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Summary 

This paper presents an in-depth juxtaposition of RSA 
and  Elliptic Curve Cryptosystem (ECC) and provides an 
overview of the different trade-off involved in choosing 
between cryptosystems based on them. We offer ECC as a 
suitable alternative to RSA. We also present experimental 
results quantifying the benefits of using ECC for public 
cryptosystems. 
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1.  Introduction 

Since the introduction of public key cryptosystem 
by Diffie Hellman [1] in 1976, numerous public key 
cryptosystems have been proposed and implemented. The 
first practical implementation followed in 1977 when 
Rivest, Shamir and Adleman proposed their now 
well-known RSA cryptosystem [2], in which security is 
based on the intractability of the integer factorization 
problem. The first use of elliptic curve in cryptography 
parlance was Lenstra’s elliptic curve factorization 
algorithm. Inspired by this sudden unexpected application 
of elliptic curves in integer factorization, in the mid 1980s, 
Neal Koblitz and Victor Miller indepently introduced the 
elliptic curve public key cryptography system, a method 
based on the discrete logarithmic problem over the points 
on an elliptic curve. Elliptic curve cryptographic schemes 
are public key mechanisms that provide the same 
functionality as RSA schemes. However, the security of 
ECC is based on the hardness of a different problem, 
namely the elliptic curve discrete logarithm problem 
(ECDLP). Currently the best algorithms known to solve 
the ECDLP have fully exponential running time, in 
contrast to the subexponential-time algorithms known for 
the integer factorization problem. This means that a 
desired security level can be attained with significantly 
smaller keys in elliptic curve systems than is possible with 
their RSA counterparts. The advantages that can be gained 
from smaller key sizes include speed and efficient use of 
computing power, bandwidth, and storage. 

2.  Security goals 

Cryptography aims at analyzing what problems can 
be made very easy while making others extremely hard. 
Careful examination of the scenarios in network security 
reveals the following fundamental objectives of secure 
communications [3,4]: 

Confidentiality: keep information private and secret so 
that only the authorized recipient see it. 
Messages sent by Alice to Bob should not be 
readable by Eve. 

Data integrity: ensure that information is not tempered 
with during its transit or its storage on the 
network. Bob should be able to detect when 
data sent by Alice has been modified by Eve. 

Data origin authentication: provide proof of identity of 
the sender to the recipient, so that the recipient 
can be assured that the person sending the 
information is who or what he or she claims to 
be. Bob should be able to verify that data 
purportedly sent by Alice indeed originated 
with  Alice. 

Entity authentication: corroborate the identity of an 
entity. Bob should be convinced of the identity 
of the other communicating entity. 

Non-repudiation: preventing an entity from denying 
previous commitments or actions. Once the 
non-repudiation process is in place, the sender 
cannot deny being the originator of the 
information. When Bob receives a message 
purportedly from Alice, not only is Bob 
convinced that the message originated with 
Alice, but also Bob can convince a neutral 
third party. 

3.  Public Key Cryptosystem 

 Public key cryptosystem is based on the idea of 
separating the key used to encrypt a message from the one 
used to decrypt it. Anyone who wants to send a message to 
Bob can encrypt that message using Bob’s public key but 
only Bob can decrypt the message using his private key. In 
implementing a public-key cryptosystem, it is understood 
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that Bob’s private key should be kept secret at all times. 
Furthermore, even though Bob's public key is publicly 
available to everyone, including his adversaries, it is 
impossible for anyone, except Bob, to derive the private 
key in any reasonable amount of time. 

4.  RSA Cryptosystem 

RSA was proposed in 1977 shortly after the 
discovery of public-key cryptography. It has survived all 
attempts to break it for many years and is considered very 
strong. We will summarize how to use the method. 

1. Pick two large primes, p and q. 
2. Multiply them together to get n = p x q. 
3. Compute z =(p-1) x (q-1). This will be the mod of 

the exponents. 
4. Pick any number d, which is smaller than, and 

relatively prime to, z. 
5. Solve the diophantine equation d x e=z x k+1. 

The value of k is not important, but the value of e 
is. We have to make sure a positive value of e, 
which is less than z. 

That is all. The public key is order pair (n, e) and 
private key is also order pair (n, d). 

One of the beauties of the RSA algorithm is that the 
public and private keys can be interchanged without 
affecting the security of the system. It means that the 
public key can be the order pair (n, d) and private key can 
be (n, e). 

4.1  Encryption 

Divide the message into blocks, so that each 
plaintext block, P, lies in the interval 0≤P<n. We can 
group the message into plaintext blocks of k bits, where k 
is the largest integer for which 2k<n is true. Anyone 
wishing to send a message to Bob make use of e and n. If 
Alice wants to send a message to Bob, he calculates the 
ciphertexts as   

C=Pe(mod n) 
 Alice sends C, the cipehertext, to Bob. 
 
 4.2  Decryption 

When Bob receives the ciphertext, he uses his 
private key d  to decrypt the message as 

P=Cd(mod n)  

4.3  RSA Design Example 

Assume Alice wants to send the message 
“http://www.ijcsns.org” to Bob. Alice  chooses two  
integers  p and  q.  

