
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

134

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Experimental Result of Particle Collision Algorithm for
Solving Course Timetabling Problems

Anmar Abuhamdah1,and Masri Ayob2

Data Mining & Optimization Group (DMO), Centre of Artificial intelligence Technology (CAIT)

12Faculty of Computer science, Universiti Kebangsaan Malaysia, Selangor, 43600 Malaysia

Summary
This work presents a Particle Collision Algorithm (PCA) to solve
university course timetabling problems. The aim is to produce an
effective algorithm for assigning a set of courses, lecturers and
students to a specific number of rooms and timeslots, subject to a
set of constraints. PCA approach that was originally introduced
by Sacco for policy optimization. PCA always accepts improved
solution but adaptively accepts worse solution based on the
quality of the solution. PCA differs from Simulated Annealing
and other meta-heuristic approaches where, before accepting the
trial solution (although we obtain good-quality solution), PCA
attempts to further enhance the trial solution by exploring
different neighbourhood structures. Therefore, PCA could be able
of escaping from local optima. We evaluate the effectiveness of
PCA. This testing it on standard test benchmark course
timetabling datasets which were introduced by Socha. Results
show that PCA significantly outperformed Simulated annealing
(SA) and Great Deluge approach in some instances. Results also
show that PCA is able to produce good quality solutions, which
are comparable to other work in the literature.
Key words:
Course Timetabling Problem; Meta-Heuristics; Particle
Collision Algorithm; Simulated Annealing; Great Deluge.

1. Introduction

The university course timetabling problem involves
assigning a set of courses, lecturers and students to a
specific number of rooms and timeslots [1]. The goal is to
produce high-quality timetable that satisfies all hard
constraints and attempts to accommodate soft constraints
as much as possible. A feasible timetable must satisfy all
hard constraints, and soft constraints can be violated if
necessary. However, each violation of the soft constraints
will increase the penalty cost. A good quality timetable
should have a small penalty value. A course timetabling
problem is an NP-complete problem [2-4], to which it is
difficult to find an optimal solution in a reasonable time.
Finding good-quality solutions to these problems depends
on the technique itself and the neighbourhood structure
employed during the search. Various approaches and
techniques have been intensively applied to the course
timetabling problems over the last few years. For further
information on previous works, please refer to the
following survey/overview papers: [5-9].

In this work, we investigate the effectiveness of applying a
Particle Collision Algorithm to solving university course
timetabling problems. Particle Collision Algorithm (PCA)
was originally introduced by Sacco et al. [10]. The
structure of PCA resembles the simulated annealing
structure. The algorithm starts with solution generated by
any constructive heuristic method; the solution will be
iteratively improved [10]. A basic difference is that, it does
not rely on user-defined parameters. PCA always accept
improving solution. However, worse solution will
probability be accepted based on the quality of solution.
This may avoid being trap in local optima [10].

The aim of this work is to investigate the performance of
applying PCA for solving course timetabling problems. In
order to evaluate the effectiveness of the enhanced
algorithm, we tested it on eleven standard benchmark
datasets that were introduced by Socha et al. [11] and
made comparison with the simulated annealing and great
deluge algorithm that were applied on examination
timetabling problem by Burke et al. [12] with the same
parameters as those employed in Burke et al. [12], then we
compare the PCA with other approaches in the literature.

2. Problem Description

In this work, we use eleven datasets introduced by Socha
et al [11] in the first international timetabling competitions.
These datasets tackle the students’ satisfaction only for the
course timetabling problem. The problem consists of:

• A set of events to be scheduled in 45 timeslots (5 days

of 9 hours each).
• A set of rooms in which events can take place.
• A set of students who attend the events.
• A set of features characterizing the rooms and required

by events.

These eleven datasets are categorized into three groups,
small (S1,S2,S3,S4,S5) , medium (M1,M2,M3,M4,M5)
and large (L) (see Table 1).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

135

Table 1. Eleven Datasets (Socha ET al -2002)

Datasets # Events #Rooms # Features # Students

S1 100 5 5 80
S2 100 5 5 80
S3 100 5 5 80
S4 100 5 5 80
S5 100 5 5 80
M1 400 10 5 200
M2 400 10 5 200
M3 400 10 5 200
M4 400 10 5 200
M5 400 10 5 200
L 400 10 10 400

Table 1, shows the attributes of the eleven datasets, for
each individual dataset, either for small, medium or large
datasets. Each dataset has a different number of conflicts
even if they have the same number of (events, rooms,
features, students). These datasets were collected from
various real-world university course timetabling problems
(see details description in [11]). In order to produce a
feasible timetable, all hard constrains must be satisfied.
Soft constraints should be satisfied as much as possible.
These datasets that were introduced in international
timetabling competitions include (Hc1, Hc2 and Hc3)
hard constraints and (Sc1, Sc2 and Sc3) soft constrains, as
follows:

a) Hard constrains.

