text and image. Comparison was made

between enhanced LZW technique and existing LZW technique

in terms of time performance and size of file after compression.

The experiment results show that enhance LZW technique is

more efficient in text compression compare to existing LZW

technique.

Key words:
Data Compression, LZW, LZW++, LZ-77, RLE, Text, Image.

1. INTRODUCTION

Data compression is often referred to as coding, where

coding is very general term encompassing any special

representation of data which satisfies a given need. It is

useful because it helps to reduce consumption of

expensive resources such as hard disk space or

transmission bandwidth i.e. a data file that suppose to

takes up 50 kilobytes (KB) could be downsized to 25

kilobytes (KB), by using data compression software. A

simple characterization of data compression is that it

involves transforming a string of characters in some

representation (such as ASCII) into a new string (of bits,

for example) which contains the same information but

whose length is as small as possible. Data compression

has important application in the areas of data transmission

and data storage. Compressed data required smaller

storage size and reduce the amount of data that need to be

transmitted. Hence, it increases the capacity of the

communication channel.

Several techniques have been used for data compression.

Each technique has their advantages and disadvantages in

data compression. In this paper, 4 types of data

compression algorithm namely Run Length Encoding

(RLE), Huffman Encoding, LZ-77 and Lempel Ziv Welch

(LZW) were analyzed. One of the algorithms is chosen in

this paper to study for potential improvement and

enhancement.

2. PREVIOUS WORKS

One of the techniques for data compression is “run length

encoding”, which is sometimes knows as “run length

limiting” (RLL) [5, 6]. Run length encoding is very useful

for solid black picture bits. This technique can be used to

compress text especially for text file and to find the

repeating string of characters. This compression software

will scan through the file to find the repeating string of

characters, and store them using escape character (ASCII

27) followed by the character and a binary count of he

number of items it is repeated. This compression software

must be smart enough not to compress strings of two or

three repeated characters but more than that. Instead, if the

compression software is not smart, this technique will

produce the bigger size than original size. First problem

with this technique is the output file is bigger if the

decompressed input file includes lot of escape characters.

Second problem is that a single byte cannot specify run

length greater than 256.

Another technique for data compression is know as

“Huffman coding” [4]. In this encoding technique,

characters in a data file are converted to a binary code,

where the most common characters in the file have the

shortest binary codes, and the least common have the

longest. In Huffman coding also, the assignment of

codewords to source messages is based on the

probabilities which the source messages appear in the

message ensemble. Huffman are used to compress and

decompress different type of files such as doc, bmp, jpg,

tiff, tif and gif. Bmp files contain images, in which each

dot in the image represented by a byte. However, the

problem with this technique is text compression.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

328

Another technique for data compression is LZ-77

encoding [7]. This technique is a simple, clever and

effective approach to compress text. This technique

exploits the fact that words and phrases within a text

stream are likely to be repeated. When they repeat, they

can be coded as a pointer to an earlier occurrence, with the

pointer accompanied by the number of characters to be

matched. This technique is useful for compressing text

because it able to reduce the file size and increase the

compression ratio after compression. However, it is not

efficient for image file format such bmp, gif, tif and tiff.

Beside that, this technique will take several minutes to

compress a data. Sometimes, the long processing time will

cause the missing of some characters.

The most popular technique for data compression is

Lempel Ziv Welch (LZW) [8]. LZW is a general

compression algorithm capable of working on almost any

type of data. It is generally fast in both compressing and

decompressing data and does not require the use of

floating-point operations. LZW technique also has been

applied for text file. This technique is very efficient to

compress image file such tiff and gif. However, this

technique not efficient for compress text file because it

require many bits and data dictionary.

Based on several techniques for data compression, LZW

technique produce better result compared to RLE and

Huffman Coding. LZW have a great potential to be

improved in order to produce a better result than existing

LZW technique in term terms of data size and time

performance.

3. RESEARCH METHODOLOGY

This paper shows comparison process between existing

LZW and enhanced LZW techniques.

3.1 LZW Algorithm

Fig 1 shows the compress algorithm and fig 2 show the

decompress algorithm for LZW technique.