The integer p is a 77-digit number. 
 

p=73680054488656110405523153970293730091326981
370921628773735365768551633318757. 

The integer q is also a 78-digit number. 
q=11531806091058230305296966675672918005570392
5467022497453321651161405436738911. 

Alice calculates n and it has 154 digits.  

n=84966410114178683644595197219008702230891206
6424803862939509389515564139269697992091998017
6941113892674667098281664680291975070356656827
539356490248053627. 

Alice also calculates  z  and it  has 154 digits.  

z=84966410114178683644595197219008702230891206
6424803862939509389515564139269679092280458093
8527655399853940075371517649385137126230429770
522426533177995960. 

 Alice chooses e=65537 and calculates d. It has 154 
digits.  

d=57866407510814522571873323964680019155188643
3202690016608054413409794311490651946302790279
7049657004700867621711892805020922692405343582
670826950911190193. 

  Alice’s message is  “http://www.ijcsns.org”. It 
is changed to numeric values (using  java) as shown 
below. 

P=15266100987464762024566676191962879910276857
1708007. 

 The ciphertext calculated by Alice is C=Pe(mod n) 
is 

C=8049380957309251222703805490071192376621150
1458095719917110815595662086399649801260359590
7929335225332064944115355024311381114248830514
30829276079284455. 

Bob recover the plaintext from the ciphertext using 
P=Cd(mod n), which is  

P=15266100987464762024566676191962879910276857
1708007. After converting the numeric numbers to text, 
the message becomes “http://www.ijcsns.org”.  

5.  Security of RSA 
We can identify three techniques for attacking the 

security of RSA: 
1. Factor n into its prime factors. This enables us to 

calculate z=(p-1) x (q-1), which, in turn, 
enable us to determine d and e. 

2. Determining z without first determining p and q. 
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This enables us to determine d and e. 
3. Determine d directly, without first determining 

z. 
 

In most literatures, the activities of the 
cryptanalysis of RSA are focused on the task of factoring 
n into two prime factors p and q. Determining z is the 
same as determining the two factors of n. With presently 
known algorithms, determining d given e and n is time 
consuming as the factoring algorithm [3]. Hence, the 
integer factorization performance can be used as the 
benchmark against which to evaluate the security of 
RSA.  

In number theory [5], integer factorization is 
the breaking down of a composite number into smaller 
non-trivial divisors, which when multiplied together 
equal the original integer. When the numbers are very 
large, no efficient integer factorization algorithm is 
publicly known.  

In cryptography, we use a term from 
computational complexity theory describing the difficulty 
of solving a computational problem. A fast integer 
factorization algorithm would mean that the RSA 
public-key algorithm is not secure. We need an 
encryption and decryption algorithm to have a low level 
of complexity (efficient); we need an algorithm to be 
used by hackers to have a high level of complexity 
(inefficient). 

The complexity of an algorithm is based on two 
factors: space and time [4]. The space factor of 
complexity refers to the memory required to run the 
algorithm. The time factor of complexity is the time 
required to run the algorithm. The time complexity of an 
algorithm depends on the particular computer on which 
the algorithm is executed. To make complexity (normally 
the complexity of an algorithm means time complexity) 
independent of the machine, the bit-level operation 
complexity is defined. A bit-level operation is the time 
needed for a computer to add, subtract, multiply, divide 
two bits or shift / rotate one single bit.   

Based on the bit-level operation complexity, the 
following hierarchy of complexity can be arrived at. 
 
Table 1: complexity hierarchy 
  

Hierarchy Big- O Notation 
Logarithmic O(log b) 
Linear O(b) 
Polynomial O(bc) 
Sub exponential O(2p(log b) and p=f(logb) 
Exponential O(2b) 
Super exponential O(bb) or O(2x) and x=2b 

 
An algorithm with constant or logarithmic or 

polynomial complexity is considered efficient for any 
size of b. An algorithm with sub exponential complexity 
is feasible if b is not very large. But an algorithm with 

exponential and super exponential is considered 
infeasible for large value of b [4]. 

If a large, b-bit number is the product of two 
primes that are roughly the same size, then no algorithm 
has been published that can factor in polynomial time, i.e., 
that can factor it in time O(bk) for some constant k. There 
are published algorithms that are faster than O((1+ε)b) for 
all positive ε, i.e., sub-exponential. 

The best published asymptotic running time for the 
general number field sieve (GNFS) algorithm, which, for 
a b-bit number n, is: 

 
For an ordinary computer, GNFS is the best 

published algorithm for large n (more than about 100 
digits). For a quantum computer, however, Peter Shor 
discovered an algorithm in 1994 that solves it in 
polynomial time. This will have significant implications 
for cryptography if a large quantum computer is ever 
built. 