Hc1: No student attends more than one event at the
same time.

Hc2: The room is big enough for all the attending
students and has all the features required by the
event.

Hc3: Only one event takes place in each room at any
timeslot.

 b) Soft constrains

 Sc1: A student should not have a class in the last slot of
the day.

 Sc2: A student should not have more than two classes
consecutively.

 Sc3: A student should not have a single class on a day.

The quality of timetable is measured by penalizing equally
each violation of the Soft constraints, where each violation
will be penalized ‘1’ for each student who involve in this
situation.

3. Construction Algorithm

In this work, we use a constructive heuristic was proposed
by Landa-Silva, and Obit [13]. We obtained the feasible
solution by adding and removing courses from the

timetable while using the tabu list until we had a feasible
timetable (satisfy hard constraints), as follow:

• Step 1 (Highest Degree Heuristic Step): After we assign

all the events that do not have conflict, we assign
randomly the unassigned event with the highest number
of conflicts (not satisfying the hard constraints) to
timeslots. Then, assigning all events to timeslots, we
assign each event to a room by using the maximum
matching algorithm for bipartite graph (see [28]). Even
after ending this step, there is no guarantee that the
timetable satisfies the hard constrains (no guarantee for
feasible timetable). Otherwise if not feasible, we move
to step 2.

• Step 2 (Local Search Step): Two neighbourhood
structure moves (move 1, move 2) were applied to
construct a feasible timetable that we could not obtain to
the Highest Heuristic Degree. The move will be
accepted if it is more satisfying of hard constraints, to
find the feasibility. After 10 iterations, if the quality of
solution does not improve, then this step is terminated.
Otherwise if not feasible, we move to step 3.

• Step3 (Tabu Search Step): Tabu search had been applied
using move 1 only. “The tabu list contains events that
were assigned less than tl iterations before calculated as
tl = ran(10) + δ × nc, where ran(10) is a random number
between 0 and 10, nc is the number of events involved
in hard constraint violations in the current timetable, and
δ = 0.6” [28]. After 500 iterations, if the quality of
solution does not improve, this step will be terminated.

We repeat the local search step and the Tabu search step
until we find a feasible solution.

4. The Algorithms

In this work, we applied three algorithms Simulated
Annealing (SA), Great Deluge (GD) and Particle Collision
Algorithm (PCA) to evaluate the performance of PCA. We
applied Simulated Annealing algorithm and Great Deluge
algorithm with the same parameters as those employed to
both algorithm in Burke et al. [12]. Particle Collision
Algorithm (PCA) was introduced by Sacco et al. [10] in
2005. This is a stochastic optimization algorithm based on
simulated annealing approach. PCA structure resembles a
simulated annealing structure, but the basic difference that
is does not have cooling schedule and it does not rely on
user-defined parameters. Since the acceptance criteria of
PCA can probably accept worst solution, it is capable of
avoiding being trapped in local optima [10].
After generate feasible time table by any construction
heuristic then select a random R neighbourhood structure
N from different neighbourhood and apply to the current
solution to generate new feasible solution. if the new
solution not feasible then we apply the same

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

136

neighbourhood that had been selected NR to generate new
feasible solution and so on.

4.1 PCA Pseudo code

In this work, we apply Hill Climbing Search [14] in PCA
approach in the Exploration Phase’’, in PCA there is an
exploration of the boundaries searching for an even better
solution (i.e. the function ‘‘Exploration’’ performs local
search generating a small stochastic perturbation of the
solution inside a loop) [10]. The function ‘‘Scattering’’ in
PCA consider as the acceptance criteria, where the
algorithm is more likely to accept little bit worse solution
to solve university course timetabling problem. The
scattering is equal to the [penalty of the new solution
divided by the penalty of best solution] minus one. Then
we check whether the scattering value is less than the
random number between zero and one. If yes, then we
accept that worst solution and enhance it by exploration
that will apply Hill Climbing search, but if greater than the
random number between zero and one, we will not accept
that solution. Fig.1 shows the PCA Pseudo code.

