
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

116

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

A Finite State Model for Urdu Nastalique Optical Character
Recognition

Sohail Abdul Sattar Shams-ul Haque Mahmood Khan Pathan

Department of Computer Science and Information Technology,
NED University of Engineering and Technology, Karachi, Pakistan

Abstract
Finite state technology is being used since long to model
NLP (Natural Language Processing) applications specially
it has very successfully applied to machine translation and
speech recognition systems. Character recognition in
cursive scripts or handwritten Latin script also have
attracted researchers’ attention and some research is also
done in this area. Optical character recognition is the
translation of optically scanned bitmaps of printed or
written text into digitally editable data files. OCRs
developed for many world languages are already under
efficient use but none exist for Nastalique – a calligraphic
adaptation of the Arabic script, just as Jawi is for Malay.
Urdu has 39 characters against the Arabic 28. Each
character then has 2-4 different shapes according to their
position in the word: initial, medial, final and isolated.

In Nastalique, word and character overlapping makes
optical recognition more complex. Optical character
recognition of the Latin script is relatively easier. This
paper based on research on Nastalique OCR discusses a
proposed finite state model for the optical recognition of
Nastalique printed text.

Key words:
Nastalique, Script, Cursiveness, Feature, Automata, OCR

1. Introduction

A single script with its basic character shapes is adapted
for writing in multiple languages e.g. the Latin script for
English, German and French while the Arabic for Persian,
Urdu, Sindhi, Kurdish, Uygur and Malay.

In Urdu many character shapes have multiple instances.
The shapes are context sensitive too – character shapes
changing with changes in the antecedent character or the
precedent one. At times even the 3rd or the 4th character
may cause a similar change depicting an n-gram model in
a Markov chain.

Urdu uses the Arabic script for writing, with the most
prevalent style being Nastalique. Research in Urdu text
recognition is almost non-existent, however a considerable
research has been done on Arabic text recognition which
uses the Naskh style of writing. The Arabic language is
considered to be a difficult one with a much richer
alphabet than the Latin, the form of the letter is the
function of its position in the word: initial, medial, final
or isolated, it changes it’s shape depending upon it’s
position, shape has multiple instances, words are written
from left to right. Arabic characters have features that
make direct application of algorithms for character
classification in other languages difficult to achieve as the
structure of Arabic is very different [2].

The most difficult case in character segmentation is the
cursive script. The scripted nature of Arabic written
language poses some high challenges for automatic
character segmentation and recognition. The problem of
Arabic character recognition has not received as much
attention as Latin or Chinese characters in spite of the fact
that Arabic characters serve as scripts for several
languages such as Arabic, Farsi, Urdu, Sindhi, Malay,
Kurdish and Uygur [1]

In the last years Hidden-Markov-Model (HMM) based
methods are very successfully applied to e.g. English or
German cursive script recognition. All these methods need
preprocessing and normalization of the scanned word
images before the features can be extracted. During this
preprocessing step as many individual characteristics as
possible are removed, to make the feature extraction and
recognition as simple as possible. A preprocessing step
which is always needed for every language, cursive
writing recognition is the estimation of the writing line or
reference line called base line. This line represents a first
orientation in a word and is essential for many further
tasks [7].

Mohammad S Khorsheed and William. F. Clocksin [9],
have presented a global approach for recognizing Arabic
cursive words from scanned images of text. The approach
is segmentation-free, and is applied to four different

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

117

Arabic type faces, where ligatures and overlaps pose
challenges to segmentation-based methods. They
transform each word into a normalized polar image, then
they apply a two dimensional Fourier transform to the
polar image. The resultant spectrum tolerates variations in
size, rotation or displacement. Each word is represented by
a template that includes a set of Fourier coeficients. The
recognition is based on a normalized Euclidean distance
from those templates.

The Latin, Chinese and Japanese scripts have received
ample research and work has been done on the optical
recognition of these scripts. Compared to this only few
papers have specifically addressed the recognition of
Arabic text and languages using the Arabic script like
Urdu, Farsi and Malay for various reasons. One of them is
the complexity of the Arabic script itself while a lack of
interest in this regard accounts for another [3].
Mohammad S. Khorsheed et al [4] presented an approach
in which the system recognizes an Arabic word as a single
unit using Hidden Markov Model. The system highly
depends on a predefined lexicon which acts as a look-up
dictionary. All the segments in a word are extracted from
its skeleton then each of the segment is transformed into a
feature vector. Then each of the feature vector is mapped
to the closest symbol in the codebook. The resulting
sequence of observations presented to a Hidden Markov
Model for recognition. Shumaila Malik et al [6] proposed
a system which takes online input from user by writing the
Urdu character with the help of stylus pen or mouse and
converts user handwriting information into Urdu text. The
process of online hand written text recognition is divided
into six phases, each of the phase is implemented using a
different technique depending upon the speed of writer
and the level of accuracy.

