
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 
 

 

83

Manuscript received September 5, 2009 
Manuscript revised September 20, 2009 

Analysis of Randomness of Runs and Its Application for 
Statistical Tests 

Mohammad Dakhilalian† , Ebrahim molavian Jazi†, Mohammad Jafar Taghiyar† 
  

†Cryptography & System Security Research Laboratory 
 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran 

      
 

 
Summary 
Statistical Tests are suitable means for analyzing 
properties of pseudorandom sequences, specifically in 
cryptography systems. Accordingly, various statistical 
tests have been proposed in literature. One of these tests is 
Runs Test. In this paper, we first state the common test for 
runs. Then by investigating the statistical behavior of runs 
in an Ideal Random Sequence (IRS), not only the runs test 
for total number of runs is improved but also two new tests 
are offered based on the distribution of runs of different 
lengths. The simulation results are also presented. 
. 
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Introduction 
Although, in many applications the use of random 
sequences is crucial, we cannot produce a random 
sequence in practice. In fact, the components of a random 
sequence are independent and identically distributed (i.i.d). 
Therefore random generators that produce sequences with 
properties closer to those of completely random sequences 
are of great interest. In this case, we need some tools to 
evaluate this closeness and thereby to evaluate how much 
a generator is random. 

Since there are different definitions for randomness 
[15,16,18], there are also different methods and criteria to 
evaluate the randomness of a generator. The most common 
method for this purpose is the use of statistical tests. The 
essence of a statistical test is the mathematical analysis of 
a random sequence which is done by modeling one or 
more properties of the random sequence as a probabilistic 
model. Subsequently, these extracted properties are used to 
be compared to those of sequences under the test through a 
specific criterion. 

Knowing the statistical characteristics of random 
sequences, some criteria have been proposed for 
pseudorandom sequences [4,5] and accordingly different 
tests have also been introduced for evaluating the 
randomness of sequences and their generators. The most 

common statistical tests have been proposed through 
different statistical test suites [6,8,9,10,11,12]. There is 
also a number of individual tests, see for example 
[13,14,17]. The most preferable method of statistically 
testing is through the use of Goodness-of-Fit theorem [7,9]. 

Statistical tests are carried out on a small portion of a 
sequence; for example on its first 1 million bits, through 
which it either fails or passes. To examine the randomness 
of a generator, usually a large number of its output 
sequences are tested and it is necessary that a specific 
number of sequences pass the test if it is about for the 
generator to be considered random. It must also be 
mentioned that success or failure of a sequence under a 
test does not signify whether the sequence is really random 
or not, since in statistical tests a typical behavior of 
completely random sequences is used for testing and only 
those sequences who agree with this typical behavior can 
pass the test. 

Runs test is one of statistical tests which is used 
specially for assessing cryptographic algorithms and is 
discussed specifically in [6,10]. In this paper, the 
randomness of lengths of runs in a completely random 
sequence is modeled and analyzed thoroughly. 
Accordingly, an accurate method for calculating the exact 
mean and variance of the total number of runs and an 
improvement for statistic of Runs Test are presented [2]. 
Since a test which is based on evaluation of the probability 
distribution function itself is more suitable than a test 
which is based only on the mean and variance of the 
probability function, some chi-square tests based on the 
probability distribution function of runs, gaps and blocks 
are proposed in this paper. The simulation results on some 
well known test random sequences with empirical results 
on some generators are also presented. 

Statistical Test on the Total Number of Runs 
In this section we present an improved statistic for the test 
on the total number of runs presented in [5]. As discussed 
in the Introduction section, the aim of a statistical test is to 
compare a sequence with another one that has some 
specific properties. So we first present definition 1, in 
order to follow the rest of the paper more easily.  
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Definition 1. An Ideal Random Sequence (IRS) is a 
sequence of independent and identically distributed 
random variables. 

In an IRS, zeros and ones occur perfectly randomly 
without any order, thus appropriately modeling such 
sequences is of great importance. One of the properties of 
such sequences is the length and the number of runs of it.  