L1 Start

L2 S = get input character

L3 WHILE there are still input character not equal to null

L4 IF S + C is in the string table THEN

 S = S + C

L5 ELSE

 Output the code for S

 Add S + C to the string table

 S = C

END IF

L6 END of WHILE

Display Output

Fig. 1 Compress Algorithm

L1 Read Old_Code

L2 Output Old_Code

 WHILE there are still input characters D0

 Read NEW_CODE

 String = get transaltion of NEW_CODE

 Output String

 Character = first character in STRING

 Add OLD_CODE + CHARACTER to the

 translation table

L3 OLD_CODE = NEW_CODE

END of WHILE

Fig. 2 Decompress Algorithm

Example 1 show compression process and example 2

show the decompression process on data compression

using existing LZW technique.

Example 1

String: before compression PPPQPPQQQ

Table 1: Compress Dictionary 1

Code 0 1

Key P Q

0 PPQPPQQQ – Table 1 shows character P represent by

0. That way, character P replace by 0.

Table 2: Compress Dictionary 2

Code 0 1 2

Key P Q PP

0 2 QPPQQQ – Table 2 shows character PP represent by

2. That way, character PP replace by 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

329

Table 3: Compress Dictionary 3

Code 0 1 2 3

Key P Q PP PPQ

0 2 1 3 QQ – Table 3 shows character PPQ represent by 3.

That way, character PPQ replace by 3.

Table 4: Compress Dictionary 4

Code 0 1 2 3

Key P Q PP PPQ

0 2 1 3 1 Q – Table 4 shows character Q represent by 1.

That way, character Q replace by 1.

Table 5: Compress Dictionary 5

Code 0 1 2 3

Key P Q PP PPQ

0 2 1 3 1 1 – Table 5 shows character Q represent by 1.

That way, character Q replace by 1.

Table 6: Compress Dictionary 6

Code 0 1 2 3

Key P Q PP PPQ

Finally, string PPPQPPQQQ compressed to 021311.

Original size for string PPPQPPQQQ is 9 x 8 byte (size

ASCII) = 72 bytes. After compressed, string

PPPQPPQQQ change to 021311 and size after compress

is 6 x 4 byte = 24 bytes.

Example 2
String: before decompress 021311

Table 7: Decompress Dictionary 1

Code 0 1 2 3

Key P Q PP PPQ

Step 1:

P 21311 – Table 7 shows character 0 represent by P. That

way, character 0 replace by P.

Step 2:

PPP 1311 – Step 2 shows character 2 represent by PP.

That way, character 2 replace by PP.

Step 3:

PPP Q 311 – Step 3 shows character 1 represent by Q.

That way, character 1 replace by Q.

Step 4:

PPP Q PPQ 11 – Step 4 shows character 3 represent by

PPQ. That way, character 3 replace by PPQ.

Step 5:

PPP Q PPQ Q1 – Step 5 shows character 1 represent by

Q. That way, character 1 replace by Q.

Step 6:

PPP Q PPQ QQ – Step 6 shows character 1 represent by

Q. That way, character 1 replace by Q.

After decompress, string 021311 changes to original string.

The original character is PPPQPPQQQ.

3.2 Enhanced LZW Algorithm

Enhancement LZW algorithm is needed to produce better

result compare to existing LZW algorithm. This enhanced

LZW algorithm read the string and divide the string to

smaller string which consist of three characters until end

of the string. Fig 3 shows the algorithm for compress and

fig 4 shows the algorithm for decompress data.

L1 Start

L2 String = Get Input Character

L3 Character = Get Input Character

Assign Count = 0

Assign i = 0; j = 0

L4 WHILE there are still input character not equal to

Null

L5 Variable A = Character[j]

Count++; B = B*A; j++

L6 IF (count = = 3)

L7 IF (B !=Code)

 Code = B

 Key = i

 i++

ELSE

 B = Key

END IF

L8 C = C * Key

j = j

count = 0

L9 Repeat Line L4

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

330

ELSE

L10 Repeat Line L4

END IF

END of WHILE

Display Output

END`

Fig. 3 Compress Algorithm

Algorithm for compression can be represented in formula

as below:

X = {x1,x2,x3,x4,x5,………,xn}

Where x represents the whole string, x1 represent the first

character in the string, x2 represent the second character,

and so on. Even though in reality the length of the string is

finite, mathematically assume that it has infinite length.

General model: Let Bn represent the first n characters. The

entropy rate in the general case is given by

Where the sum is over all possible values of Bn. It is

virtually impossible to calculate the entropy rate according

to the above equation. Using a prediction method,

Shannon has been able to estimate that the entropy rate of

the n letter.

