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Summary 
This work presents a Particle Collision Algorithm (PCA) to solve 
university course timetabling problems. The aim is to produce an 
effective algorithm for assigning a set of courses, lecturers and 
students to a specific number of rooms and timeslots, subject to a 
set of constraints. PCA approach that was originally introduced 
by Sacco for policy optimization. PCA always accepts improved 
solution but adaptively accepts worse solution based on the 
quality of the solution. PCA differs from Simulated Annealing 
and other meta-heuristic approaches where, before accepting the 
trial solution (although we obtain good-quality solution), PCA 
attempts to further enhance the trial solution by exploring 
different neighbourhood structures. Therefore, PCA could be able 
of escaping from local optima. We evaluate the effectiveness of 
PCA. This testing it on standard test benchmark course 
timetabling datasets which were introduced by Socha. Results 
show that PCA significantly outperformed Simulated annealing 
(SA) and Great Deluge approach in some instances. Results also 
show that PCA is able to produce good quality solutions, which 
are comparable to other work in the literature. 
Key words: 
Course Timetabling Problem; Meta-Heuristics; Particle 
Collision Algorithm; Simulated Annealing; Great Deluge. 

1. Introduction 

The university course timetabling problem involves 
assigning a set of courses, lecturers and students to a 
specific number of rooms and timeslots [1]. The goal is to 
produce high-quality timetable that satisfies all hard 
constraints and attempts to accommodate soft constraints 
as much as possible. A feasible timetable must satisfy all 
hard constraints, and soft constraints can be violated if 
necessary. However, each violation of the soft constraints 
will increase the penalty cost. A good quality timetable 
should have a small penalty value. A course timetabling 
problem is an NP-complete problem [2-4], to which it is 
difficult to find an optimal solution in a reasonable time. 
Finding good-quality solutions to these problems depends 
on the technique itself and the neighbourhood structure 
employed during the search. Various approaches and 
techniques have been intensively applied to the course 
timetabling problems over the last few years. For further 
information on previous works, please refer to the 
following survey/overview papers: [5-9].  
 

In this work, we investigate the effectiveness of applying a 
Particle Collision Algorithm to solving university course 
timetabling problems. Particle Collision Algorithm (PCA) 
was originally introduced by Sacco et al. [10]. The 
structure of PCA resembles the simulated annealing 
structure. The algorithm starts with solution generated by 
any constructive heuristic method; the solution will be 
iteratively improved [10]. A basic difference is that, it does 
not rely on user-defined parameters. PCA always accept 
improving solution. However, worse solution will 
probability be accepted based on the quality of solution. 
This may avoid being trap in local optima [10].  
 
The aim of this work is to investigate the performance of 
applying PCA for solving course timetabling problems. In 
order to evaluate the effectiveness of the enhanced 
algorithm, we tested it on eleven standard benchmark 
datasets that were introduced by Socha et al. [11] and 
made comparison with the simulated annealing and great 
deluge algorithm that were applied on examination 
timetabling problem by Burke et al. [12] with the same 
parameters as those employed in Burke et al. [12], then we 
compare the PCA with other approaches in the literature. 
 
2. Problem Description  
 
In this work, we use eleven datasets introduced by Socha 
et al [11] in the first international timetabling competitions. 
These datasets tackle the students’ satisfaction only for the 
course timetabling problem. The problem consists of:  
 
• A set of events to be scheduled in 45 timeslots (5 days 

of 9 hours each). 
• A set of rooms in which events can take place.  
• A set of students who attend the events. 
• A set of features characterizing the rooms and required 

by events.  
 