Generate an initial solution So (current solution)
Calculate the initial cost function value, Fitness (So);
Set BestSol = So
Set # of n.iteration
Set # of m.iteration
Set index=0;
for n = 0 to n.iterations
Generate new solution (S*) by Applying Random
neighbourhood from different neighbourhood structure to
 the current solution So

 if Fitness(S*) < Fitness (So)
 So = Exploration (S*);
 BestSol = So;
 else
 S1=Scattering (S*, BestSol);
 So =S1;
 if Fitness (S1) < Fitness (BestSol)
 BestSol = So;
 end
 end
end
--
Scattering (S*, BestSol)

Scattering = -1;

 if Scattering > random (0, 1)
 So = BestSol;
else
 So = Exploration (S*);
end
Return So
--
Exploration (S*)

for m = 0 to m. Iterations
Generate new solution (S1*) by applying neighbourhood
structure to the solution (S*)
 if Fitness (S1*) < Fitness(S*)
 S*= S1*;
 end
end
 Return S*

 Fig. 1. PCA Pseudo code

4.2 SA Pseudo code

In this work, we applied the simulated annealing algorithm
with the same parameters as those employed in Burke et al.
[12], where the initial temperature IT is equal to 5000, the
final temperature FT is equal to 0.05 and the number of
iterations, IN is set to be 10,000,000 but in our work we
set the number of iterations, IN is set to be 200,000.
At the beginning of the search, the initial temperature
(Temp) is set to be T.I At every iteration, Temp is
decreased by α where α is defined as:

α = (log (T.I) – log (T.F)) / N.I)

In the do-while loop, we generate a new solution by
random neighbourhood selection of a course and assigning
it to a randomly selected valid timeslot and room. A worse
solution could be accepted if the random number is less
then e-δ/Temp, where δ = Fitness (S*) - Fitness (So). Then
the current solution is update into a best solution. This
process continues until the temperature (Temp) is less than
the final temperature FT. Fig.2 shows the SA Pseudo code.

Generate an initial solution So (current solution)
Calculate the initial cost function value, Fitness (So);
Set BestSol = So;
Set # of iterations, IN;
Set initial temperature IT;
Set final temperature FT ;
Set decreasing temperature rate as α where
 α = (log (IT) - log (FT))/IN;
Set Temp = IT;
do while (Temp > FT)
Generate new solution (S*) by Applying Random
neighbourhood from different neighbourhood structure to the
current solution So
 Calculate Fitness (S*);
if (Fitness (So*) < Fitness (BestSol))
 So = S*;
 BestSol = S*;
else
 δ = Fitness (S*) - Fitness (So)
 Generate a random number called RN;
 if (RN ≤ e-δ/Temp)
 So = S*;
 Temp = Temp-Temp*α;
end while;

Fig. 2. SA Pseudo code

 Fitness(S*)
Fitness (BestSol)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

137

4.3 GD Pseudo code

In this work, we define a number of iterations as N.I and
an estimated quality of the final solution as e.q, a
decreasing rate, β (which is calculated using the Formula ,
adopted from Burke et al.[12]:

β = (Fitness (Sol) – Fitness (estimatedquality)) /
(NumOfIte)

at the beginning of the search we set the level is equal to
penalty cost of the initial solution, Fitness (So) and a
decreasing Value by β. In the do-while loop, some of
neighbours are defined then randomly selecting a course
and assigning it to a valid timeslot and room. A worse
solution is accepted if the cost function value of the new
solution, Fitness (S*) is lower than the level. The current
solution is updated and the process continues until the
number of iterations increases to the maximum number of
iterations, N.I, or until there is no improvement for a
certain number of iterations, referred to as not_
improving_ length_ GDA (in the pseudo-code). Fig.3
shows the GD Pseudo code.