Michel Fanton [5] has discussed the features which the
Arabic writing has and identified the fact that the features
of Arabic writing impose computational overload for any
arabicized software. He also noted that the way in which
Arabic is printed imitates handwriting. He pointed it out
that the Finite State Automata give efficient solution for
the translated problems which can be formalized as regular
languages.

Qing Chen et al [7] addressed the problem of automatic
recognition of an image pattern without any consideration
of its size, position and orientation. In this regard the
extracted image features are made to have invariance
properties against image transformation including scale,
translation and rotation. They approximated the
transformation by affine transformation to preserve
collinearity and ratios of distances.

Arabic characters have features that make direct
application of algorithms for character classification in
other languages difficult to achieve as the structure of
Arabic is very different. [9]

2. Nastalique Character Set

Urdu uses an extended Arabic adapted script, it has 39
characters as against Arabic 28. Each character then has 2-
4 different shapes depending upon its position in the word;
initial, medial or final. Table 1 shows first ten letters of the
Urdu alphabet with different shapes. When a character
shape is written alone it’s called isolated character shape.
Each of these initial, medial and final character shapes can
have multiple instances, the character shape changes
depending upon the change in the antecedent or the
precedent character. This characteristic of having multiple
instances of these character shapes is called context
sensitivity. A complete language script comprises of an
alphabet and style of writing. Urdu uses an extended
Arabic script for writing. It has two main styles, Naskh
and Nastalique. Nastalique is a calligraphic, beautiful and
more aesthetic style and is widely used for writing Urdu.

Table 1. Subset of Urdu Alphabet

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

118

3. Nastalique Script Complexities

Here we describe the complexities of Nastalique script
with particular reference to optical recognition of printed
Urdu text written in Nastalique style.

3.1 Cursive Nature

Nastalique with its oriental cursive nature makes a
complex script. A single word in the script can comprise
of several ligatures formed in turn by combining several
characters cursively joined together along with isolated
characters.

3.2 Context Sensitive

Ligature in Nastalique are unique combinations or units of
characters that change their shape according to their
position within the unit. e.g. an initial “BAY” which is the
second character in the alphabet is quite different from
medial, final or an isolated one, added to this is the
dependence of each character on the preceding or
succeeding characters it joins with. A character might take
as many as 20 different shapes according to the character
it is joining with. Sometimes even the 3rd, 4th or 5th
antecedent or precedent character may initiate a similar
change in shapes.

3.3 Position and Number of Dots

Several Urdu characters (17 out of 39) are differentiated
by the presence of dots placed over, below or within them.

Fig 1: (a, b, c) Dots

Three situations of ambiguity arise because of this. In the
first instance, one character may have a dot while the other
does not Fig. 1(a). In the second case, two similar
characters have different numbers of dots to distinguish
their different sounds Fig. 1(b). Lastly, two characters may
be different only because of the difference in the position
of dots Fig. 1(c).

3.4 Kerning

For the better visual appeal the space between pairs of
characters is usually reduced or “Kerned”. If the natural
space between two characters is attempted to be reduced it
causes a slight overlapping on the characters making them
less identifiable and more difficult to be differentiated.
When scanned the lack of white pixels between the two

characters makes them read as a single continuous
character shape.

Although the problem rears most infrequent in the Roman
scripts, it is a common one in Nastalique (because kerning
implies further cursiveness, overlapping characters in
numerous possible ways).

4. Phases in Optical Character Recognition

A generic OCR model has the following phases for
Optical recognition of printed text as shown in Fig. 1.

Figure 2. Different phases of OCR

4.1 Scanning

A flat-bed scanner is usually used at 300dpi which
converts the printed text into a bitmap image.

4.2 Document image Analysis

The bitmap image of the text is analyzed for the presence
of skew or slant and consequently these are removed.

4.3 Pre-Processing

In this phase several processes are applied to the text
image like noise and blur removal, binarization, thinning,
skeletonization, edge detection and some morphological
processes.

4.3 Segmentation

The bitmap image obtained from the scanner is first
segmented into text and non-text regions. Then the text
region is segmented into separate lines of text. These lines

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

119

are then segmented into words and finally words into
individual letters.

4.4 Recognition

This is the most vital phase in which recognition algorithm
is applied to the images present in the text image
segmented at the character level.

As the recognition process proceeds from the smallest
bounding box around a character image to the word and
then the line, as a result of recognition, character codes
corresponding to the images are returned by the system
which are then passed to a word processor and then the
rendering engine to be displayed on the screen, where the
text can now be edited, modified and saved in a new file
format.