It is not known exactly which complexity classes 
contain the decision version of the integer factorization 
problem. It is known to be in both NP (nondeterministic 
polynomial) and co-NP(complementary NP). This is 
because both YES and NO answers can be trivially 
verified given the prime factors (we can verify their 
primality using the cyclotomic AKS primality test [10], 
and that their product is N by multiplication). In fact, 
provided we require the factors to be listed in order, the 
fundamental theorem of arithmetic will guarantee that 
there is only one possible string that will be accepted; this 
shows that the problem is in both UP(undecidable 
problem) and co-UP(complementary UP). It is also 
suspected to be outside of all three of the complexity 
classes P(polynomial), NP-complete, and 
co-NP-complete.Many people have tried to find classical 
polynomial-time algorithms for it and failed. 
   

6.  Elliptic Curve Cryptography  
Elliptic curve has a rich and beautiful history and 

mathematicians have studied them for many years. They 
have been used to solve a diverse range of problems. The 
first use of elliptic curve in cryptography parlance was 
Lenstra’s elliptic curve factorization algorithm. Inspired 
by this sudden unexpected application of elliptic curves 
in integer factorization, Neal Koblitz and Victor Miller 
proposed, in the mid 1980s, the elliptic curve public-key 
cryptographic systems. Since then an abundance of 
research has been published on the security and efficient 
implementation of elliptic curve cryptography. In the late 
1990s, elliptic curve systems started receiving 
commercial acceptance when accredited standard 
organizations specified elliptic curve protocols, and 
private companies included these protocols in their 
security products. 
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An elliptic curve is a cubic equation of the form:  

       y2= x3+ax+b                      (1) 
          or  
      y2 +xy   = x3+ax2+b                (2) 
          or     
      y2 +y   = x3+ax+b                  (3) 
where a and b are constants and x and y are variables. In 
fact, x and y can be complex, real, integers, 
polynomial basis, optimal normal basis, or any 
other values from any field. That’s part of what 
makes the math so complex and interesting.  
  
7.  Elliptic curve over prime Galois Fields 
      

An elliptic group over the prime Galois Field 
Ep(a,b) uses a special elliptic curve of the form  

     y2 (mod p)= x3+ax+b mod p  
where a,b ∈ Fp, 0≤x<p and -16(4a3+27b2)mod p ≠ 0 . The 
constants a and b are non-negative integers smaller than 
the prime p. The condition that -16(4a3+27b2) mod p ≠ 0 
implies that the curve has no “singular points”, which 
will be essential for the applications we have in mind. 
  
8.  Operations required by ECC 
       

The scalar multiplication or repeated addition of 
elliptic curve points is the main operation required by 
ECC schemes, although other operations such as division 
may also be needed. The addition of two elliptic curve 
points is illustrated geometrically in figure 1 given below. 
The line connecting the two points P and Q intercepts the 
curve at a point called –R. We reflect –R on the x-axis to 
get R. This point R is the sum of P and Q i.e. R=P+Q. To 
double a point P, first we draw the tangent line and find 
the other point of intersection -R. We reflect –R on the 
x-axis to get R. Now, R=P+P=2P. See figure 2 given 
below. 

As it is the scalar multiplication operation that 
dominates the actual execution timing of ECC schemes, 
its efficient implementation is crucial. 
  

Figure 1. Adding two points 

 

Figure 2. Doubling a point
 
 
 

The actual mathematics depends on the chosen 
curve and underlying field, however there is a clear 
hierarchy of underlying mathematical operations, as 
shown in figure 3 given below. 
 

  
 
      

9.  The Group Law of Elliptic Curve 
 
Let E be an elliptic curve defined over the field K. 

There is a chord-and-tangent rule for adding two points in 
E (K) to give a third point in E (K). Together with this 
addition operation, the set of points E(K) forms an abelian 
group with 0 serving as its identity. It is this group that is 
used in the construction of elliptic curve cryptographic 
systems. Algebraic formulas for the group law can be 
derived from the geometric description. These formulae 
are established and presented here for non-supersingular 
elliptic curves E of the form y2=x3+ax+b.  
Group law for E/K : y2 = x 3 + ax + b. 
1. Identity. P +0=0+ P = P for all P Є E (K ). 
2. Negative. If P = (x , y) Є E( K ),then(x , y) + (x ,-y) 
=0. 

The point (x ,-y) is denoted by -P and is called 
the negative of P; note that -P is indeed a 
point in E( K ). Also, -0 = 0. 