L1 Start

L2 Read String

L3 Assign Character = String

i = 0

L4 WHILE there are still input character not equal to null

L5 Read Dictionary

L6 Character[i] = Code

L7 A = A * Character[i]

i++

Repeat Line L3

L8 END of WHILE

L9 Display Output

L10 END

Fig. 4 Decompress Algorithm

Example 1 and example 2 show the compression and

decompress process using enhanced LZW algorithm and.

This technique will read the string and read the character

one by one. After that, the character will represent by key.

Example 1

String: before compression PPPQPPQQQ

Table 8: Compress Dictionary 1

Code 0

Key PPP

0 QPPQQQ – Table 8 shows first three characters

represent by 0. Characters PPP already replaced by 0.

Table 9: Compress Dictionary 2

Code 0 1

Key PPP QPP

0 1 QQQ– Table 9 shows the second set of three

characters represent by 1. QPP replaced by 1.

Table 10: Compress Dictionary 3

Code 0 1 2

Key PPP QPP QQQ

0 1 2 – Table 10 shows the last three characters represent

by 2. That, character QQQ replaced by 2.

Finally, string PPPQPPQQQ is compressed to 012.

Original size for string PPPQPPQQQ is 9 x 8 byte (size

ASCII) = 72 bytes. After compressed, string

PPPQPPQQQ change to 012 and size after compress is 3

x 4 byte = 12 bytes. The string size has decrease be

cleared from 72 bytes.

Example 2

String: before decompression 012

Table 11: Decompress Dictionary 1

Code 0

Key PPP

H = log2 m bits/character (1)

H = 𝑝𝑖𝑚
𝑖=1 log2pi bits/character (2)

H = lim𝑛→∞
1

𝑛
 𝑝 𝐵𝑛 𝑙𝑜𝑔2 𝑝 𝐵𝑛 𝑏𝑖𝑡𝑠/𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 (3)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

331

PPP 12 – Table 11 shows first characters represent by

PPP. That way, character 0 replace by PPP.

Table 12: Decompress Dictionary 2

Code 0 1

Key PPP QPP

PPPQPP 2– Table 12 shows the second characters

represent QPP. That way, character 1 replace by QPP.

Table 13: Decompress Dictionary 3

Code 0 1 2

Key PPP QPP QQQ

PPPQPPQQQ – Table 13 shows the last character

represent by QQQ. That, character 2 replace by QQQ.

Finally, string 012 decompress to PPPQPPQQQ.

Original size before decompress is 012 is 3 x 4 byte (size

ASCII) = 12 bytes. After decompress, string 012 change

to PPPQPPQQQ and size after decompress is 9 x 8 byte

= 72 bytes.

4. EXPERIMENTAL RESULT

The data set are divided into two segment are text and

image. Different data types will used for experiment to get

the result which presented by graph.

4.1 Measurement

In this experiment, measurement is important to be

considered. Basically, measurement divided into 2 parts;

File size - is the size of a computer file. File size can be

kilobytes (Kb), megabits (Mb) and so on. The same file

size of data which use in LZW technique should be used

for carry out the experiment on enhancement LZW

technique.

Time for Compress - Another measurement is time

performance for compress the data. Time used for

compress a data using enhanced LZW technique will be

compared with the time used for compress same data

using existing LZW technique.

4.2 Input Parameter

Before carry out the experiment, the most important thing

is the consideration about parameters. The parameter must

fulfill the criteria to produce the result after compression

process. Table 13 below shows the explanation of input

parameters.

Table 13: Explanation of Input Parameter

Data

Type

Data Format Data Size Explanation

Text .doc, .pdf, .txt Range

between

1kb to

500kb

the same data

format will used for

experiment.

Evaluation divided

to two part, after

compressed and

time performance.

Image .gif, .bmp Range

between

1kb to

500kb

image will used for

experiment and the

evaluation based on

after compressed

size and time

performance.

4.3 Experiments

The experiments used different data types as input, the

results generated by the enhanced LZW are compared

with the result generated by existing LZW. Total of 8

experiments been carry out, results from each experiments

are shown in this section.

Experiment 1

Experiment 1 used text as data type (document type). This

experiment will show the result file size after compression

using existing LZW technique and enhanced LZW

technique.

Fig 5 shows the comparison between existing LZW

technique with enhanced LZW technique in term of file

size.