Definition 2. An uninterrupted sequence of identical 
bits is called a run. If the run consists of ones then it is 
called a block and if it consists of zeros then it is called a 
gap. 
For example the sequence 01111110010001100018 =x  
comprises seven runs of lengths 1,2,3,4 and 6, three of 
them are blocks of lengths 1, 2 and 6 and the others are 
four gaps of lengths 1, 3 and 4. 

In [5], the distribution of number of runs for an IRS 

n
n XXXX ,...,, 21= is computed as a Normal distribution 

with the following mean and variance (when ∞→n ): 
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Where 0n , 1n and n are the number of zeros, the number 
of ones and the length of the sequence under the test, 
respectively. Using (1), the test statistic for analyzing the 
statistical distribution of runs is presented in [5] as 
follows:  

(2)
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In which obsN  is the total number of runs in the n-bit 
sequence. This test; however, is not accurate for statistical 
evaluation of the number of runs, since by using the 
statistical distribution of runs, one can introduce more 
exact tests as are presented in this paper. 

In the next section, by investigating the randomness of 
runs in an IRS, we present an improved test for runs. 

Idea of Test and Exact Mean and Variance 
To clarify the idea of the test presented in this paper, we 
first explore a simple example. 
 Consider 011111100100011000,...,, 1821

18 == xxxx  in 
the previous example. As mentioned, this sequence has 
seven runs of lengths 1,2,3,4 and 6. If the sequence 17c is 
constructed from 18x  as follows: 

10000011100101000       
xx,...,xx,xx       

,...,,

18173221

1721
17

=
⊕⊕⊕=

= cccc
 

In which the sign ⊕  shows addition modulo 2 or XOR. 

The 17c can also be considered as a sequence of some 
subsequences 621

17 ,...,, rrrc = , in which ir is given by: 

000001,0001,01

,1,1

654

,001321

===

== =

rrr

rrr
 

As it can be seen, each “1” in 17c is equivalent to 
occurrence of a run in 18x (in fact, the number of runs in 

18x is equal to the number of ones in 17c plus 1). The 
length of each run also equals the length of equivalent 
subsequence 621 ,...,, rrr . 

To examine the randomness of runs in an IRS, we first 
state the following theorem mentioned in [3]. 

Theorem 1. Suppose n
n XXXX ,...,, 21=  is an IRS of 

length n. If 1−nC is constructed as follows: 

(3)
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,...,,  

Then 1−nC is also an IRS of length 1−n . 
According to the definition 2, we can consider each 

change from “1” to “0” or from “0” to “1” equivalent to 
occurrence of a run in the sequence which in turn is 
equivalent to occurrence of “1” in 1−nC . Therefore, it can 
readily be seen that each “1” in 1−nC corresponds to a run 
in 18x . So the random variable rN , defined in (4), states 

the total number of runs in 18x . 
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It must be noticed that the number of runs in nX is 
always equal to the number of ones in 1−nC plus 1 which is 
completely consistent with (4). Now we obtain the exact 
mean and variance of the total number of runs rN . 

Theorem 2. If n
n XXXX ,...,, 21= is an IRS of length 

n, then the mean and variance of its runs is 
2

1+n  and 

4
1−n   respectively. 

Proof. We first construct 1−nC using (3). Since the 
components of 1−nC are independent and identically 
distributed (i.i.d), the mean and variance of random 
variables )1,...,2,1( −= niC i is: 
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Using (5) and (6), the mean and variance of rN is simply 
calculated as: 
  

(7)
2

11
2
1)1()1()(

1

1

+
=+×−=+= ∑

−

=

nnCENE
n

i
ir  

(8)4
1)()1()(

1

1

1

1

−
==+= ∑∑

−

=

−

=

nCVarCVarNVar
n

i
i

n

i
ir

 

Since the random variables )1,...,2,1( −= niCi are iid, 
according to Central Limit theorem, for sufficiently large 
amount of n, rN tends to Normal distribution with 

2
1+n and

4
1−n  as its mean and variance, respectively. 