3. Point addition. Let P = (x1 , y1 ) Є E( K ) and Q = (x2, 
y2 ) Є E(K ),where P ≠ ±Q .Then P+Q =R=(x3, y3), 
where x3=λ2-x1-x2  , y3=λ(x1-x3)-y1  and 
λ=(y2-y1)/(x2-x1)   

 
4. Point doubling. Let P = (x1 , y1) Є E( K ), where P ≠ -P.  

Then 2P =R= (x3 , y3 ), where x3=λ2-2x1 , 
y3=λ(x1-x3)-y1   and  λ=(3x1

2+a)/(2y1)      
To establish the algebraic formulae given above, 
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we pick an elliptic curve equation   y2  = x3 + ax + b. 
Consider the line y=λx+c and examine the points that lie 
on the intersection of this line with our curve. These are 
the points that obey both equations. We can therefore use 
the linear equation to substitute for y in our equation, to 
obtain  

(λx)2 + 2cλx + c2 = x3 + ax + b (4) 
This is a cubic equation in x, and we assume it will 

have three real roots. Two of these are P(x1,y1) and 
Q(x2,y2), so we will obtain another,-R(x3,-y3). We rewrite 
our equation  (4) as  

x3-λ2x2 + (a-2cλ)x + b-c2 = 0 (5) 
 If x1, x2 and x3 are the three solutions, then by 
intuition, we compare the given equation (5) with the 
equation  (6)  given below:- 

(x-x1)(x-x2)(x-x3)=0  (6) 
 Hence, x3-λ2x2 + (a-2cλ)x + b-c2 =(x-x1)(x-x2)(x-x3) 

Simplifying the right hand side and comparing the 
coefficients of x2 terms on both sides, we get 

λ2 = x1+x2+x3   (7) 
We know already x1 and x2 in equation (7). So, 

x3=λ2-x1-x2. To get y3, we proceed as follows. The slope 
of a straight line passing two points P(x1,y1) and 
-R(x3,-y3) is the same as the slope of a straight line 
passing two points P(x1,y1) and Q(x2,y2). So, 
(-y3-y1)/(x3-x1)=(y2-y1)/(x2-x1)= λ. Solving for y3 we get, 
y3=-y1+λ (x1-x3). 

As –R(x3,-y3)=R(x3,y3), so  y3=-y1+λ (x1-x3). 
In the case of point doubling formula, slope is 

calculated differently, others are same as point addition. 
In this case to find slope, λ, we find derivative of the 
curve y2  = x3 + ax + b  w.r.to x at the point P(x1,y1).  

So, slope=dy/dx at point P(x1,y1). 
             λ = (3x12+a)/(2y1). 
10. Multiplication over an elliptic curve 
group 

The multiplication over an elliptic curve 
group Ep(a,b) is the equivalent operation of the 
modular exponentiation in RSA. The multiplication 
of points by a scalar is a series of additions and doubling 
of points. 
Let P =(3, 10) Є E23(1, 1). Then 2P =(x3,y3) is equal 
to: 
   2P = P + P =(x1,y1)+(x1,y1) 

   Since P = Q, the values of λ , x3 and y3 
are given by: 

 λ=((3x1
2+a)/(2y1))  mod p  

 = ((3 ×32+1)/( 2 × 10)) mod 23= 5/20 mod 23 
 =4-1 mod 23=6 
 x3 =(λ2 - x1 - x2) mod p =(62 - 3 - 3 ) mod 23 
 =30 mod 23 = 7 
 y3 = (λ (x1 - x3) - y1 )mod p =(6× (3 - 7) – 10) mod 23 
 = -34 mod 23 = 12 

Therefore, 2P =(x3,y3)=(7,12). 

The multiplication kP is obtained by repeating the 
elliptic curve addition operation k times by following the 
same additive rules i.e. group law. See figure 4 given 
below. 
 
 

 
      Figure 4: Group Law of Elliptic Curve 

Here's an example of an elliptic curve, with some construction 
lines for the group law, which we have just studied. Some points on this 
curve, such as (0,0) and (-1,-2) are easy to find, but others such as 
(-5248681/4020025,16718705378/8060150125) would be difficult to 
find without using the group law. 

11.  ECC Encryption/Decryption 
ECC can be used to encrypt plaintext messages, M , 

into ciphertexts, C, and decrypt ciphertexts into plaintext 
messages. The plaintext message M is to be encoded into 
a point Pm from the finite set of points in the elliptic group, 
Ep(a,b). One of the design issues in the use of the elliptic 
curve for cryptography is the mapping of arbitrary 
plaintext into points on the elliptic curve. One method 
used in this paper is given below. We assume a curve of 
the form y2 (mod p)= x3+ax+b (mod p). We first convert 
the plaintext message M into a sequence of integers. Let 
m be a message (in fact integer) such that 0≤m<p/100. 
Calculate xi=100m+i for i Є [0,100]. Compute each 
si=xi

3+axi+b for i in the range [0,100]. It is possible to test 
whether si  is a square and compute its square root if it is. 
If si is a square, we have done it and we can use the point 
P=(xi,yi) on our curve, where yi is the root of si . The 
message m can then be obtained from P by simply taking 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 
 

 
 

16 

[xi]. The probability that each si is a square is ½. 
Therefore, the probability that some si is a square is 
1-2-100,which is extremely high. We could have used 10k 
for some k>2 in place of 100 to increase this probability, 
but that is unnecessary. 
     
11.1  Key Generation 
 
1.Alice and Bob agree on a generator point G=(xg,yg)  

and an elliptic group Ep(a,b). 
2.Alice chooses an integer na and calculates 

Pa=naG=(xa,ya) according to addition law given in 
section 9. 