Fig. 5 Comparison output file size between LZW and LZW++

Experiment 2

Experiment 2 used text as data type (document type). This

experiment will compare the results between LZW

Output File Size

0

10000

20000

30000

40000

50000

60000

20
48

0

27
64

8

48
12

8

57
85

6

58
88

0

68
09

6

71
68

0

79
36

0

83
96

8

87
55

2

bytes

b
y
te

s LZW

LZW++

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

332

techniques with enhanced LZW technique in term of time

performance for compression.

Fig 6 shows the comparison between existing LZW

technique with enhanced LZW technique in term of time

performance.

Fig. 6 Comparison of time for compress between LZW and LZW++

Experiment 3

Experiment 3 used text as data type (txt type). This

experiment will show the result file size after compression

using existing LZW technique and enhanced LZW

technique.

Fig 7 shows the comparison between existing LZW

technique with enhanced LZW technique in term of file

size.

Fig. 7 Comparison of file size between LZW and LZW++

Experiment 4

Experiment 4 used text as data type (txt file). This

experiment will compare the results between existing

LZW technique with enhanced LZW technique in term of

time performance for compression.

Fig 8 shows the comparison between existing LZW

technique with enhanced LZW technique in term of time

performance.

Fig. 8 Comparison of time for compress between LZW and LZW++

Experiment 5

Experiment 6 used image as data type (bmp file). This

experiment shows the result file size after compression

using existing LZW technique and enhanced LZW

technique.

Fig 9 shows the comparison between existing LZW

technique with enhanced LZW technique in term of file

size.

Fig. 9 Comparison of file size between LZW and LZW++

Experiment 6

Experiment 6 used image as data type (bmp file). This

experiment will compare the results between existing

LZW technique with enhanced LZW technique in term of

time performance for compression.

Fig 10 shows the comparison between existing LZW

technique with enhanced LZW technique in term of time

performance.

Time Performance

0

20000

40000

60000

80000

100000

120000

20480

27648

48128

57856

58880

68096

71680

79360

83968

87552

bytes

m
s LZW

LZW++

Output File Size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

3977 12305 20807 20821 25422 39715

bytes

b
yt

es LZW

LZW++

Time Performance

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3977 12305 20807 20821 25422 39715

bytes

m
s LZW

LZW++

Output File Size

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

3605 14848 17101 17920 51098 512000

bytes

b
y
te

s LZW

LZW++

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

333

Fig. 10 Comparison of time for compress between LZW and LZW++

Experiment 7

Experiment 7 used image as data type (gif type). This

experiment will show the result file size after compression

using existing LZW technique and enhanced LZW

technique.

Fig 11 shows the comparison between existing LZW

technique with enhanced LZW technique in term of file

size.

Fig. 11 Comparison of file size between LZW and LZW++

Experiment 8

Experiment 8 used image as data type (gif file). This

experiment will compare the results between existing

LZW technique with enhanced LZW technique in term of

time performance for compression.

Fig 12 shows the comparison between existing LZW

technique with enhanced LZW technique in term of time

performance.

Fig. 12 Comparison of time for compress between LZW and LZW++

Based on the result produce by experiment 1 and 3,

enhanced LZW technique is better than existing LZW

technique in term of compressed file size. Both of these

experiment used the same data type (i.e : text) and same

data format (i.e : .doc and .txt). Based on result

represented by graph, the blue bar represent results from

existing LZW and red bar represent result from enhanced

LZW technique. Experiment 2 and 4 produce the result for

data compression in term of time performance. The results

also, show that the enhanced LZW technique is better than

LZW technique. In summary, enhanced LZW technique is

very useful for compress text and be able to produce better

result compared to existing LZW technique in terms of

size and time performance.

Experiment 5 and 7 used the image as data type.

Experiment 5 used image in bmp format while experiment

7 used image in gif format. Experiment 6 and 8 used the

same data type but comparisons are done in term of time

performance. Based on result produce by experiment 5

and 7, enhanced LZW technique is better than existing

LZW technique in term size for image format bmp. As for

image in gif format, enhanced LZW technique produce

bigger file size after compress compared to existing LZW

technique. In summary, enhanced LZW technique better

for image format bmp but not for image format gif.

5. Conclusion

This work demonstrates a methodology for compress and

decompresses data using enhanced LZW technique. The

modifications needed to make existing LZW algorithm to

produce new algorithm in order to produce better result

than existing LZW technique. Therefore, several

experiments are carried out in order to show performance

enhanced LZW technique compared with LZW technique.