Generate an initial solution So (current solution) Calculate the
initial cost function value, Fitness(So);
Set BestSol = So;
Set estimated quality of final solution, e.q;
Set # of iterations, N.I;
Set initial level: level= Fitness (Sol);
Set decreasing rate
 β = ((Fitness (So)-estimatedquality)/(N.I);
Set iteration = 0;
Set not_improving_counter = 0;
do while (iteration < N.I)
Generate new solution (S*) by Applying Random
neighbourhood from different neighbourhood structure
 to the current solution So
Calculate Fitness (S*);
 if (Fitness (S*) < Fitness (BestSol))
 So = S*;
 BestSol = S*;
 not_improving_counter = 0;
else if (Fitness (S*)≤ level)
 So = S*;
 not_improving_counter = 0;
 else
 Increase not_improving_counter by 1;

 if (not_improving_counter == not_improving_
 length_GDA)

 exit;
level = level - β; Increase iteration by 1;
end do;

Fig. 3. GD Pseudo code

5. Neighbourhood Structures

We implemented to the PCA, GD, SA algorithms the
same four different neighbourhood structure (N1-N4) to

evaluate the performance and effectiveness of each
algorithm with fair comparison. These different
neighbourhood structures for solving the university
course timetabling problem are:

N1: Randomly select two courses and swap their
timeslots (and rooms if feasible).

After selecting the two random courses as shown in Fig.
4, we swap the timeslots as shown in Fig. 5. If the
room’s features and size between the random selected
courses are suitable, then we swap the rooms as shown
in Fig. 6 if feasible.

Fig. 4. N1.1

Fig. 5. N1.2

Fig. 6. N1.3

N2: Randomly select two timeslots and simply swap all
the courses in one timeslot with all the courses in the
other timeslot. In Fig. 7, for example, we select the
courses in one timeslot (T3) and swap with the
courses in the other timeslot (T44).

Fig. 7. N2

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

138

N3: Randomly select four courses and swap their
timeslots (and rooms if necessary). In Fig. 8, for
example, we select four random courses; we swap the
1st course (E98) with the 4th course (E25) and swap the
2nd course (E11) with the 3rd course (E88) if feasible.

Fig. 8. N3

N4: Randomly select a course, feasible timeslot and
feasible room, and move the course to the new timeslot
(and move the course to the new room if necessary). For
example, we select a course (E14) and assign to timeslot
(T45) as shown in Fig. 9, and assign to the room (R4) if
feasible as shown in Fig. 10.

Fig. 9. N4.1

Fig. 10. N4.2

6. Experimental Result

In this work, we tested our algorithm on a PC with an Intel
dual core 1800 MHz, 1GB RAM. These results were
obtained out of 11 runs and 200,000 iterations. We use
Socha benchmark test datasets (see Socha [11] for more
details of the problem description) to test the performance
of our approaches.

Table 2 shows the comparison between PCA, SA and GD
searches that we applied on socha benchmark datasets
under 200,000 iterations with the same neighbourhood
structures.

Table 2. Comparison between PCA and SA and GD

 PCA SA GD Data
Set Min Avg Min Avg Min Avg
S1 1 2.09 1 2.72 0 2.45
S2 1 1.54 1 2.72 0 1.72
S3 1 2.36 1 2.54 1 1.69
S4 1 1.63 1 2.09 0 2.45
S5 0 1.54 0 2.63 0 1.72
M1 136 156.09 143 174 151 169.36
M2 138 152.18 148 168.09 148 160.90
M3 165 177.72 191 211.63 174 187.45
M4 143 160.09 152 168 137 150.09
M5 135 165.09 158 181.45 121 145.18
L 789 834 772 838.90 734 808

Table. 2, shows that the results obtained indicates that PCA
outperformed SA and GD in some instances such as
medium1, medium2 and medium 3 datasets and the other
datasets were within the range of the SA and GD results
and obtained good-quality solutions for all small, medium
and large datasets. Also Table. 2, shows that GD
outperformed PCA and SA in some instances such as
small1, small2, small3, small4, medium4, medium5 and
large and the other datasets were within the range of the
PCA and SA. Also Table. 2, shows that SA obtained result
better than PCA in the large dataset and better than GD in
medium 1 dataset. Fig. 11, Fig. 12., Fig. 13, shows the box
and whisker plot that summarise the results of 11 runs on
Socha benchmark datasets for each of PCA, SA and GD
algorithms respectively.

Fig. 11. Box and whisker plot of PCA for all datasets

Fig. 12. Box and whisker plot of SA for all datasets

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

139

Fig. 13. Box and whisker plot of GD for all datasets

From Fig. 11, Fig. 12, Fig. 13 above shows that PCA In
small1, small3, small4, small5, medium1, medium2,
medium3 and medium4 dataset the median more close to
the best than worst of these runs.

