
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

11

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Juxtaposition of RSA and Elliptic Curve Cryptosystem

 Ranbir Soram † and Memeta Khomdram † †

† Manipur Institute of Technology, Takyelpat, Imphal -795004, India

† † Department of Electronics Accreditation of Computer Courses Centre, Akampat, Imphal-795008, India

Summary

This paper presents an in-depth juxtaposition of RSA
and Elliptic Curve Cryptosystem (ECC) and provides an
overview of the different trade-off involved in choosing
between cryptosystems based on them. We offer ECC as a
suitable alternative to RSA. We also present experimental
results quantifying the benefits of using ECC for public
cryptosystems.
Key words:
RSA, Integer Factorization Problem, ECC, ECDLP, Timing
Attack.

1. Introduction

Since the introduction of public key cryptosystem
by Diffie Hellman [1] in 1976, numerous public key
cryptosystems have been proposed and implemented. The
first practical implementation followed in 1977 when
Rivest, Shamir and Adleman proposed their now
well-known RSA cryptosystem [2], in which security is
based on the intractability of the integer factorization
problem. The first use of elliptic curve in cryptography
parlance was Lenstra’s elliptic curve factorization
algorithm. Inspired by this sudden unexpected application
of elliptic curves in integer factorization, in the mid 1980s,
Neal Koblitz and Victor Miller indepently introduced the
elliptic curve public key cryptography system, a method
based on the discrete logarithmic problem over the points
on an elliptic curve. Elliptic curve cryptographic schemes
are public key mechanisms that provide the same
functionality as RSA schemes. However, the security of
ECC is based on the hardness of a different problem,
namely the elliptic curve discrete logarithm problem
(ECDLP). Currently the best algorithms known to solve
the ECDLP have fully exponential running time, in
contrast to the subexponential-time algorithms known for
the integer factorization problem. This means that a
desired security level can be attained with significantly
smaller keys in elliptic curve systems than is possible with
their RSA counterparts. The advantages that can be gained
from smaller key sizes include speed and efficient use of
computing power, bandwidth, and storage.

2. Security goals

Cryptography aims at analyzing what problems can
be made very easy while making others extremely hard.
Careful examination of the scenarios in network security
reveals the following fundamental objectives of secure
communications [3,4]:

Confidentiality: keep information private and secret so
that only the authorized recipient see it.
Messages sent by Alice to Bob should not be
readable by Eve.

Data integrity: ensure that information is not tempered
with during its transit or its storage on the
network. Bob should be able to detect when
data sent by Alice has been modified by Eve.

Data origin authentication: provide proof of identity of
the sender to the recipient, so that the recipient
can be assured that the person sending the
information is who or what he or she claims to
be. Bob should be able to verify that data
purportedly sent by Alice indeed originated
with Alice.

Entity authentication: corroborate the identity of an
entity. Bob should be convinced of the identity
of the other communicating entity.

Non-repudiation: preventing an entity from denying
previous commitments or actions. Once the
non-repudiation process is in place, the sender
cannot deny being the originator of the
information. When Bob receives a message
purportedly from Alice, not only is Bob
convinced that the message originated with
Alice, but also Bob can convince a neutral
third party.

3. Public Key Cryptosystem

 Public key cryptosystem is based on the idea of
separating the key used to encrypt a message from the one
used to decrypt it. Anyone who wants to send a message to
Bob can encrypt that message using Bob’s public key but
only Bob can decrypt the message using his private key. In
implementing a public-key cryptosystem, it is understood

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

12

that Bob’s private key should be kept secret at all times.
Furthermore, even though Bob's public key is publicly
available to everyone, including his adversaries, it is
impossible for anyone, except Bob, to derive the private
key in any reasonable amount of time.

4. RSA Cryptosystem

RSA was proposed in 1977 shortly after the
discovery of public-key cryptography. It has survived all
attempts to break it for many years and is considered very
strong. We will summarize how to use the method.

1. Pick two large primes, p and q.
2. Multiply them together to get n = p x q.
3. Compute z =(p-1) x (q-1). This will be the mod of

the exponents.
4. Pick any number d, which is smaller than, and

relatively prime to, z.
5. Solve the diophantine equation d x e=z x k+1.

The value of k is not important, but the value of e
is. We have to make sure a positive value of e,
which is less than z.

That is all. The public key is order pair (n, e) and
private key is also order pair (n, d).

One of the beauties of the RSA algorithm is that the
public and private keys can be interchanged without
affecting the security of the system. It means that the
public key can be the order pair (n, d) and private key can
be (n, e).

4.1 Encryption

Divide the message into blocks, so that each
plaintext block, P, lies in the interval 0≤P<n. We can
group the message into plaintext blocks of k bits, where k
is the largest integer for which 2k<n is true. Anyone
wishing to send a message to Bob make use of e and n. If
Alice wants to send a message to Bob, he calculates the
ciphertexts as

C=Pe(mod n)
 Alice sends C, the cipehertext, to Bob.