Several tasks that have been done are evaluating

performance of enhanced LZW technique with using

different data type, choosing the best data type for

enhanced LZW technique and comparing the performance

and effectiveness of enhanced LZW technique with

existing LZW technique in term of data size and time for

compress.

Finally, the enhanced LZW technique is useful for text

such as file format doc, pdf and txt. Based on the

experimental result have been done, it achieve better result

compared to existing LZW technique. Overall, the result

also show that enhanced LZW technique have the

potential to be used in compressing text.

Time Performance

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

3605 14848 17101 17920 51098 512000

bytes

m
s LZW

LZW++

Output File Size

0

10000

20000

30000

40000

50000

60000

1382 2591 2703 15053 24986 34509

bytes

b
y
te

s LZW

LZW++

Time Performance

0

100000

200000

300000

400000

500000

600000

1382 2591 2703 15053 24986 34509

bytes

m
s LZW

LZW++

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009

334

References
[1] Ian, H.H. Witten, Moffat, a. and Bell, T.C. (1999).

Managing Gigabytes: Compressing and Indexing

Documents and Images.

[2] Vilter, J.S. (1987). Design and Analysis of Dynamic

Huffman Codes. J. ACM 34, 4 : 825-845

[3] Bentley, J.L., Sleator, D.D., Tarjan, R.E., and wei, V.K.

(1986). A Locally Adaptive Data Compression Scheme.

Commun. ACM 29, 4 (Apr.), 320-330.

[4] Snowbirh, U. (2000). Data Compression Conference

(DDC’00.)

[5] Mohmmad Al-laham and Ibrahim M.M. EL Emary.

(2007). Comparative Study Between Various

Algorithm of Data Compression Technique. 284-290.

[6] Gilbert, H. (1996). Data Image Compression Tools and

Technique. WILEY : 68-343.

[7] Ngoc, V. and Alistair, M. (2006). Improved

wordaligned binary compression for text indexing.

IEEE Trans. Knowledge & Data engineering, 18: 857-

861.

[8] Gawthrop, J. and W. Liuping, (2005). Data

Compression for estimation of the stable and unstable

linear systems. Automica, 41: 1313-1321.

[9] Kesheng, W., J. Otoo and S. Arie, (2006). Optimizing

bitmap indices with efficient compression. ACM Trans.

Database System.

[10] Julia, C.B. and Anita, C.M (2002). Programming in

Visual Basic 6.0. Update edition. Avenue of the

Americas, N. Y.: McGraw-Hill. 2-3.

[11] Blelloch, E. (2002). Introduction to Data Compression.

Computer Science Department, Garnegie Mellon

Universitiy.

[12] Gallager, R.G. (1978). Variations on a Theme by

Huffman. IEEE Trans. Inform. Theory: 668-674.

[13] Gawthrop, J. and Luiping W. (2005). Data

Compression for estimation of the physical parameters

of stable and unstable linear system. Automatice, 41:

1313-1321.

Mohd Kamir Yusof

obtained her Master of

Computer Science from

Faculty of Computer

Science and Information

System, Universiti

Teknologi Malaysia in

2008. Currently, he is a

Lecturer at Department of

Computer Science, Faculty

of Infomatics, Universiti

Darul Iman Malaysia (UDM), Terengganu, Malaysia.

Mohd Sufian Mat Deris

obtained her Master of

Education (educational

technology) from Faculty

of Education, Universiti

Teknologi Malaysia in

2006. Currently, he is a

Lecturer at Department of

Multimedia, Faculty of

Infomatics,

Universiti Darul Iman Malaysia (UDM), Terengganu,

Malaysia.

Ahmad Faisal Amri

Abidin obtained her

Master of Computer

Science from Faculty of

Computer Science and

Information Technology,

Universiti Putra Malaysia

in 2008. Currently, he is a

Lecturer at Department of

Computer Science, Faculty

of Infomatics,

Universiti Darul Iman Malaysia (UDM), Terengganu,

Malaysia.

Elissa Nadia Madi

obtained her Master of

Mathematics from Faculty

of Science and

Technology, Universiti

Malaysia Terengganu in

2009. Currently, he is a

Lecturer at Department of

Information Technology,

Faculty of Infomatics,

Universiti Darul Iman Malaysia (UDM), Terengganu,

Malaysia.