Thus the test statistic in (2) has Normal distribution for 
large enough n. The improved test statistic is then as 
follows: 

(9)
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In which, obsN is the number of runs in the sequence under 
the test. According to Hypothesis Testing theory, the 
probability value (p-value or PV) is then found as: 

(10)|)))((|1(2 obsTPV nnΦ−×=  

 In (10), (.)nΦ is the Standard Normal distribution 
function and PV is twice the area under the curve of 
Standard Normal probability density function from 

|)(| obsTn to infinity [6]. To perform the test it is sufficient 
to compute the PV using (10) and then to compare it with a 
level of significance α that is recommended to be 

01.0001.0 ≤≤ α  [6]. If the PV is equal to or greater 
thanα then the sequence is considered random and if it is 
less thanα then the sequence is reported as nonrandom. 
For the test to be accurate, n must be large enough. In 
practice, it is recommended to choose 20≥n . 

Probability Distribution Function of Length 
of Runs 
To calculate the probability function for the lengths of runs 
in an IRS like n

n XXXX ,...,, 21= , we first construct 
1−nC using (3). As discussed in the previous section, each 

transition from “1” to “0” and vice versa corresponds to 
the occurrence of a run in nX  which is in turn equivalent 
to appearing of “1” in 1−nC . In fact the end of a run 
in nX is specified by appearing “1” in 1−nC  and the length 
of the run is equal to the distance of this “1” from the 
previous “1” in 1−nC ( the length of firs run equals the 
position of firs “1” in 1−nC ). 

Now we define random variable kT as the time of kth 
victory: 

(11)
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The above definition for kT implies that it determines the 

position of the kth occurrence of “1” in 1−nC (the time of 
kth victory). Therefore random variables 011 TTR −= , 

122 TTR −= , 233 TTR −= ,… indicates the length of 
first run, the length of second run, the length of third run 
and so on, respectively.  

Theorem 3. Random variables 011 TTR −= ,  
122 TTR −= , 233 TTR −= ,…are independent and have 

identical Geometric distribution with parameter 
2
1

=p . 

Proof. To prove that random variables iR are 
independent, we show that the joint probability mass 
function of them equals the product of probability mass 
function of each iR . For 1≥k  and 1,...,, 21 ≥krrr we have: 

(12)
1 1

1 1 2 1 2

1

11 1

1 0 1 2 1 2 1

1 1 2 2

1 1

1 1

1 1

( , ,... )
( , ,..., )
( 0,..., 0, 1,

0,..., 0, 1,...,

0,..., 0, 1)kk k
jj j

jj j

k k k

k k

r r

r r r r r

rr r

P T T r T T r T T r
P R r R r R r
P C C C

C C C

C C C−

== =

−

−

+ + − +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− = − = − =

= = = =

= = =

= = =

= = =
∑∑ ∑

 
We also know that random variables )1,...,2,1( −= niCi  
are i.i.d, so (12) will be written as: 
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Therefore the joint probability mass function of random 
variables ),...,2,1( kiRi = equals the product of probability 
mass function of each one which is the Geometric 

probability distribution with parameter
2
1

=p , so 

each iR is independent from others and we have: 
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According to theorem 3, the probability of occurrence 
of a run of specific length is only determined by its length 
and is independent of its position or time of occurrence. In 
fact the lengths of runs are i.i.d with Geometric 

distribution with parameter
2
1

=p . From now on in this 

paper, we refer to iR with symbol R , hence: 

(15)21)( ==
p
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In other words, the mean and the variance of the length of 

runs in an IRS are
2
1 . 

Since in an IRS, the probability of “1” and “0” is the 

same and equal to
2
1 , a run of length j is a gap or a block 

with probability
2
1 . In other words, if )( jGP = is the 

probability of occurrence of a j-bit gap and )( jBP = is that 
of a j-bit block then using (4): 

(17),...3,2,1      )
2
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jjBPjGPjRP )

2
1()()()( ==+===  

It is worth mentioning that in [1] the above probability 
functions are calculated by means of information theoretic 
concepts. 

Statistical Test on Length of Runs 
In this section, two new statistical tests using the 
distribution of runs of different lengths, computed in 
Theorem 3, are presented. To perform these tests on an n-
bit binary sequence, first the sequence kR is constructed, 
using (11) and 1−−= iii TTR : 
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We can now perform the test in two different types, 
Test 1 and Test 2. 