In addition, Fig .11 shows that the algorithm is stable and
consistent and most of the time can produce very good
quality solution. Also shows SA in small2, small4, small5,
medium2, medium3 and medium4 dataset, we can see that
the median more close to the best than worst of these runs.
These indicate that the algorithm is stable and consistent
but sometimes can produce good quality solution. Also
shows that GD in small1, small4, small5, medium1,
medium2, medium3, medium4 and large dataset, we can
see that the median more close to the best than worst of
these runs. These indicate that the algorithm most of the
time can produce very good quality solution

Table 3, Table 4, Table 5 illustrates the statistical analysis
of applying PCA, SA and GD algorithms respectively on
the Socha benchmark datasets for more understanding
about the robustness and consistency. The statistical
readings are based on the following performance
indicators: the best score (fmin), the average score (favg) ,
the standard deviation (σ std). If there are multiple hits on
the best solution in each independent runs (11 runs for
small, 11 runs for medium, and 11 runs for the large
instances), the values listed in the table are the average
over these multiple best.

Table 3. Statistical analysis of our algorithm (PCA) applied to Socha
benchmark datasets

Data Set fmin favg Std. Dev.(σ)
Small 1 1 4 1.22
Small 2 1 2 0.52
Small 3 1 4 0.92
Small 4 1 3 0.81
Small 5 0 4 1.29

Medium 1 136 177 12.64
Medium 2 138 172 10.68
Medium 3 165 199 11.31
Medium 4 143 180 11.53
Medium 5 135 184 15.08

large 789 859 19.04

Table 4. Statistical analysis of our algorithm (SA) applied to Socha
benchmark datasets

Data Set fmin favg Std. Dev.(σ)
Small 1 1 4 1.01
Small 2 1 4 1.01
Small 3 1 5 1.29
Small 4 1 4 0.94
Small 5 0 5 1.63

Medium 1 143 203 22.11
Medium 2 148 194 16.38
Medium 3 191 247 16.44
Medium 4 152 193 12.77
Medium 5 158 198 11.81

large 772 875 34.47

Table 5. Statistical analysis of our algorithm (GD) applied to Socha
benchmark datasets

Data Set fmin favg Std. Dev.(σ)
Small 1 0 6 1.63
Small 2 0 4 1.50
Small 3 1 5 1.58
Small 4 0 5 1.63
Small 5 0 5 1.79

Medium 1 151 195 16.06
Medium 2 148 182 10.87
Medium 3 1474 208 10.65
Medium 4 137 162 8.083
Medium 5 121 165 16.19

large 734 808 23.74

From Table 3, Table 4 and Table 5 above, shows the
average score of PCA better than SA in all datasets and
equal small1 dataset, also better than GD in all datasets
except medium4, medium5 and large datasets. Also Table
3, Table 4 and Table 5, shows that the standard deviation
of PCA better than SA in all datasets and except small1
dataset, also better than GD in all datasets except medium3,
medium4 datasets.

From Fig. 11, Fig. 12, Fig. 13, Table 2, Table 3, Table 4
and Table 5, the result in Table 2 indicate that PCA
obtained good quality solution in the all medium datasets.
Meanwhile the result in Box and whisker plot and the
Statistical analysis shows that PCA obtained good quality
solution for all datasets comparable with SA and GD.

Table 6 shows the comparison between PCA with other
local hybrid meta-heuristic searches. The best results are
presented in bold. The observation of the results obtained
indicates that PCA performed well and obtained a
good-quality solution for all the small, medium and large
datasets. The results of all small datasets scored zeros, the
same as some of those published results; whilst for
medium and large datasets our result are comparable to
other published results.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

140

Table 6. Comparison between PCA and other local hybrid
meta-heuristic search results on course timetabling problem

Note:
R1. VNS-TS [15]. R2. ELM-GD[16]. R3. EGD [17].
R4.HEA [18]. R5. DHC-OABA[19]. R6. FMHA [20].
R7. GA-LS [21]. R8. RII-C N [22]. R9. GBHH [23].
R10. NLGD [13]. R11. AMMA-LS [24].

Abdullah et al. [15] reproduced the used of eight
neighbourhoods in Randomized Iterative Improvement
with Composite Neighborhood (RII-CN) [22] along with
three additional neighbourhoods had been used in Variable
Neighbourhood Structure with Tabu Search (VNS-TS)
algorithm for clarity and completeness.