 4.2 Decryption

When Bob receives the ciphertext, he uses his
private key d to decrypt the message as

P=Cd(mod n)

4.3 RSA Design Example

Assume Alice wants to send the message
“http://www.ijcsns.org” to Bob. Alice chooses two
integers p and q.

The integer p is a 77-digit number.

p=73680054488656110405523153970293730091326981
370921628773735365768551633318757.

The integer q is also a 78-digit number.
q=11531806091058230305296966675672918005570392
5467022497453321651161405436738911.

Alice calculates n and it has 154 digits.

n=84966410114178683644595197219008702230891206
6424803862939509389515564139269697992091998017
6941113892674667098281664680291975070356656827
539356490248053627.

Alice also calculates z and it has 154 digits.

z=84966410114178683644595197219008702230891206
6424803862939509389515564139269679092280458093
8527655399853940075371517649385137126230429770
522426533177995960.

 Alice chooses e=65537 and calculates d. It has 154
digits.

d=57866407510814522571873323964680019155188643
3202690016608054413409794311490651946302790279
7049657004700867621711892805020922692405343582
670826950911190193.

 Alice’s message is “http://www.ijcsns.org”. It
is changed to numeric values (using java) as shown
below.

P=15266100987464762024566676191962879910276857
1708007.

 The ciphertext calculated by Alice is C=Pe(mod n)
is

C=8049380957309251222703805490071192376621150
1458095719917110815595662086399649801260359590
7929335225332064944115355024311381114248830514
30829276079284455.

Bob recover the plaintext from the ciphertext using
P=Cd(mod n), which is

P=15266100987464762024566676191962879910276857
1708007. After converting the numeric numbers to text,
the message becomes “http://www.ijcsns.org”.

5. Security of RSA
We can identify three techniques for attacking the

security of RSA:
1. Factor n into its prime factors. This enables us to

calculate z=(p-1) x (q-1), which, in turn,
enable us to determine d and e.

2. Determining z without first determining p and q.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

13

This enables us to determine d and e.
3. Determine d directly, without first determining

z.

In most literatures, the activities of the
cryptanalysis of RSA are focused on the task of factoring
n into two prime factors p and q. Determining z is the
same as determining the two factors of n. With presently
known algorithms, determining d given e and n is time
consuming as the factoring algorithm [3]. Hence, the
integer factorization performance can be used as the
benchmark against which to evaluate the security of
RSA.

In number theory [5], integer factorization is
the breaking down of a composite number into smaller
non-trivial divisors, which when multiplied together
equal the original integer. When the numbers are very
large, no efficient integer factorization algorithm is
publicly known.

In cryptography, we use a term from
computational complexity theory describing the difficulty
of solving a computational problem. A fast integer
factorization algorithm would mean that the RSA
public-key algorithm is not secure. We need an
encryption and decryption algorithm to have a low level
of complexity (efficient); we need an algorithm to be
used by hackers to have a high level of complexity
(inefficient).

The complexity of an algorithm is based on two
factors: space and time [4]. The space factor of
complexity refers to the memory required to run the
algorithm. The time factor of complexity is the time
required to run the algorithm. The time complexity of an
algorithm depends on the particular computer on which
the algorithm is executed. To make complexity (normally
the complexity of an algorithm means time complexity)
independent of the machine, the bit-level operation
complexity is defined. A bit-level operation is the time
needed for a computer to add, subtract, multiply, divide
two bits or shift / rotate one single bit.

Based on the bit-level operation complexity, the
following hierarchy of complexity can be arrived at.

Table 1: complexity hierarchy

Hierarchy Big- O Notation
Logarithmic O(log b)
Linear O(b)
Polynomial O(bc)
Sub exponential O(2p(log b) and p=f(logb)
Exponential O(2b)
Super exponential O(bb) or O(2x) and x=2b

An algorithm with constant or logarithmic or

polynomial complexity is considered efficient for any
size of b. An algorithm with sub exponential complexity
is feasible if b is not very large. But an algorithm with

exponential and super exponential is considered
infeasible for large value of b [4].

If a large, b-bit number is the product of two
primes that are roughly the same size, then no algorithm
has been published that can factor in polynomial time, i.e.,
that can factor it in time O(bk) for some constant k. There
are published algorithms that are faster than O((1+ε)b) for
all positive ε, i.e., sub-exponential.

The best published asymptotic running time for the
general number field sieve (GNFS) algorithm, which, for
a b-bit number n, is:

For an ordinary computer, GNFS is the best

published algorithm for large n (more than about 100
digits). For a quantum computer, however, Peter Shor
discovered an algorithm in 1994 that solves it in
polynomial time. This will have significant implications
for cryptography if a large quantum computer is ever
built.