5. Ligature in Urdu

A ligature in Urdu is a complex unit of several characters
bound together cursively to give a single fluid form. A
ligature is not a complete word but can be considered as a
compound character. A word in Urdu may be composed of
one or two ligatures as well as isolated characters. For
example the word has two ligatures, Fig. 3 and 4 .

Figure 3. Ligature in Urdu

Figure 4. Word Segmentation

Figure 5. Simple Finite State Nastalique Word Recognizer

6. Finite State Nastalique Text Recognizer

A finite state Nastalique text recognizer can be modeled as
a finite state automata shown in Fig. 5 and 6:

Figure 6. A Finite State Nastalique Text Recognizer

A finite state automaton A, is defined by a five tuple as
follows [8]:
A = (Q, ∑, δ, qo, F), where
Q: a finite set of states
∑: a finite set of input symbols also called alphabet
F: a finite set of accepting states
δ: the transition function, which is specified as

δ: (Q x ∑) → Q

6.1 Nastalique Character Shapes

In Nastalique we have 2-4 basic character shapes for each
character in the alphabet: Isolated, Initial, Medial and
Final.

Except Isolated last three are position dependent shapes and can
have several forms depending on the precedent as well as the
antecedent characters.

Each of these character shapes has multiple instances, for
example Bay , which is the second letter in the Urdu
alphabet has 13 different shapes for its initial form. These
character shapes are context sensitive – character shape
change if the antecedent or the precedent character
changes. At times even the 3rd or the 4th character may
cause a similar change depicting an n-gram model in a
Markov chain. The first order Markov model is

Ci | Ci-1

ws

ws

ws

ws

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

120

6.2 Nastalique Feature Set

We call a set comprising features of Nastalique character
shapes as a Nastalique feature set which can have the
following features:

Height, Thickness, Angle, Rotation

These features are also termed as attributes, thus the
Nastalique feature set is given as:

FS = { Height, Thickness, Angle, Rotation }

Word forming in Nastalique is not as simple as in Roman
script. In Nastalique a word is composed of ligatures and
isolated character shapes. Sometimes a word consists of
only a single ligature e.g.

Two or more character shapes join cursively to form a
ligature. While forming a ligature a character shape can
join the other from left as well as the right side. When a
character shape joins another from its right side with its
own left side then at the joining point the two feature sets
must match.

So we have features defined at one or both of the two
possible joining ends of each character shape as left
features (LF) and right features (RF).

If only LFs are available, then character is Initial, if only
RFs are available then character is final, if both LFs and
RFs are available then character is Medial.

7. Components of Nastalique Text
Recognizer

A finite state Nastalique text recognizer will have the
following components:

7.1 Character Shape Recognizer

This component gets the input from the segmentation
phase as a character image and checks whether it has LFs
only or RFs only or it has both LFs and RFs or it does not
have any. On the basis of it following decisions are made:
Initial Character Shape, if it has LFs only
Final Character Shape, if it has RFs only
Medial Character Shape, if it has both LFs and RFs
Isolated Character Shape, if it has Non of LFs or RFs

7.2 Next-State Function

Having decided the shapes of characters in a ligature as
initial, medial, final or isolated, the system checks for the
multiple instances of these character shapes. In Nastalique

we have multiple instances of these character shapes
encoded in the font file, the Next-state function compares
the LFs and RFs on one-to-one basis and decides the
correct instance of the character shape present at a
particular position in a ligature and returns its character
code that the system stores in a text file and moves to the
next state.

As the recognition process proceeds the character codes
found in a ligature are stored in a text file concatenated in
sequence as they are found in a ligature. After the
completion of the recognition process all the character
codes stored in a text file are given to the rendering engine
which displays the recognized Nastalique word on the
screen.

The Finite State Recognizer will always be in a state to
expect a new input character image except that it receives
a white space character that results in either an error state
indicating an incomplete word or an accepting state where
all the character codes found in a ligature are stored in a
text file and leaving a white space the system gets ready to
read new inputs, shown in Fig. 7.

The Finite State Nastalique Text Recognizer is

A = (Q, ∑, δ, q0, F)

States of the Finite State Recognizer

Q : { q0, q1, q2, q3, q4 }

Transition or Next state function: δ

q0 = starting sate and final state
q1 = input is an initial character shape
q2 = input is a medial or final character shape
q3 = error state / incomplete word
q4 = input is a white space

The alphabet or set of input symbols

∑ : { initial, final, medial, isolated, white space }
∑ = { in, f, m, is, ws }
F: set of accepting states = { q0 }

Table 2. Transition Function Definition

δ in m f is ws
q0 q1 q3 q3 q0 q3

q1 q3 q2 q4 q3 q3

q2 q3 q2 q4 q3 q3

q3 q3 q3 q3 q3 q3

q4 q3 q3 q3 q3 q0

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

121

Figure 7. Transition Diagram

8. Results and Discussion

Although the Nastalique character recognition system is
developed in Microsoft Soft VC++ 6.0 we used the
software Matlab for rapid prototyping and experimentation.