The Result for Electromagnetic like Mechanism and Great
Deluge (ELM-GD) from S1 to M5 datasets obtained
within 10 hours and 200,000 iterations for each [16].

 Extended Great Deluge (EGD) has produced the best
results of all datasets except the large dataset and each best
result has been obtained within a range between 15 to 60
seconds for the small datasets, and 200,000 iterations with
10 runs for each to obtain an average value [17].

Hybrid Evolutionary Algorithm (HEA) obtained feasible
results for the whole datasets, and 8 best results out of 11
for among Evolutionary Algorithm along with beating
only 1 dataset (large) among local search methods; their

termination criterion is set to 200,000 iterations, and 10
hours to obtain each result [18].

Graph-Based Hyper-Heuristic (GBHH) produced only one
good quality and competitor result for the 5th medium
datasets. They considered the number of iterations as 5
multiply by number of events [23].

Asmuni et al. [20] provided a comparison of solution
quality and rescheduling procedure (required for
producing solutions) between the Fuzzy Multiple Heuristic
Approach (FMHA) and single heuristics ordering in
solving the problem [20]. The single heuristic ordering is a
basic version of the timetabling problem and can be
considered as a graph coloring problem, which means,
does not handle the soft constraints. The used single
heuristics ordering in their work are: Largest Degree first,
Largest Enrolment first, Least Saturation Degree first,
Largest Colored Degree first and for large dataset).

Die Hard Co-Operative Ant Behaviour Approach
(DHC-OABA) [19] obtained a feasible competitor results
to others in some datasets.

The hybrid meta-heuristics Non-Linear Great Deluge
(NLGD)performed well and obtained good quality results
for all medium datasets, and large dataset as well, beside
one optimal solution for the S5 dataset with a fixed
computational time in seconds (3600 for small datasets,
4700 for medium, 6700 for the large dataset), and run the
algorithm 10 times for each dataset[13].

Genetic Algorithm and Local Search (GA-LS) [21]
perform separate Local Search routine with genetic
algorithm but the result were not comparable, Ant
MAX-MIN Algorithm (AMMA)with a separate Local
Search routine (10 runs and 200,000 iterations, and a
limited given time: 90sec for small datasets, 900sec for
medium datasets, and 9000sec takes approximately 10
hours for each datasets)[24].

The result also shows that PCA capable of
producing feasible solution for all datasets with
high quality solutions that are comparable with the
best-known results obtained in the literature.
Results of the PCA are seems to be quite good for
all the datasets (best results obtained out of 11
runs, 200,000 iterations).

7. Conclusions

The overall goal of this work is to investigate the
effectiveness of applying PCA as a meta-heuristic search
for solving the university course timetabling problem. In

PCA Data
Set Min Avg

 R1 R2 R3 R4 R5

S1 1 2.09 0 0 0 0 5
S2 1 1.54 0 0 0 0 5
S3 1 2.36 0 0 0 0 3
S4 1 1.63 0 0 0 0 3
S5 0 1.54 0 0 0 0 0
M1 136 1569 338 175 80 221 176
M2 138 152.18 326 197 105 147 154
M3 165 177.72 384 216 139 246 191
M4 143 160.09 299 149 88 165 148
M5 135 165.09 307 190 88 130 166
L 789 834 - 912 730 529 798

Data
Set R6 R7 R8 R9 R10 R11

S1 10 2 0 6 3 1
S2 9 4 0 7 4 3
S3 7 2 0 3 6 1
S4 17 0 0 3 6 1
S5 7 4 0 4 0 0
M1 243 254 242 372 140 195
M2 225 258 161 419 130 184
M3 249 251 265 359 189 248
M4 285 321 181 348 112 164.5
M5 132 276 151 171 141 219.5
L 1138 1027 - 1068 876 851.5

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

141

order to evaluate the effectiveness of our approach, we test
it on Socha benchmark test datasets. PCA start by generate
solution by any constructive heuristic then apply random
neighbourhood selection to generate new solution and a
function ‘‘Exploration’’ performs local search to enhance
the solution. In the Exploration’’ phase we apply Hill
Climbing search. In addition the function ‘‘Scattering’’ in
PCA consider as the acceptance criteria, where the
algorithm is more likely to accept little bit worse solution
based on scattering formula. Results indicate that using the
Particle Collision Algorithm approach and defining the
suitable Neighbourhood Structure (N1-N4) is comparable
with the other approaches in the literature in small,
medium and large datasets and is particularly suitable for
solving course timetabling problems. The PCA approach is
capable of producing high quality solutions in reasonable
time. Our future work is to improve the PCA with other
optimisation methods and to improve PCA to be capable
with all kind of datasets.