It is not known exactly which complexity classes
contain the decision version of the integer factorization
problem. It is known to be in both NP (nondeterministic
polynomial) and co-NP(complementary NP). This is
because both YES and NO answers can be trivially
verified given the prime factors (we can verify their
primality using the cyclotomic AKS primality test [10],
and that their product is N by multiplication). In fact,
provided we require the factors to be listed in order, the
fundamental theorem of arithmetic will guarantee that
there is only one possible string that will be accepted; this
shows that the problem is in both UP(undecidable
problem) and co-UP(complementary UP). It is also
suspected to be outside of all three of the complexity
classes P(polynomial), NP-complete, and
co-NP-complete.Many people have tried to find classical
polynomial-time algorithms for it and failed.

6. Elliptic Curve Cryptography
Elliptic curve has a rich and beautiful history and

mathematicians have studied them for many years. They
have been used to solve a diverse range of problems. The
first use of elliptic curve in cryptography parlance was
Lenstra’s elliptic curve factorization algorithm. Inspired
by this sudden unexpected application of elliptic curves
in integer factorization, Neal Koblitz and Victor Miller
proposed, in the mid 1980s, the elliptic curve public-key
cryptographic systems. Since then an abundance of
research has been published on the security and efficient
implementation of elliptic curve cryptography. In the late
1990s, elliptic curve systems started receiving
commercial acceptance when accredited standard
organizations specified elliptic curve protocols, and
private companies included these protocols in their
security products.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

14

An elliptic curve is a cubic equation of the form:

 y2= x3+ax+b (1)
 or
 y2 +xy = x3+ax2+b (2)
 or
 y2 +y = x3+ax+b (3)
where a and b are constants and x and y are variables. In
fact, x and y can be complex, real, integers,
polynomial basis, optimal normal basis, or any
other values from any field. That’s part of what
makes the math so complex and interesting.

7. Elliptic curve over prime Galois Fields

An elliptic group over the prime Galois Field
Ep(a,b) uses a special elliptic curve of the form

 y2 (mod p)= x3+ax+b mod p
where a,b ∈ Fp, 0≤x<p and -16(4a3+27b2)mod p ≠ 0 . The
constants a and b are non-negative integers smaller than
the prime p. The condition that -16(4a3+27b2) mod p ≠ 0
implies that the curve has no “singular points”, which
will be essential for the applications we have in mind.

8. Operations required by ECC

The scalar multiplication or repeated addition of
elliptic curve points is the main operation required by
ECC schemes, although other operations such as division
may also be needed. The addition of two elliptic curve
points is illustrated geometrically in figure 1 given below.
The line connecting the two points P and Q intercepts the
curve at a point called –R. We reflect –R on the x-axis to
get R. This point R is the sum of P and Q i.e. R=P+Q. To
double a point P, first we draw the tangent line and find
the other point of intersection -R. We reflect –R on the
x-axis to get R. Now, R=P+P=2P. See figure 2 given
below.

As it is the scalar multiplication operation that
dominates the actual execution timing of ECC schemes,
its efficient implementation is crucial.

Figure 1. Adding two points

Figure 2. Doubling a point

The actual mathematics depends on the chosen
curve and underlying field, however there is a clear
hierarchy of underlying mathematical operations, as
shown in figure 3 given below.

9. The Group Law of Elliptic Curve

Let E be an elliptic curve defined over the field K.

There is a chord-and-tangent rule for adding two points in
E (K) to give a third point in E (K). Together with this
addition operation, the set of points E(K) forms an abelian
group with 0 serving as its identity. It is this group that is
used in the construction of elliptic curve cryptographic
systems. Algebraic formulas for the group law can be
derived from the geometric description. These formulae
are established and presented here for non-supersingular
elliptic curves E of the form y2=x3+ax+b.
Group law for E/K : y2 = x 3 + ax + b.
1. Identity. P +0=0+ P = P for all P Є E (K).
2. Negative. If P = (x , y) Є E(K),then(x , y) + (x ,-y)
=0.

The point (x ,-y) is denoted by -P and is called
the negative of P; note that -P is indeed a
point in E(K). Also, -0 = 0.

3. Point addition. Let P = (x1 , y1) Є E(K) and Q = (x2,
y2) Є E(K),where P ≠ ±Q .Then P+Q =R=(x3, y3),
where x3=λ2-x1-x2 , y3=λ(x1-x3)-y1 and
λ=(y2-y1)/(x2-x1)

4. Point doubling. Let P = (x1 , y1) Є E(K), where P ≠ -P.

Then 2P =R= (x3 , y3), where x3=λ2-2x1 ,
y3=λ(x1-x3)-y1 and λ=(3x1

2+a)/(2y1)
To establish the algebraic formulae given above,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

15

we pick an elliptic curve equation y2 = x3 + ax + b.
Consider the line y=λx+c and examine the points that lie
on the intersection of this line with our curve. These are
the points that obey both equations. We can therefore use
the linear equation to substitute for y in our equation, to
obtain