These eleven datasets are categorized into three groups, 
small (S1,S2,S3,S4,S5) , medium (M1,M2,M3,M4,M5) 
and large (L) (see Table 1).  
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Table 1.  Eleven Datasets (Socha ET  al -2002) 

Datasets # Events #Rooms # Features    # Students

S1 100 5 5 80 
S2 100 5 5 80 
S3 100 5 5 80 
S4 100 5 5 80 
S5 100 5 5 80 
M1 400 10 5 200 
M2 400 10 5 200 
M3 400 10 5 200 
M4 400 10 5 200 
M5 400 10 5 200 
L 400 10 10 400 

 
Table 1, shows the attributes of the eleven datasets, for 
each individual dataset, either for small, medium or large 
datasets. Each dataset has a different number of conflicts 
even if they have the same number of (events, rooms, 
features, students). These datasets were collected from 
various real-world university course timetabling problems 
(see details description in [11]). In order to produce a 
feasible timetable, all hard constrains must be satisfied. 
Soft constraints should be satisfied as much as possible. 
These datasets that were introduced in international 
timetabling competitions include   (Hc1, Hc2 and Hc3) 
hard constraints and (Sc1, Sc2 and Sc3) soft constrains, as 
follows:   
 
a) Hard constrains.  

Hc1: No student attends more than one event at the 
same time.  

Hc2: The room is big enough for all the attending 
students and has all the features required by the 
event. 

Hc3: Only one event takes place in each room at any 
timeslot. 

 
  b)  Soft constrains  

  Sc1: A student should not have a class in the last slot of 
the day.  

  Sc2: A student should not have more than two classes 
consecutively. 

  Sc3: A student should not have a single class on a day.    
 

The quality of timetable is measured by penalizing equally 
each violation of the Soft constraints, where each violation 
will be penalized ‘1’ for each student who involve in this 
situation. 
 
3. Construction Algorithm  
 
In this work, we use a constructive heuristic was proposed 
by Landa-Silva, and Obit [13]. We obtained the feasible 
solution by adding and removing courses from the 

timetable while using the tabu list until we had a feasible 
timetable (satisfy hard constraints), as follow: 

 
• Step 1 (Highest Degree Heuristic Step): After we assign 

all the events that do not have conflict, we assign 
randomly the unassigned event with the highest number 
of conflicts (not satisfying the hard constraints) to 
timeslots. Then, assigning all events to timeslots, we 
assign each event to a room by using the maximum 
matching algorithm for bipartite graph (see [28]). Even 
after ending this step, there is no guarantee that the 
timetable satisfies the hard constrains (no guarantee for 
feasible timetable). Otherwise  if not feasible, we move 
to step 2.  

• Step 2 (Local Search Step): Two neighbourhood 
structure moves (move 1, move 2) were applied to 
construct a feasible timetable that we could not obtain to 
the Highest Heuristic Degree. The move will be 
accepted if it is more satisfying of hard constraints, to 
find the feasibility. After 10 iterations, if the quality of 
solution does not improve, then this step is terminated. 
Otherwise  if not feasible, we move to step 3.  

• Step3 (Tabu Search Step): Tabu search had been applied 
using move 1 only. “The tabu list contains events that 
were assigned less than tl iterations before calculated as 
tl = ran(10) + δ × nc, where ran(10) is a random number 
between 0 and 10, nc is the number of events involved 
in hard constraint violations in the current timetable, and 
δ = 0.6” [28]. After 500 iterations, if the quality of 
solution does not improve, this step will be terminated. 
 
We repeat the local search step and the Tabu search step 
until we find a feasible solution.  
 

4. The Algorithms  
 
In this work, we applied three algorithms Simulated 
Annealing (SA), Great Deluge (GD) and Particle Collision 
Algorithm (PCA) to evaluate the performance of PCA. We 
applied Simulated Annealing algorithm and Great Deluge 
algorithm with the same parameters as those employed to 
both algorithm in Burke et al. [12]. Particle Collision 
Algorithm (PCA) was introduced by Sacco et al. [10] in 
2005. This is a stochastic optimization algorithm based on 
simulated annealing approach. PCA structure resembles a 
simulated annealing structure, but the basic difference that 
is does not have cooling schedule and it does not rely on 
user-defined parameters. Since the acceptance criteria of 
PCA can probably accept worst solution, it is capable of 
avoiding being trapped in local optima [10]. 
After generate feasible time table by any construction 
heuristic then select a random R neighbourhood structure 
N from different neighbourhood and apply to the current 
solution  to generate new  feasible solution. if the new 
solution not feasible then we apply the same 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 
 

 

136 

 

neighbourhood that had been selected NR to generate new 
feasible solution and so on.  