We performed experiments on a subset of Nastalique
words keeping same the font size and the results are very
encouraging.

Our Nastalique character recognition system requires a
character based True Type Nastalique font and an image
of Nastalique printed text written with the character based
True Type Nastalique font.

Figure 8. Recognition result

After the segmentation is complete the text image appears
in segmented character shapes and the isolated character
shapes can be identified separately. Next is the recognition

phase in which the Finite State Nastalique Text
Recognizer reads and recognizes each of the character
shapes in the segmented text image, line by line, and
writes their character codes in the sequence the character
is found, into a text file.

As the recognition process is completed the character
codes in the text file are transferred to the rendering
engine which displays the recognized text in a text region,
shown in Fig. 8.

9. Conclusion and Future Work

In this paper we discussed our finite State Model for
Nastalique Text recognition with its results on a small
subset of Urdu Nastalique words. The Nastalique script
has a complex nature, each character has 2-4 shapes then
each shape has multiple instances, depending upon the
antecedent or the precedent one, a character changes it’s
shape. This characteristic of the script is called context
sensitivity and makes optical recognition of Nastalique
script more complex.

For the future we plan to extend our system to include a
larger set of Urdu Nastalique words.

References
[1] Sari T.,Souici L. and Sellami M., “Off-Line Handwritten

Arabic Character Segmentation Algorithm: ACSA”, Proc.
of Internationl Workshop on Frontiers in Handwriting
Recognition, pp. 452-457, 2002.

[2] Majid M. Altuwaijri and Magdy A. Bayoumi, “Arabic Text
Recognition Using Neural Networks”, 1994, IEEE
International Symposium on Circuits and Systems,
ISCAS’94, London, UK, 30 May- 02 June,1994, Vol. 6, pp.
415-418.

[3] Muhammad Sarfaraz, Syed Nazim Nawaz and Abdulaziz
Al-Khuraidly. “Offline Arabic Text Recognition System”.
2003, Proceedings of the International Conference on
Geometric Modeling and Graphics (GMAG’03), IEEE
COMPUTER SOCIETY, London, UK, July 16-18, 2003, pp.
30-35.

[4] Mohammad S. Khorsheed and William F. Clocksin,
“Structural Features of Cursive Arabic Sscript”, 1999,
Proceeding of the 10th British Machine Vision Conference,
Nottingham. pp: 422-431.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

122

[5] Michel Fanton, “Finite State Automata and Arabic Writing”,
COLING-ACL `98 Workshop on Computational approaches
to Semitic Languages. Aug 16, 1998, University of
Montreal, Canada.

[6] Shumaila Malik and Shoab A. Khan, “Urdu Online
Handwriting Recognition:, 2005, Proceedings of the IEEE
International Conference on Emerging Technologies, Sept
17-18, 2005 Islamabad, Pakistan, pp: 27-31.

[7] Pechwitz M., Margner V., “Baseline Estimation For Arabic
Handwritten Words”, IEEE Transactions on PatternAnalysis
and Machine Intelligence, May 2006, Volume: 28, Issue: 5,
page(s): 712- 724, ISSN: 0162-8828.

[8] John E. Hopcroft, Rajiv Motwani and Jeffrey D. Ullman.
“Introduction to Automata theory, Languages and
Computation”, 2nd edition, Addison-Wesley, 2000.

[9] Mohammad S Khorsheed and William. F. Clocksin.
“Multi-Font Arabic Word Recognition Using Spectral
Features”. Proceedings of 15th International Conference on
Pattern Recognition, Sept 3-7, 2000, Barcelona, Spain,
Volume: 4, page(s): 543-546, ISBN: 0-7695-0750-6.

Sohail A. Sattar received BE
in mechanical engineering
from NED University of
Engineering and Technology,
Karachi, Pakistan in 1988.
He is a life member of
Pakistan Engineering
Council and Institution of
Engineers (Pakistan) and a
member of International
Association of Engineers.
Having served the industry
for 12 years he switched his

career to computer science getting an MCS degree in
computer science in 2001 from University of Karachi and
an MSc in computer Science in 2002 from NED
University, where now he serves as assistant professor of
computer science. He is also pursuing a doctorate degree
in computer science. His research interests include
computer vision, image processing and computational
linguistics.