(λx)2 + 2cλx + c2 = x3 + ax + b (4)
This is a cubic equation in x, and we assume it will

have three real roots. Two of these are P(x1,y1) and
Q(x2,y2), so we will obtain another,-R(x3,-y3). We rewrite
our equation (4) as

x3-λ2x2 + (a-2cλ)x + b-c2 = 0 (5)
 If x1, x2 and x3 are the three solutions, then by
intuition, we compare the given equation (5) with the
equation (6) given below:-

(x-x1)(x-x2)(x-x3)=0 (6)
 Hence, x3-λ2x2 + (a-2cλ)x + b-c2 =(x-x1)(x-x2)(x-x3)

Simplifying the right hand side and comparing the
coefficients of x2 terms on both sides, we get

λ2 = x1+x2+x3 (7)
We know already x1 and x2 in equation (7). So,

x3=λ2-x1-x2. To get y3, we proceed as follows. The slope
of a straight line passing two points P(x1,y1) and
-R(x3,-y3) is the same as the slope of a straight line
passing two points P(x1,y1) and Q(x2,y2). So,
(-y3-y1)/(x3-x1)=(y2-y1)/(x2-x1)= λ. Solving for y3 we get,
y3=-y1+λ (x1-x3).

As –R(x3,-y3)=R(x3,y3), so y3=-y1+λ (x1-x3).
In the case of point doubling formula, slope is

calculated differently, others are same as point addition.
In this case to find slope, λ, we find derivative of the
curve y2 = x3 + ax + b w.r.to x at the point P(x1,y1).

So, slope=dy/dx at point P(x1,y1).
 λ = (3x12+a)/(2y1).
10. Multiplication over an elliptic curve
group

The multiplication over an elliptic curve
group Ep(a,b) is the equivalent operation of the
modular exponentiation in RSA. The multiplication
of points by a scalar is a series of additions and doubling
of points.
Let P =(3, 10) Є E23(1, 1). Then 2P =(x3,y3) is equal
to:
 2P = P + P =(x1,y1)+(x1,y1)

 Since P = Q, the values of λ , x3 and y3
are given by:

 λ=((3x1
2+a)/(2y1)) mod p

 = ((3 ×32+1)/(2 × 10)) mod 23= 5/20 mod 23
 =4-1 mod 23=6
 x3 =(λ2 - x1 - x2) mod p =(62 - 3 - 3) mod 23
 =30 mod 23 = 7
 y3 = (λ (x1 - x3) - y1)mod p =(6× (3 - 7) – 10) mod 23
 = -34 mod 23 = 12

Therefore, 2P =(x3,y3)=(7,12).

The multiplication kP is obtained by repeating the
elliptic curve addition operation k times by following the
same additive rules i.e. group law. See figure 4 given
below.

 Figure 4: Group Law of Elliptic Curve

Here's an example of an elliptic curve, with some construction
lines for the group law, which we have just studied. Some points on this
curve, such as (0,0) and (-1,-2) are easy to find, but others such as
(-5248681/4020025,16718705378/8060150125) would be difficult to
find without using the group law.

11. ECC Encryption/Decryption
ECC can be used to encrypt plaintext messages, M ,

into ciphertexts, C, and decrypt ciphertexts into plaintext
messages. The plaintext message M is to be encoded into
a point Pm from the finite set of points in the elliptic group,
Ep(a,b). One of the design issues in the use of the elliptic
curve for cryptography is the mapping of arbitrary
plaintext into points on the elliptic curve. One method
used in this paper is given below. We assume a curve of
the form y2 (mod p)= x3+ax+b (mod p). We first convert
the plaintext message M into a sequence of integers. Let
m be a message (in fact integer) such that 0≤m<p/100.
Calculate xi=100m+i for i Є [0,100]. Compute each
si=xi

3+axi+b for i in the range [0,100]. It is possible to test
whether si is a square and compute its square root if it is.
If si is a square, we have done it and we can use the point
P=(xi,yi) on our curve, where yi is the root of si . The
message m can then be obtained from P by simply taking

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

16

[xi]. The probability that each si is a square is ½.
Therefore, the probability that some si is a square is
1-2-100,which is extremely high. We could have used 10k
for some k>2 in place of 100 to increase this probability,
but that is unnecessary.

11.1 Key Generation

1.Alice and Bob agree on a generator point G=(xg,yg)

and an elliptic group Ep(a,b).
2.Alice chooses an integer na and calculates

Pa=naG=(xa,ya) according to addition law given in
section 9.

3. Alice’s public key is Pa=(xa,ya) and his private key is
na.

4.Bob also chooses an integer nb and calculates
Pb=nbG=(xb,yb) according to addition law given in
section 9.

5.Bob’s public key is Pb=(xb,yb) and his private key is nb.

11.2 Encryption

 Alice wishes to send a message Pm= (xm,ym) to
Bob. He carries out the following steps.