4.1 PCA Pseudo code  

In this work, we apply Hill Climbing Search [14] in PCA 
approach in the Exploration Phase’’, in PCA there is an 
exploration of the boundaries searching for an even better 
solution (i.e. the function ‘‘Exploration’’ performs local 
search generating a small stochastic perturbation of the 
solution inside a loop) [10]. The function ‘‘Scattering’’ in 
PCA consider as the acceptance criteria, where the 
algorithm is more likely to accept little bit worse solution 
to solve university course timetabling problem. The 
scattering is equal to the [penalty of the new solution 
divided by the penalty of best solution] minus one. Then 
we check whether the scattering value is less than the 
random number between zero and one. If yes, then we 
accept that worst solution and enhance it by exploration 
that will apply Hill Climbing search, but if greater than the 
random number between zero and one, we will not accept 
that solution. Fig.1 shows the PCA Pseudo code.  
 

Generate an initial solution So (current   solution) 
Calculate the initial cost function value, Fitness (So);  
Set BestSol = So 
Set # of n.iteration 
Set # of m.iteration 
Set index=0; 
for n = 0 to n.iterations  
Generate new solution (S*) by Applying Random   
neighbourhood from different neighbourhood structure to  
                            the current solution So 
 
 if  Fitness(S*) < Fitness (So) 
  So = Exploration (S*);         
  BestSol = So; 
 else 
  S1=Scattering (S*, BestSol); 
  So =S1; 
    if  Fitness (S1) < Fitness (BestSol) 
      BestSol = So; 
    end 
 end  
end  
------------------------------------------------------------------------            
Scattering (S*, BestSol) 
 
Scattering =                    -1; 
 
 if  Scattering > random (0, 1) 
   So = BestSol; 
else 
   So = Exploration (S*);         
end  
Return So 
------------------------------------------------------------------------                                                 
Exploration (S*) 

for m = 0 to m. Iterations 
Generate new solution (S1*) by applying neighbourhood 
structure to the solution (S*) 
 if  Fitness (S1*) < Fitness(S*) 
   S*= S1*; 
 end             
end  
 Return S* 

 Fig. 1. PCA Pseudo code  

4.2 SA Pseudo code  

In this work, we applied the simulated annealing algorithm 
with the same parameters as those employed in Burke et al. 
[12], where the initial temperature IT is equal to 5000, the 
final temperature FT is equal to 0.05 and the number of 
iterations, IN is set to be 10,000,000 but in our work we 
set the number of iterations, IN is set to be 200,000. 
At the beginning of the search, the initial temperature 
(Temp) is set to be T.I At every iteration, Temp is 
decreased by α where α is defined as:  

α = (log (T.I) – log (T.F)) / N.I)  

In the do-while loop, we generate a new solution by 
random neighbourhood selection of a course and assigning 
it to a randomly selected valid timeslot and room. A worse 
solution could be accepted if the random number is less 
then e-δ/Temp, where δ = Fitness (S*) - Fitness (So). Then 
the current solution is update into a best solution. This 
process continues until the temperature (Temp) is less than 
the final temperature FT. Fig.2 shows the SA Pseudo code.  
 