 

Test 1 
According to theorem 2, the average of k is 
nearly ( )1 / 2n + . First, suppose that we want to do the test 
only on runs of lengths of at most m. For this reason, it is 
assumed that the runs of length greater than m are 
equivalent to the occurrence of a hypothetic symbol *, 
whose probability is computed as follows. Using (14): 
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Thus we have: 
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So it can be said that the sequence kR corresponds a 
polynomial random variable with probability function 
given in (20). Using the theorem of chi-square test [9], the 
test statistic is as follows: 
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In (21), iN  is the number of runs of length i and *N  is 
the total number of runs of lengths greater than m in the 
sequence nX i.e. #{ | }i iN R R m= > . According to the 
theorem of chi-square test, )( rk obsT in (21) has the chi-
square distribution with m degrees of freedom. The PV is 
then calculated as: 

(22)igamc( / 2, ( ) / 2)k rPV m T obs=  
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In fact the above PV equals the area under the curve of 
probability density function of the chi-square random 
variable from )( rk obsT to infinity. The igamc is the 
Incomplete Gamma Function defined in [6]. The final step 
to complete the test is to compare the PV to a level of 
significanceα in order to decide if the sequence under the 
test is random or not, as discussed in section 3. For the test 
to be accurate, taking the approximations made in chi-
square distribution into account [9], n must satisfy the 
following conditions: 

(23)125or        5
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Or alternatively m must meet the following restraint: 
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Test 2 
If one wants to perform the test on runs of lengths of at 
most m but does not want to consider the hypothetic 
symbol *, then the test can be done as follows. Using (18), 
the sequence L

L RRRR ,...,, 21=  must first be constructed 

from nX , in which LR comprises only runs of lengths of at 
most m. Thus the probability function of random 
variables ),...,2,1( LiRi = is conditional and computed as: 
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It is clear in this case that: 
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In other words in the sequence LR , every iR has the 
probability function as follows: 
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Therefore the test statistic for runs test is: 
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The test statistic in (28) has the chi-square distribution 
with 1−m degrees of freedom, hence the PV is: 

(29)( )( )igamc 1 / 2, ( ) / 2L rPV m T obs= −  

The final step to complete the test is to compare the PV 
to a level of significance α in order to decide if the 
sequence under the test is random or not, as discussed in 
section 3. In ideal case, L is on average equal to: 
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The condition for the test to be accurate is the same as 
in (23). So m must also meet the restraint in (24). 
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Statistical Test on length of Gaps and Blocks 
Employing the procedure used in section 5, we can readily 
offer separate tests on blocks and gaps. Though these tests 
might be less practical compared to the test presented in 
previous section, they can be useful in specific cases. 
Assume that only gaps (or alternatively blocks) are 
examined in a sequence of length n: 
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Since the number of gaps in an IRS is on average equal 

to
2
1 , considering theorem 2, k is on average equal 

to ( )1 / 4n+ . Let )( jGP i =  be the probability that ith 

gap iG  in the sequence kG is of length j. Since blocks of 

the sequence nX is omitted in the sequence kG and using 
(17) we have: 
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Analogous relation can also be extracted for blocks: 
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Obviously, the probability functions in (33) and (34) 
are consistent with that in (14). Employing the results in 
section 5, the test statistics for gaps test and blocks test are 
as below, respectively: 
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In which ig and ib are the numbers of gaps and blocks 
of length i, respectively. Also ∗g and ∗b are the total 
numbers of gaps and blocks of lengths greater than m, 
respectively. It must be noticed that for the tests to be 
accurate, the following condition must be satisfied: 
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Or equivalently )
10

1(log 2
+nm p , that is the same as (24). 

Now let’s perform the test for gaps and blocks of 
lengths of at most m, but not consider the hypothetic 
symbol *, hence neglecting ∗g and ∗b . By analogy to 
relations (25) to (31), parameters of the tests are 
determined as relations in (37) to (39): 
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)( gL obsT and )( bL obsT ′ are chi-square random variables 
with 1−m degrees of freedom. The condition for the tests 
to be accurate is the same as in (36). 