1. Alice chooses a random number k.
2. He calculates c1=kG and c2=Pm+kPb.
3. Alice sends the Cm={c1,c2 } as cipher text to

Bob.
11.3 Decryption

Upon receiving the ciphertext pair (c1,c2) from
Alice, Bob recovers the message as follows:

 He multiplies c1 by his private key nb and subtract
it from c2. That is, he calculates c2–nbc1= (Pm+kPb)
-nb(kG) =(Pm+knbG) -nbkG
=Pm =(xm,ym)

11.4 ECC Design Example

Alice chooses an elliptic curve
y2= x3+ax+b mod p
y2= x3+537680305x+1059676324 mod 3946183951
that is, a=537680305,b=1059676324, and
p=3946183951.

The elliptic curve group generated by the above
elliptic is Ep(a,b)= E3946183951(537680305,1059676324).

Assume Alice wants to send the message
“http://www.ijcsns.org” to Bob. He uses Bob’s public
key to encrypt it. Alice assume the generator point
G=(1152222263, 3133703258) Є Ep(a,b). Suppose that
Bob’s secret key is nb=2759936539 then his public key is
Pb= nbG = (3539395206 , 1802765602).

 Alice chooses a random integer k=100 and
computes the ciphertext pair of points Pc using Bob’s
public key Pb:

 Pc =[(kG), (Pm + kPb)]
The ciphertext calculated by Alice is Pc =

2610121192376349023111142488305143863406898012
6035959079293352253320649441156355021143101322
8111424889305143030829215595649509721001222702
3805450319722685846200863996482646965300858162
3715995529021715838.

Bob recover the plaintext from the ciphertext using
Pm =(Pm + knb G) - [nb (kG)], which is mapped to text
message “http://www.ijcsns.org”.

12. Security of ECC
Let E be an elliptic curve defined over a finite field

and let, P be a point (called base point) on E of order n
and k is a scalar. Calculating the point Q=kP from P is
very easy and Q=kP can be computed by repeated point
additions of P. However, it is very hard to determine the
value of k knowing the two points: kP and P. This leads
to the definition of Elliptic Curve Discrete Logarithm
Problem (ECDLP), which is defined as: “Given a base
point P and the point Q = kP, lying on the curve, find the
value of scalar k, provided that such an integer exists”.
The integer k is called the elliptic curve discrete
logarithm of Q to the base P, denoted as k = log P Q.

The hardness of the elliptic curve discrete
logarithm problem is essential for the security of all
elliptic curve cryptographic schemes. The best
general-purpose attack known on the ECDLP is the
Pollard’s rho algorithm, which has a fully-exponential
running time of O(√p) where p is the largest prime
divisor of n. To resist this attack, the elliptic curve
parameters should be chosen so that n is divisible by a
prime number p sufficiently large so that √p steps is an
infeasible amount of computation. If, in addition, the
elliptic curve parameters are carefully chosen to defeat all
other known attacks, then the ECDLP is believed to be
infeasible given the state of today’s computer technology.
It should be noted that there is no mathematical proof that
the ECDLP is intractable. That is, no one has proven that
there does not exist an efficient algorithm for solving the
ECDLP. Indeed, such a proof would be extremely
surprising. For example, the nonexistence of a
polynomial-time algorithm for the ECDLP would imply
that P≠NP thus settling one of the fundamental
outstanding open questions in computer science.
Furthermore, there is no theoretical evidence that the
ECDLP is intractable. For example, the ECDLP is not
known to be NP-hard, and it is not likely to be proven to
be NP-hard since the decision version of the ECDLP is
known to be in both NP and co-NP.

13. Comparison of RSA and ECC

This section compares the public key sizes,
activities involved in setting up cryptosystems, space
complexities, digital signature sizes, signature signing

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

17

and verification running times, standards and
interoperability for the ECC and RSA algorithms,
encryption and decryption implementation speeds, and
many more.

13.1 Public Key Size of RSA and ECC

An RSA public key pair consists of an ordered pair
(n,e) where n is a composite number, called the modulus,
and e is the public exponent. In a 1024-bit RSA system, n
will have 1024 bits. A common value for the public
exponent is e=216 + 1(=65537). Thus, an RSA public key
would require 128 bytes for the modulus and (2+1=) 3
bytes for the public exponent. The total size is then 131
bytes.

An ECC public key consists of a point on the
elliptic curve. Each point is represented by an ordered
pair of element (x, y). For a 192-bit elliptic curve, the
public key is then represented by two 24-byte numbers,
giving a total key size of 48 bytes.
 A method exists to reduce the size of the ECC
public keys by almost a factor of 2. This method is called
point compression and if we use point compression, a
public key could be represented by using one 192-bit
value and one additional bit. This would then require
(24+1=) 25 bytes.

As can be seen from above, ECC provides a
significant reduction in public key size. This reduction
can be crucial in many constrained environments where
large public keys are not possible.

The following table 2 gives the key sizes in bit that
are said to be equal in terms of security.
 Table 2: Relative public key sizes of RSA and ECC

Security Level RSA ECC
80 bit 1024 160
112 bit 2048 224
128 bit 3072 256
140 bit 4096 280
192 bit 7680 384
300 bit 21000 600

ECC with 600 bits practical, but RSA with 21000 bits
not.