7. References

[1] S. Petrovic, and E.K. Burke, “University timetabling” ,

Ch. 45 in the Handbook of Scheduling: Algorithms, Models,
and Performance Analysis (eds. J. Leung), Chapman
Hall/CRC Press, 2004.

[2] A. Schaerf, “A Survey of Automated Timetabling”,
Technical Report CS-R9567, CWI, Amsterdam,NL,
1995.

[3] S. Even, A. Itai and A. Shamir, “On the Complexity of
Timetable and Multi commodity Flow Problem”, SIAM J.
Comput., 5(4):691-703, 1976.

[4] R. Lewis, B. Paechter and B. McCollum,” Post Enrolment
based Course Timetabling”: A Description of the Problem
Model used for Track Two of the Second International
Timetabling Competition, Cardiff Working Papers in
Accounting and Finance A2007-3. Prifysgol Caerdydd/
Cardiff University, Wales. ISSN: 1750-6658, v 1.0, 2007.

[5] D. De Werra, “An Introduction to Timetabling”. European
Journal of Operations Research, 19, pp 151-162, 1985.

[6] V. Bardadym, Computer-Aided School and University
Timetabling: The New Wave. In Edmund Burke and Peter
Ross, editors, “The Practice and Theory of Automated
Timetabling” : Selected papers from the 1st International
Conference, Springer Lecture Notes in Computer Science
Vol 1153, pp 22-45, (1996)

[7] A. Schaerf, “A Survey of Automated Timetabling”.
Artificial Intelligence Review 13(2), pp 87-127, 1999.

[8] E. K. Burke, J. Kingston and D. de Werra , “ Applications
to Timetabling”. Handbook of Graph Theory, (editors, J.
Gross and J. Yellen), Chapman Hall/CRC Press, pp
445-474, 2004.

[9] D. Costa, “A tabu search for computing an operational
timetable”. European Journal of Operational Research, 76,
pp 98-110, 1994.

[10] W. F. Sacco and B. de Oliveira, “A new stochastic
optimization algorithm based on particle collisions”. In:
Transactions of the American Nuclear Society, vol. 92,
2005,ANSAnnualMeeting, San Diego, CA, June, 2005.

[11] K. Socha, J. Knowles and M. Samples “A max-min ant
system for the university course timetabling problem”.
Proceedings of the 3rd International Workshop on Ant
Algorithms, ANTS 2002, Springer Lecture Notes in
Computer Science Vol 2463 (10), pp 1-13, 2002.

[12] E. K. Burke, Y. Bykov, J. Newall and S. Petrovic, “ A
time-predefined approach to course timetabling”. Yugoslav
Journal of Operations Research (YUJOR), 13(2), pp
139-151, 2003.

[13] D. Landa-Silva and J.H. Obit, “Great Deluge with
Non-linear Decay Rate for Course timetabling Problems”,
2008 4th International IEEE Conference Intelligent
Systems, 978-1-4244-1739-1/08/, 2008.

[14] H.H. Hoos and T. Stutzle, “Stochastic Local Search:
Foundations and Applications”, Elsevier/Morgan
Kaufmann, San Francisco. Mathematical Methods Of
Operation Research, ISBN 1-55860-872-9658, Vol. 63, No.
1/ February 2006, pp. 193-194. 2006.

[15] S. Abdullah, E.K. Burke and B. McCollum, “An
Investigation of Variable Neighbourhood Search for
Course Timetabling”. In: The Proceedings of the 2nd
nnnMultidisciplinary International Conference on
Scheduling: Theory and Applications (MISTA 2005), New
York, USA, July 18th-21st, pages 413-427, 2005.

[16] S. Abdullah and H. Turabieh, “Electromagnetic Like
Mechanism and Great Deluge for Course Timetabling
Problems”, In the First 2008 Seminar on Data Mining and
Optimization DMO, vol. I, ISBN 9778-967-5048-36-4,
21-25, 2008.