3. Alice’s public key is Pa=(xa,ya)  and his private key is 
na. 

4.Bob also chooses an integer nb and calculates 
Pb=nbG=(xb,yb) according to addition law given in 
section 9. 

5.Bob’s public key is Pb=(xb,yb)  and his private key is nb. 
 
11.2  Encryption 
 

  Alice wishes to send a message Pm= (xm,ym) to 
Bob. He carries out the following steps.  

1. Alice chooses a random number k. 
2. He calculates c1=kG  and c2=Pm+kPb. 
3. Alice sends the Cm={c1,c2 } as cipher text to 

Bob. 
11.3  Decryption 
 

Upon receiving the ciphertext pair (c1,c2) from 
Alice, Bob recovers the message as follows: 

 He multiplies c1 by his private key nb and subtract 
it from c2. That is, he calculates c2–nbc1= (Pm+kPb) 
-nb(kG) =(Pm+knbG) -nbkG 
=Pm =(xm,ym)   

 
11.4  ECC Design Example 
  

Alice chooses an elliptic curve  
y2= x3+ax+b mod p  
y2= x3+537680305x+1059676324 mod 3946183951 
that is, a=537680305,b=1059676324, and  
p=3946183951. 

The elliptic curve group generated by the above 
elliptic is Ep(a,b)= E3946183951(537680305,1059676324).  

Assume Alice wants to send the message 
“http://www.ijcsns.org” to Bob. He uses Bob’s public 
key to encrypt it. Alice assume the generator point 
G=(1152222263, 3133703258) Є Ep(a,b).  Suppose that 
Bob’s secret key is nb=2759936539 then his public key is 
Pb= nbG = (3539395206 , 1802765602). 

 Alice chooses a random integer k=100 and 
computes the ciphertext pair of points Pc using Bob’s 
public key Pb: 

      Pc =[(kG), (Pm + kPb)] 
The ciphertext calculated by Alice is Pc = 

2610121192376349023111142488305143863406898012
6035959079293352253320649441156355021143101322
8111424889305143030829215595649509721001222702
3805450319722685846200863996482646965300858162
3715995529021715838. 

Bob recover the plaintext from the ciphertext using  
Pm =(Pm + knb G) - [nb (kG)], which is mapped to text 
message  “http://www.ijcsns.org”. 
   

12.  Security of ECC 
Let E be an elliptic curve defined over a finite field 

and let, P be a point (called base point) on E of order n 
and k is a scalar. Calculating the point Q=kP from P is 
very easy and Q=kP can be computed by repeated point 
additions of P. However, it is very hard to determine the 
value of k knowing the two points: kP and P. This leads 
to the definition of Elliptic Curve Discrete Logarithm 
Problem (ECDLP), which is defined as: “Given a base 
point P and the point Q = kP, lying on the curve, find the 
value of scalar k, provided that such an integer exists”. 
The integer k is called the elliptic curve discrete 
logarithm of Q to the base P, denoted as k = log P Q. 

The hardness of the elliptic curve discrete 
logarithm problem is essential for the security of all 
elliptic curve cryptographic schemes. The best 
general-purpose attack known on the ECDLP is the 
Pollard’s rho algorithm, which has a fully-exponential 
running time of O(√p ) where p is the largest prime 
divisor of n. To resist this attack, the elliptic curve 
parameters should be chosen so that n is divisible by a 
prime number p sufficiently large so that √p steps is an 
infeasible amount of computation. If, in addition, the 
elliptic curve parameters are carefully chosen to defeat all 
other known attacks, then the ECDLP is believed to be 
infeasible given the state of today’s computer technology. 
It should be noted that there is no mathematical proof that 
the ECDLP is intractable. That is, no one has proven that 
there does not exist an efficient algorithm for solving the 
ECDLP. Indeed, such a proof would be extremely 
surprising. For example, the nonexistence of a 
polynomial-time algorithm for the ECDLP would imply 
that P≠NP thus settling one of the fundamental 
outstanding open questions in computer science. 
Furthermore, there is no theoretical evidence that the 
ECDLP is intractable. For example, the ECDLP is not 
known to be NP-hard, and it is not likely to be proven to 
be NP-hard since the decision version of the ECDLP is 
known to be in both NP and co-NP. 
            
13.  Comparison of RSA and ECC 
 

This section compares the public key sizes, 
activities involved in setting up cryptosystems, space 
complexities, digital signature sizes, signature signing 
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and verification running times, standards and 
interoperability for the ECC and RSA algorithms, 
encryption and decryption implementation speeds, and 
many more. 
 
13.1  Public Key Size of RSA and ECC 
  

An RSA public key pair consists of an ordered pair 
(n,e) where n is a composite number, called the modulus, 
and e is the public exponent. In a 1024-bit RSA system, n 
will have 1024 bits. A common value for the public 
exponent is e=216 + 1(=65537). Thus, an RSA public key 
would require 128 bytes for the modulus and (2+1=) 3 
bytes for the public exponent. The total size is then 131 
bytes.  