13.2 Setting Up of a Cryptosystem

In ECC a few system parameters are to be created

as each ECC public key is only valid in the context of
certain parameters. These parameters must be specified
and transferred with the public key to the recipient.
Creating the system parameters consists of selection of an
underlying finite field for the cryptosystem and a
representation for the elements in the field. Then an
appropriate elliptic curve has to be chosen together with a
base point on the curve.

There are very many approaches for selecting an
appropriate elliptic curve for cryptography at least in
theory [6]. They all tend to be mathematically very
complicated and they have some limitations. So, it is
perhaps most important mentioning at this stage that
implementing elliptic curve cryptosystems can in fact be
quite challenging without a good understanding of the
mathematics of number theory and elliptic curves.

So we see that setting up the system parameters for
an elliptic curve cryptosystem is quite involved. However,
once it is done, the resulting elliptic curve parameters
may be used for multiple users within a group and each
user has his or her public/private key pair. The beauty of
ECC is that these key pairs are easy to generate.

By way of comparison, the RSA cryptosystem
requires few system parameters. The first stage of
computing a public/private key pair consists of the user
generating two primes of appropriate size and computing
the public modulus n as their product. This part of the
product can be computationally intensive. The second
stage for the user is then to compute the secret exponent d,
or certain information that allows decryption to be
optimized (so called Chinese Remainder Information).
The calculation of the secret exponent or related
information is insignificant when compared to the time
required to generate the primes. The various system
parameters, with sizes in bit, for the two cryptosystems
are given in table 3.

Table 3: System parameters of RSA and ECC.

Parameter
Name

RSA 1024-bit
and e=65537

ECC 160-bit

System
parameters

0 4x160+1=641

Public key 1027+17=1041 160+1=161
Private
key

2048(2560 with
CRT
information)

160(801 with system
parameters)

13.3 Space Complexity of RSA and ECC

The space complexity of an algorithm is a measure

of how much storage is required for a computation. For
different input size, there will be different amount of
space. Here, we give the storage requirements in bytes of
RSA with a 1024-bit modulus and an elliptic curve
cryptosystem over GF(p) where p is 160 bits in length
when making a rough comparison between the above two
systems.

Table 4: Space complexity in byte when making a
comparison between RSA and ECC.

Parameter
Name

RSA with e=65537 ECC

System 0 81

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

18

parameter
Public key 131 21
Private key 256 (320 with CRT

information)

20 (101 with
system
parameters)

13.4 Signature Block Size

An RSA signature created with a 1024-bit public
key consists of a single 1024-bit value. Thus, it can be
represented in 128 bytes. Similarly, an RSA signature
created with a 512 bit public key requires 64 bytes.

An ECDSA signature created using a 160-bit value
consists of two 160-bit values. Thus, it can be represented
using two 20-byte values. It is to be noted here that
signature sizes cannot be reduced using point
compression. Similarly, a signature created using a
192-bit curve requires 48 bytes.

Table 5: Signature block size

Algorithm RSA 1024 bit ECDSA 160 bit
Signature size 1024 bits 320 bits

13.5 Signing and Verification Running Time

This section compares the time taken to perform

RSA signature signing and verification operations with
that of ECC.

The first issue to consider is whether the
implementation is in the software of hardware. For
hardware implementation, even characteristic curves
mostly allow the fastest implementations [4]. This is due
to the fact that the underlying arithmetic for even
characteristic curves can be implemented using fewer
gates than the arithmetic for the odd characteristic curves
or for RSA. Odd characteristic curves and RSA however
can take advantage of the integer mathematical routines
available on most computers and therefore they should be
used for software implementation.

Using a small public exponent value of e (=65537),
the RSA public key operation can be made very fast. The
RSA private key operations (signature generation and
decryption) are generally slower than the public key
operations. The ECC private key operations are generally
faster than the public key operations. This situation can
be summarized in the table 6 given below.

Table 6: Signing and Verification Time
Activity RSA 1024 bit ECDSA 160 bit
Signing 384 ms (slow) 60 ms (fast)
Verification 17 ms (very fast) 120 ms (slower)

In addition, public and private-key operations
differ in efficiency: for RSA, public-key operations are

significantly more efficient than private-key ones,
whereas for ECC, private-key operations are slightly
more efficient than public-key ones. Therefore, the
performance of one algorithm relative to another depends
upon the profile of operations used by the application.
Profiles that involve significantly more public-key
operations than private-key and key generation operations
will favor RSA over ECC. Other mixes will tend to favor
ECC.

13.6 Software Attack on RSA and ECC
The level of effort for factoring integers and

computing elliptic curve discrete logarithms is measured
in a unit called MIPS year. The term MIPS year denotes
the computational power of a MIPS computer utilized for
one year; a million-instruction-per-second processor
running for one year, which is about 3x1013 instructions
executed [4]. It is worthy to note that a software attack on
ECC appears to be relatively more difficult than that of
software attack on RSA.