[17] P. McMullan “An Extended Implementation of the Great
Deluge Algorithm for Course Timetabling”, ICCS
International Conference of Computational Science, Part I,
LNCS Lecture Note in Computer Science, vol. 4487, pp.
538-545, Springer-Verlag Berlin Heidelberg, Germany,
2008.

[18] S. Abdullah, E.K. Burke and B. Mccollum, “A hybrid
evolutionary approach to the university course timetabling
problem”, In Proceedings of the IEEE Congress on
Evolutionary Computation. Singapore, September, 2007.

[19] N. Ejaz and M. Javed, “Approach for Course Scheduling
Inspired by Die-Hard Co-Operative Ant Behavior”,
Proceedings of the IEEE International Conference on
Automation and Logistics August 18 - 21, 2007, Jinan,
China , 2007.

[20] H. Asmuni, E. K. Burke and J. M. Garibaldi, “Fuzzy
Multiple Heuristic Ordering for Course Timetabling”, In:
The Proceedings of the 5th United Kingdom Workshop on
Computational Intelligence (UKCI05), London, UK,
September 5th-7th, 302-309, 2005.

[21] S. Abdullah and H. Turabieh, “Generating University
Course Timetabling Using Genetic Algorithm and Local
Search”, In the Third 2008 International Conference on
Convergence and Hybrid Information Technology ICCIT,
vol. I, 254-260, 2008.

[22] S. Abdullah, E.K. Burke and B. McCollum “An
investigation of a variable neighbourhood search approach
for course timetabling”, The Proceedings of the 2nd
Multidisciplinary International Conference on Scheduling:
Theory and Applications (MISTA 2005), New York, USA,
pp. 413-427, 2006.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

142

[22] S. Abdullah, E.K. Burke and B. McCollum, “Using a
Randomised Iterative Improvement Algorithm with
Composite Neighbourhood Structures for the University
Course Timetabling Problem”. In Metaheuristics - Progress
in Complex Systems Optimization (Doerner K. F.,
Gendreau M., Greistorfer P., Gutjahr W. J., Hartl R. F.,
and Reimann M., Eds.), Computer Science Interfaces Book
Series, Springer Operations Research,
ISBN-13:978-0-387-71919-1, Vol 39, pp 153-169, 2007.

[23] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic and
R. Qu, “A Graph-Based Hyper-Heuristic for Educational
Timetabling Problems”, European Journal of Operational
Research, 2006.

[24] K. Socha, M. Samples and M. Manfrin, “Ant algorithm
for the university course timetabling problem with regard
to the state-of-the-art”, The Proceedings of the 3 European
Workshop on Evolutionary Computation in Combinatorial
Optimisation, Essex, UK, Lecture Notes in Computer
science 2611, Springer-Verlag, pp. 334-345, 2003.

AnmarAbuhamdah received the
B.Sc from Princess Sumaya
University for Technology in 2003.
After working as a programmer and
consultant (from 2003) in Quest
Scope Company. He received the
Master of Science (Intelligent System)
from Universiti Utara Malaysia in
2006. After working as lecturer in
Almjd Quality. After doing Phd in
Universiti Kebangsaan Malaysia from

2007) with Data Mining & Optimization Group (DMO), Centre
of Artificial intelligence Technology (CAIT). His research
interest includes Timetabling scheduling, real time system,
software development. He is a member of IEEE (2001).

Masri Ayob received the Bachelor
of Engineering degree from
Universiti Kebangsaan Malaysia in
1990. After working as lecturer in
Butterworth Institute of Technology
(BIT) From (1990), researcher in
MIMOS BHD (from 1992). She
received her Master of Electrical
(MEng) from Universiti Teknologi
Malaysia in 1996. After working as
lecturer in UKM (Faculty Of
Information Science & Technology)

(from 1997), Post Doctoral Researcher in University of
Nottingham (From 2005).She received her Phd (Computer
Science) from The University of Nottingham in 2005. After she
working as Senior lecturer in UKM (Faculty Of Information
Science &Technology) (from 2006), Deputy
Director(Application System and Information Management)in
UKM (Center of Information Technology) (from 2006). Her
research interest includes Automated Scheduling - Machine
Optimisation, Timetabling, Job Shop Scheduling, Nurse
Scheduling, etc, Microprocessor/Microcontroller Board Design,

SCADA System , Assembly Language Programming,
Programmable Logic Controller, Process Automation. She is is
a member of CISched 2007, ISDA 2007 AIPR 07, ISDA 2006,
ICTAI 06.