An ECC public key consists of a point on the 
elliptic curve. Each point is represented by an ordered 
pair of element (x, y). For a 192-bit elliptic curve, the 
public key is then represented by two 24-byte numbers, 
giving a total key size of 48 bytes. 
    A method exists to reduce the size of the ECC 
public keys by almost a factor of 2. This method is called 
point compression and if we use point compression, a 
public key could be represented by using one 192-bit 
value and one additional bit. This would then require 
(24+1=) 25 bytes. 

As can be seen from above, ECC provides a 
significant reduction in public key size. This reduction 
can be crucial in many constrained environments where 
large public keys are not possible. 

The following table 2 gives the key sizes in bit that 
are said to be equal in terms of security. 
  Table 2:  Relative public key sizes of RSA and ECC 
 

Security Level RSA ECC 
80 bit 1024  160  
112 bit 2048  224  
128 bit 3072  256  
140 bit 4096  280  
192 bit 7680  384  
300 bit 21000  600  

 
ECC with 600 bits practical, but RSA with 21000 bits 
not. 
 
13.2  Setting Up of a Cryptosystem 

 
In ECC a few system parameters are to be created 

as each ECC public key is only valid in the context of 
certain parameters. These parameters must be specified 
and transferred with the public key to the recipient. 
Creating the system parameters consists of selection of an 
underlying finite field for the cryptosystem and a 
representation for the elements in the field. Then an 
appropriate elliptic curve has to be chosen together with a 
base point on the curve. 

There are very many approaches for selecting an 
appropriate elliptic curve for cryptography at least in 
theory [6]. They all tend to be mathematically very 
complicated and they have some limitations. So, it is 
perhaps most important mentioning at this stage that 
implementing elliptic curve cryptosystems can in fact be 
quite challenging without a good understanding of the 
mathematics of number theory and elliptic curves. 

So we see that setting up the system parameters for 
an elliptic curve cryptosystem is quite involved. However, 
once it is done, the resulting elliptic curve parameters 
may be used for multiple users within a group and each 
user has his or her public/private key pair. The beauty of 
ECC is that these key pairs are easy to generate. 

By way of comparison, the RSA cryptosystem 
requires few system parameters. The first stage of 
computing a public/private key pair consists of the user 
generating two primes of appropriate size and computing 
the public modulus n as their product. This part of the 
product can be computationally intensive. The second 
stage for the user is then to compute the secret exponent d, 
or certain information that allows decryption to be 
optimized (so called Chinese Remainder Information). 
The calculation of the secret exponent or related 
information is insignificant when compared to the time 
required to generate the primes. The various system 
parameters, with sizes in bit, for the two cryptosystems 
are given in table 3. 
 
Table 3:  System parameters of RSA and ECC.  
   

Parameter 
Name 

RSA 1024-bit 
and e=65537 

ECC 160-bit 

System 
parameters

0 4x160+1=641 

Public key 1027+17=1041 160+1=161 
Private 
key 

2048(2560 with 
CRT 
information) 

160(801 with system 
parameters) 

 
13.3  Space Complexity of RSA and ECC 

 
The space complexity of an algorithm is a measure 

of how much storage is required for a computation. For 
different input size, there will be different amount of 
space. Here, we give the storage requirements in bytes of 
RSA with a 1024-bit modulus and an elliptic curve 
cryptosystem over GF(p) where p is 160 bits in length 
when making a rough comparison between the above two 
systems. 
 
Table 4: Space complexity in byte when making a 
comparison between RSA and ECC.  
 
Parameter 
Name 

RSA with e=65537 ECC  

System 0  81 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 
 

 
 

18 

parameter 
Public key 131 21  
Private key 256 (320 with CRT 

information) 
 

20 (101 with 
system 
parameters) 

 
 
13.4  Signature Block Size 
  

An RSA signature created with a 1024-bit public 
key consists of a single 1024-bit value. Thus, it can be 
represented in 128 bytes. Similarly, an RSA signature 
created with a 512 bit public key requires 64 bytes. 

An ECDSA signature created using a 160-bit value 
consists of two 160-bit values. Thus, it can be represented 
using two 20-byte values. It is to be noted here that 
signature sizes cannot be reduced using point 
compression. Similarly, a signature created using a 
192-bit curve requires 48 bytes.  
 
Table 5: Signature block size 
 
Algorithm RSA 1024 bit ECDSA 160 bit 
Signature size 1024 bits 320 bits 
   
13.5  Signing and Verification Running Time 

 
This section compares the time taken to perform 

RSA signature signing and verification operations with 
that of ECC. 

The first issue to consider is whether the 
implementation is in the software of hardware. For 
hardware implementation, even characteristic curves 
mostly allow the fastest implementations [4]. This is due 
to the fact that the underlying arithmetic for even 
characteristic curves can be implemented using fewer 
gates than the arithmetic for the odd characteristic curves 
or for RSA. Odd characteristic curves and RSA however 
can take advantage of the integer mathematical routines 
available on most computers and therefore they should be 
used for software implementation. 