The following figure in table 7 shows the level of
effort required for various values of n in bits to factor
with current version of the GNFS and to compute a single
elliptic curve discrete logarithm using the Pollard-rho
method.

Table 7: Software Attack on RSA and ECC

RSA ECC MIPS years to attack

1024 160 1012

2048 224 1024

3072 256 1028

4096 280 1031

7680 384 1047

21000 600 1081

In November 2002, a 109-bit ECC encryption key

was data mined with 10,000 computers running 24 hours
a day for 549 days. For the binary field case, it was
broken in April 2004 using 2600 computers for 17
months. A Certicom white paper reports that breaking a
160-bit key, which is the standard applied to most
commercial ECC applications that Certicom uses, would
be a hundred million times harder than breaking the
109-bit key.

13.7 Timing Attack on RSA and ECC

Recently, a new class of cryptanalysis aimed at a

cryptosystem’s implementation-specific weaknesses has
attracted great interest. This kind of cryptanalysis
attempts to compromise a cryptosystem by analyzing the
time taken to execute cryptographic algorithms. Every

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

19

logical operation in a computer takes time to execute. The
time required for different inputs may vary, forming a
timing distribution. If this timing distribution is related to
the secret key bits in the system, an attacker can work
backwards to the input and thus the information can lead
to reveal the secret keys.

A timing attack is an example of an attack that
exploits the implementation of an algorithm rather than
the algorithm itself. Information can leak from a system
through measurement of time it takes to respond to
certain queries. Reasons include performance
optimizations to bypass unnecessary operations,
branching and conditional statements, RAM cache hits,
processor instructions such as multiplication division that
run in non-fixed time, and a wide variety of other causes.
This type of attack is primitive in the sense that no
specialized equipment is needed. Timing attacks are often
overlooked in the design phase because they are so
dependent on the implementation.

The execution time for the square-and-multiply
algorithm and modular exponentiation depends linearly
on the number of “1” bits in the key. While the number of
“1” bits alone is not nearly enough information to make
finding the key trivially easy, repeated executions with
the same key and different inputs can be used to perform
statistical correlation analysis of timing information to
recover the key completely, even by a passive attacker.
Observed timing measurements often include noise.
Nevertheless, timing attacks are practical against a
number of encryption algorithms such RSA.

The most time consuming steps in ECC is the
process of adding two elliptic curve points or doubling an
elliptic curve point. Multiplication is implemented using
the above operations. A widely used method for
performing a scalar multiplication is the celebrated
double -and–add method. The double-and-add method for
multiplication certainly has computational time
dependent upon the bit strings multiplied. An
implementation of ECC using this algorithm for
multiplications must be vulnerable to timing attacks.

The most obvious way to prevent timing attack is
to make all operations take exactly the same amount of
time. Unfortunately this is often difficult to implement.
Fixed time implementations are likely to be slow; many
performance optimizations are to be avoided since all
operations must take as long as the slowest operation.

Another method proposed to counter timing attack
is the timing equalization of multiplication and squaring.
The time taken by the unit for the performance of
multiplication and for the performance of exponentiation
actions should be similar. Due to this quality, an attacker
will not be able to learn if, when and how many
multiplications and exponentiations are performed. The
equalization can be caused by always performing both
operations i.e. multiplication and exponentiation,
regardless of the operation that is required at any given
time. At any stage where one of the operations is required

to run, both should be executed and the aftermath of the
unnecessary operation is to be silently ignored. This
technique prevents timing attacks against the
exponentiation operations that are performed as a part of
asymmetric encryption operations and which are subject
to the most common attacks.

To avoid timing attack in the implementation of
ECC, we have to look other algorithm that does not make
use of the shift-and-add algorithm for performing
multiplication. One such algorithm is found in the
implementation of ECC written by Rosing [9]. The
algorithm used is based upon table lookups in a fixed size
array.

By intuition, both RSA and ECC are equally
vulnerable to timing attacks

13.8 Management for the Future

According to Moore’s law, the computing power

increases exponentially. So, cryptographic key sizes have
to be increased considerably. This makes it unlikely that
today’s 1024-bit RSA keys will still be considered secure
30 years from now. Taking the Moore’s law into
consideration and baring any unforeseen developments,
RSA key sizes will increase at a faster rate than those of
ECC.

As key sizes increase, so do the sizes of signatures
and public keys, and so does the time required to perform
cryptographic operations on a particular computing
platform. This rate of increase will be considerably faster
for RSA than it is for ECC.

Clearly, RSA cannot satisfy this requirement, and
we are constrained to consider ECC as an alternative.

13.9 Platform Consideration

Before settling down to any cryptosystem, the

computing power available on the target platforms must
be taken into consideration. Given the security level
given in table 2, we should ask our self whether is it
possible for the platforms to support the required RSA
key size? For example, if the required security level
corresponds to 7680 bits of RSA, and the platform
includes a server that generates keys for many users, then
it may not be feasible to choose RSA. Similarly, if the
required security level corresponds to 2048 bits of RSA
and the platform is a constrained device, then it may take
hours for it to generate an RSA key of that size. If RSA is
not feasible for the given key size, then ECC is the best
choice. The security level required for medium to
long-term use will disqualify RSA for many applications.