The foregoing discussions give some diverse and 
complete tests for evaluating statistical behavior of runs, 
gaps and blocks which in turn are significantly more 
accurate than the test presented in [6,10]. 

Simulation 

Empirical results for sample data  
In this section we present some empirical results which 
have been computed by performing Test 1 and Test 2 on 
some well known binary sample data. These sequences are 
binary representations of π  (Pi number), e (Neper 
number), square root of 2 and square root of 3, used in [6]. 
In table (1) PVs of Test 1, computed on the mentioned 
binary sequences, are given for various amount of m and 
n=100000. It shows that by increasing the amount of m the 
PV decreases and hence the test becomes more accurate, 
since for a single test and under the same circumstances 
the smaller the PV, the stronger the test. Table (2) is those 
of Test 2. 

Table 1. Results of Test 1 for some well known random 
sequences. 

Test 1 π  e 2  3  
m=3 0.9859 0.0767 0.0054 0.6477
m=5 0.6338 0.1983 2.2e-4 0.1071
m=8 0.0724 0.0610 7.4e-5 0.0392

 
Table 2. Results of Test 2 for some well known random 

sequences. 
Test 2 π  e 2  3  
m=3 0.9405 0.0357 0.0019 0.7447
m=5 0.7115 0.1354 2.2e-4 0.1265
m=8 0.0455 0.2205 0.0042 0.0234

In table (3) there is a comparison between the results of 
Runs Test, presented by NIST [6] and the equivalent 
results of Test 1, presented in this paper. As it can be seen, 
the results of the Test 1 are much better than those of Runs 
Test [6].  

Table 3. Comparison between results of Test 1 and Runs Test 
presented in [6]. 

Tests π  e 2  3  
Test 1 0.6338 0.1983 2.2e-4 0.1071 
Test 2 0.7115 0.1354 2.2e-4 0.1265 

Runs Test
[6] 0.4193 0.5619 0.3134 0.2611 
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These results are evidence for the accuracy of the 
presented test which is based on the evaluation of the 
probability distribution function itself rather than being 
based only on the mean and variance of the probability 
function. The results in table (3) are for n=1000000 and 
m=5. 

Test results for reference generators 
Table (4) shows the test results for two reference 
generators, namely Blum-Blum-Schub (BBS) and natural 
noise generator1 using special diodes. 

Table 4. Test results for BBS generator and natural 
noise generator using diodes. 

Tests π   
(Pi number) 

e  
(Neper 

number) 

sqrt of  
2 

sqrt of  
3 

Runs Test 
(presented in 

[6] ) 
(P-value) 

 
0.4193 

 
0.5619 

 
0.3134 

 
0.2611 

Test 1 
(P-value) 

 
0.0831 

 
0.0463 

 
1.0669e-5 

 
2.6315e-4

We have used the method mentioned in [6] to compute 
the uniformity of the test and the proportion of sequences 

passing a test with ˆ 1 0.99p α= − = and sample size 1000. 

Conclusion 
In this paper, the randomness of runs and their distribution 
and subsequently those of gaps and blocks, for an Ideal 
Random Sequence (IRS) were analyzed. Using the proper 
combination of an IRS and its shifted version, we found a 
precise method for calculating the exact mean and 
variance of the total number of runs in an IRS and 
consequently improved the test statistic for Runs Test in 
[5]. Since a test based on evaluation of the probability 
distribution function itself is more accurate than a test 
based only on the mean and variance of the probability 
distribution function, we presented two new chi-square 
tests based on the probability distribution function of 
length of runs whose test statistics are of m and m-1 
degrees of freedom. In section 5, the distribution of length 
of gaps and blocks in an IRS were also found in the same 
way and accordingly some statistical tests were proposed. 
However, the tests presented in section 5 are less practical. 
It was shown that the tests presented in this paper are more 
tough to pass than those in [6,10] and can also examine the 
randomness of gaps and blocks of the sequence under the 
test.  
                                                           
1  This generator has been designed in Cryptography 
Research Laboratory at Isfahan University of Technology 
(IUT) using Diode No. NC3021 manufactured by 
Noise/COM company. 
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