Using a small public exponent value of e (=65537), 
the RSA public key operation can be made very fast. The 
RSA private key operations (signature generation and 
decryption) are generally slower than the public key 
operations. The ECC private key operations are generally 
faster than the public key operations. This situation can 
be summarized in the table 6 given below. 
 
Table 6: Signing and Verification Time 
Activity RSA 1024 bit ECDSA 160 bit 
Signing 384 ms (slow) 60 ms (fast) 
Verification 17 ms (very fast) 120 ms (slower) 
  

In addition, public and private-key operations 
differ in efficiency: for RSA, public-key operations are 

significantly more efficient than private-key ones, 
whereas for ECC, private-key operations are slightly 
more efficient than public-key ones. Therefore, the 
performance of one algorithm relative to another depends 
upon the profile of operations used by the application. 
Profiles that involve significantly more public-key 
operations than private-key and key generation operations 
will favor RSA over ECC. Other mixes will tend to favor 
ECC.  

13.6  Software Attack on RSA and ECC 
The level of effort for factoring integers and 

computing elliptic curve discrete logarithms is measured 
in a unit called MIPS year. The term MIPS year denotes 
the computational power of a MIPS computer utilized for 
one year; a million-instruction-per-second processor 
running for one year, which is about 3x1013 instructions 
executed [4]. It is worthy to note that a software attack on 
ECC appears to be relatively more difficult than that of 
software attack on RSA. 

The following figure in table 7 shows the level of 
effort required for various values of n in bits to factor 
with current version of the GNFS and to compute a single 
elliptic curve discrete logarithm using the Pollard-rho 
method. 
 
Table 7:  Software Attack on RSA and ECC 
  

RSA ECC MIPS years to attack 

1024 160 1012 

2048 224 1024 

3072 256 1028 

4096 280 1031 

7680 384 1047 

21000 600 1081 

 
In November 2002, a 109-bit ECC encryption key 

was data mined with 10,000 computers running 24 hours 
a day for 549 days. For the binary field case, it was 
broken in April 2004 using 2600 computers for 17 
months. A Certicom white paper reports that breaking a 
160-bit key, which is the standard applied to most 
commercial ECC applications that Certicom uses, would 
be a hundred million times harder than breaking the 
109-bit key. 
 
13.7  Timing Attack on RSA and ECC 

 
Recently, a new class of cryptanalysis aimed at a 

cryptosystem’s implementation-specific weaknesses has 
attracted great interest. This kind of cryptanalysis 
attempts to compromise a cryptosystem by analyzing the 
time taken to execute cryptographic algorithms. Every 
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logical operation in a computer takes time to execute. The 
time required for different inputs may vary, forming a 
timing distribution. If this timing distribution is related to 
the secret key bits in the system, an attacker can work 
backwards to the input and thus the information can lead 
to reveal the secret keys. 

A timing attack is an example of an attack that 
exploits the implementation of an algorithm rather than 
the algorithm itself. Information can leak from a system 
through measurement of time it takes to respond to 
certain queries.  Reasons include performance 
optimizations to bypass unnecessary operations, 
branching and conditional statements, RAM cache hits, 
processor instructions such as multiplication division that 
run in non-fixed time, and a wide variety of other causes. 
This type of attack is primitive in the sense that no 
specialized equipment is needed. Timing attacks are often 
overlooked in the design phase because they are so 
dependent on the implementation. 

The execution time for the square-and-multiply 
algorithm and modular exponentiation depends linearly 
on the number of “1” bits in the key. While the number of 
“1” bits alone is not nearly enough information to make 
finding the key trivially easy, repeated executions with 
the same key and different inputs can be used to perform 
statistical correlation analysis of timing information to 
recover the key completely, even by a passive attacker.  
Observed timing measurements often include noise. 
Nevertheless, timing attacks are practical against a 
number of encryption algorithms such RSA. 

The most time consuming steps in ECC is the 
process of adding two elliptic curve points or doubling an 
elliptic curve point. Multiplication is implemented using 
the above operations. A widely used method for 
performing a scalar multiplication is the celebrated 
double -and–add method. The double-and-add method for 
multiplication certainly has computational time 
dependent upon the bit strings multiplied. An 
implementation of ECC using this algorithm for 
multiplications must be vulnerable to timing attacks. 

The most obvious way to prevent timing attack is 
to make all operations take exactly the same amount of 
time. Unfortunately this is often difficult to implement. 
Fixed time implementations are likely to be slow; many 
performance optimizations are to be avoided since all 
operations must take as long as the slowest operation. 

Another method proposed to counter timing attack 
is the timing equalization of multiplication and squaring. 
The time taken by the unit for the performance of 
multiplication and for the performance of exponentiation 
actions should be similar. Due to this quality, an attacker 
will not be able to learn if, when and how many 
multiplications and exponentiations are performed. The 
equalization can be caused by always performing both 
operations i.e. multiplication and exponentiation, 
regardless of the operation that is required at any given 
time. At any stage where one of the operations is required 

to run, both should be executed and the aftermath of the 
unnecessary operation is to be silently ignored. This 
technique prevents timing attacks against the 
exponentiation operations that are performed as a part of 
asymmetric encryption operations and which are subject 
to the most common attacks. 