Currently, ECC tends to be more useful in
dedicated applications that involve resource-constrained
platforms, do not require external interoperability and do
not share a common infrastructure with other
applications.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

20

13.10 Encryption and Decryption Operating
 Speed

In this part, we compare the RSA and ECC
algorithms in terms of encryption and decryption
operating speeds for key sizes that are said to be equal in
terms of security as stated in table 2 above. The message
(=”http://www.ijcsns.org”) size was 21 bytes and
encrypted output was 152 bytes in case of RSA and 203
bytes in case of ECC.

We performed five test runs of our experiment on
our system Intel 1.6 GHz and 1GB of RAM in Sun Java
SE 7 (Codename Dolphin). Absolute timings can vary
widely. So, we give here relative timings only. The results
of our test are tabulated in table 8 given below.

Table 8: Encryption and decryption operating speed

Algorithms Encryption Decryption

RSA 1024
ECC 160

03.04 ms
81.16 ms

31.51 ms
62.06 ms

RSA 2048
ECC 224

15.21 ms
111.08 ms

203.65 ms
98.71 ms

RSA 3072
ECC 256

16.86 ms
131.11 ms

703.21 ms
115.43 ms

RSA 4096
ECC 280

18.51 ms
145.00 ms

1594.01ms
195.08 ms

RSA 7680
ECC 384

31.96 ms
180.21 ms

10093.05 ms
244.80 ms

From the table, we conclude that the encryption

process in RSA is optimal even for large key sizes such
as 7680 bits. However, for decryption the time taken
raises considerably. Both the encryption and decryption
speeds of the ECC are optimal even for large key sizes.
RSA with 21000 bit key size may no be practical to
implement; thus forcing us to use ECC. So we conclude
that the use of ECC will offer significant benefits over
RSA when more security needs increase as operating
speed of RSA with large key size increases exponentially.

13.11 Standard

Lately a number of standards have been published,

each making various recommendations on the usage of
ECC algorithm [8]. The elliptic curve cryptosystems have
been considered as part of the various standard bodies
including ANSI X9 and the IEEE. They are also included
as a key agreement protocol in an Internet IETF draft
[11].

RSA is used in many published and proposed
standards. It is also used in many Internet protocols such
as S/MIME, S-HTTP, and SSL.

14. Conclusion

This paper presented an in-depth comparison of
RSA and ECC. Elliptic curves are believed to provide
good security with smaller key sizes, something that is
very useful in many applications. Smaller key sizes may
result in faster execution timings for the schemes, which
is beneficial to systems where real time performance is a
critical factor.

We gave estimates of parameter sizes providing
equivalent levels of security for RSA and ECC systems.
These comparisons illustrate the appeal of elliptic curve
cryptography especially for applications that have high
security.

Acknowledgment
The first author would like to thank his daughter,

Java Compiler Soram and son, Chandrayan One Soram
for not disturbing him while he was engaged in coding
and implementing the entire work in Java 7 in his system.

References
[1]W. Diffie and M. Hellman, “New Directions in

cryptography”, IEEE Transactions on Information Theory,
volume 22, 1976.

[2]R.L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems”,1977

[3]Tanenbaum A.S, Computer Networks, Prentice-Hall of
India, New Delhi, 2006.

[4]Stalling W,Cryptography and Network
Security,Prentice-Hall of India, New Delhi, 2001

[5]Kumanduri and Romero, Number Theory with Computer
Applications, Prentice- Hall of India, New Delhi, 2001.

[6]Blake,Seroussi, and Smart, Elliptic Curves in
cryptography,Cambridge University Press,1999.

[7]N.P. Smart,The Discrete logarithm Problem on Elliptic
curves of Trace One, Journal of Cryptology, Vol. 12,1999

[8] http://www.certicom.com/
[9] Michael Rosing, “Implementing Elliptic Curve

Cryptography”, from “http://www.manning.com/rosing/”
[10]Agrawal, Kayal, Saxena, "PRIMES is in P”, retrieved

from “http://www.cse.iitk.ac.in/”
[11]http://en.wikipedia.org/

Ranbir Soram, studied at
Coimbatore Institute of Technology,
Coimbatore, Tamil Nadu, is working as a
lecturer in Computer Science and
Engineering at Manipur Institute of
Technology, Takyelpat, Imphal, India.
His field of interest includes network
security, neural network, genetic
algorithm etc. In his spare time, he writes
programs in Java.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

21

Memeta Khomdram is working
at Department of Electronics
Accreditation of Computer Courses
Centre, Akampat, Imphal, India. She
diligently read and commented on every
page of this paper, at least twice while
her two small children were engaged in
watching Pogo and Arirang.