To avoid timing attack in the implementation of 
ECC, we have to look other algorithm that does not make 
use of the shift-and-add algorithm for performing 
multiplication. One such algorithm is found in the 
implementation of ECC written by Rosing [9]. The 
algorithm used is based upon table lookups in a fixed size 
array. 

By intuition, both RSA and ECC are equally 
vulnerable to timing attacks  
 
13.8  Management for the Future 

 
According to Moore’s law, the computing power 

increases exponentially. So, cryptographic key sizes have 
to be increased considerably. This makes it unlikely that 
today’s 1024-bit RSA keys will still be considered secure 
30 years from now. Taking the Moore’s law into 
consideration and baring any unforeseen developments, 
RSA key sizes will increase at a faster rate than those of 
ECC. 

As key sizes increase, so do the sizes of signatures 
and public keys, and so does the time required to perform 
cryptographic operations on a particular computing 
platform. This rate of increase will be considerably faster 
for RSA than it is for ECC.  

Clearly, RSA cannot satisfy this requirement, and 
we are constrained to consider ECC as an alternative. 
 
13.9  Platform Consideration 

 
Before settling down to any cryptosystem, the 

computing power available on the target platforms must 
be taken into consideration. Given the security level 
given in table 2, we should ask our self whether is it 
possible for the platforms to support the required RSA 
key size? For example, if the required security level 
corresponds to 7680 bits of RSA, and the platform 
includes a server that generates keys for many users, then 
it may not be feasible to choose RSA. Similarly, if the 
required security level corresponds to 2048 bits of RSA 
and the platform is a constrained device, then it may take 
hours for it to generate an RSA key of that size. If RSA is 
not feasible for the given key size, then ECC is the best 
choice. The security level required for medium to 
long-term use will disqualify RSA for many applications.  

Currently, ECC tends to be more useful in 
dedicated applications that involve resource-constrained 
platforms, do not require external interoperability and do 
not share a common infrastructure with other 
applications. 
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13.10  Encryption and Decryption Operating 
       Speed 
 

In this part, we compare the RSA and ECC 
algorithms in terms of encryption and decryption 
operating speeds for key sizes that are said to be equal in 
terms of security as stated in table 2 above. The message 
(=”http://www.ijcsns.org”) size was 21 bytes and 
encrypted output was 152 bytes in case of RSA and 203 
bytes in case of ECC. 

We performed five test runs of our experiment on 
our system Intel 1.6 GHz and 1GB of RAM in Sun Java 
SE 7 (Codename Dolphin). Absolute timings can vary 
widely. So, we give here relative timings only. The results 
of our test are tabulated in table 8 given below. 

 
Table 8: Encryption and decryption operating speed 
 

Algorithms Encryption  Decryption 

RSA  1024 
ECC  160 

03.04 ms 
81.16 ms 

31.51 ms 
62.06 ms 

RSA  2048 
ECC  224 

15.21 ms 
111.08 ms 

203.65 ms 
98.71 ms 

RSA  3072 
ECC  256 

16.86 ms 
131.11 ms 

703.21 ms 
115.43 ms 

RSA  4096 
ECC  280 

18.51 ms 
145.00 ms 

1594.01ms 
195.08 ms 

RSA  7680 
ECC  384 

31.96 ms 
180.21 ms 

10093.05 ms 
244.80 ms 

 
From the table, we conclude that the encryption 

process in RSA is optimal even for large key sizes such 
as 7680 bits. However, for decryption the time taken 
raises considerably. Both the encryption and decryption 
speeds of the ECC are optimal even for large key sizes. 
RSA with 21000 bit key size may no be practical to 
implement; thus forcing us to use ECC. So we conclude 
that the use of ECC will offer significant benefits over 
RSA when more security needs increase as operating 
speed of RSA with large key size increases exponentially. 
 
13.11  Standard 

 
Lately a number of standards have been published, 

each making various recommendations on the usage of 
ECC algorithm [8]. The elliptic curve cryptosystems have 
been considered as part of the various standard bodies 
including ANSI X9 and the IEEE. They are also included 
as a key agreement protocol in an Internet IETF draft 
[11]. 

RSA is used in many published and proposed 
standards. It is also used in many Internet protocols such 
as S/MIME, S-HTTP, and SSL. 
 
 
 
 

14.  Conclusion 
 

This paper presented an in-depth comparison of 
RSA and ECC. Elliptic curves are believed to provide 
good security with smaller key sizes, something that is 
very useful in many applications. Smaller key sizes may 
result in faster execution timings for the schemes, which 
is beneficial to systems where real time performance is a 
critical factor. 

We gave estimates of parameter sizes providing 
equivalent levels of security for RSA and ECC systems. 
These comparisons illustrate the appeal of elliptic curve 
cryptography especially for applications that have high 
security. 
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