Generate an initial solution So (current solution)       
Calculate the initial cost function value, Fitness (So);  
Set BestSol = So; 
Set # of iterations, IN;  
Set initial temperature IT;  
Set final temperature FT ;  
Set decreasing temperature rate as α where  
               α = (log (IT) - log (FT))/IN;  
Set Temp = IT;  
do while (Temp > FT)  
Generate new solution (S*) by Applying Random  
neighbourhood from different neighbourhood structure to the 
current solution So 
  Calculate Fitness (S*);  
if (Fitness (So*) < Fitness (BestSol))  
  So = S*;  
  BestSol = S*;  
else  
  δ = Fitness (S*) - Fitness (So)  
  Generate a random number called RN;  
  if (RN ≤ e-δ/Temp )  
  So = S*;  
  Temp = Temp-Temp*α;  
end while; 
 

Fig. 2. SA Pseudo code 

    Fitness(S*) 
Fitness (BestSol) 
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4.3 GD Pseudo code  

In this work, we define a number of iterations as N.I and 
an estimated quality of the final solution as e.q, a 
decreasing rate, β (which is calculated using the Formula , 
adopted from Burke et al.[12]:  

β = (Fitness (Sol) – Fitness (estimatedquality)) / 
(NumOfIte)  

at the beginning of the search we set the level is equal to 
penalty cost of the initial solution, Fitness (So) and a 
decreasing Value by β. In the do-while loop, some of 
neighbours are defined then randomly selecting a course 
and assigning it to a valid timeslot and room. A worse 
solution is accepted if the cost function value of the new 
solution, Fitness (S*) is lower than the level. The current 
solution is updated and the process continues until the 
number of iterations increases to the maximum number of 
iterations, N.I, or until there is no improvement for a 
certain number of iterations, referred to as not_ 
improving_ length_ GDA (in the pseudo-code). Fig.3 
shows the GD Pseudo code.  

Generate an initial solution So (current solution) Calculate the 
initial cost function value, Fitness(So);                                         
Set BestSol = So; 
Set estimated quality of final solution, e.q;  
Set # of iterations, N.I;  
Set initial level: level= Fitness (Sol);  
Set decreasing rate  
   β = ((Fitness (So)-estimatedquality)/(N.I);  
Set iteration = 0;  
Set not_improving_counter = 0;  
do while (iteration < N.I)  
Generate new solution (S*) by Applying Random  
neighbourhood from different neighbourhood structure  
                          to the current solution So    
Calculate Fitness (S*);  
 if (Fitness (S*) < Fitness (BestSol))  
 So = S*;  
 BestSol = S*;  
 not_improving_counter = 0;  
else  if (Fitness (S*)≤ level)  
       So = S*;  
        not_improving_counter = 0;  
     else  
      Increase not_improving_counter by 1;  

    if (not_improving_counter == not_improving_   
                              length_GDA)  

       exit;  
level = level - β; Increase iteration by 1;  
end do; 

Fig. 3. GD Pseudo code 

5. Neighbourhood Structures 

We implemented to the PCA, GD, SA algorithms the 
same four different neighbourhood structure (N1-N4) to 

evaluate the performance and effectiveness of each 
algorithm with fair comparison. These different 
neighbourhood structures for solving the university 
course timetabling problem are: 
 
N1: Randomly select two courses and swap their 
timeslots (and rooms if feasible).  
 
After selecting the two random courses as shown in Fig. 
4, we swap the timeslots as shown in Fig. 5. If the 
room’s features and size between the random selected 
courses are suitable, then we swap the rooms as shown 
in Fig. 6 if feasible. 
  

 
Fig. 4. N1.1 

 

 
Fig. 5. N1.2 

 

 
Fig. 6. N1.3 

 
N2: Randomly select two timeslots and simply swap all 
the courses in one timeslot with all the courses in the 
other timeslot. In Fig. 7, for example, we select the 
courses in one timeslot (T3) and swap with the 
courses in the other timeslot (T44). 
 

 
Fig. 7. N2 
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N3: Randomly select four courses and swap their 
timeslots (and rooms if necessary). In Fig. 8, for 
example, we select four random courses; we swap the 
1st course (E98) with the 4th course (E25) and swap the 
2nd course (E11) with the 3rd course (E88) if feasible. 
 

 
Fig. 8. N3 

 
N4: Randomly select a course, feasible timeslot and 
feasible room, and move the course to the new timeslot 
(and move the course to the new room if necessary). For 
example, we select a course (E14) and assign to timeslot 
(T45) as shown in Fig. 9, and assign to the room (R4) if 
feasible as shown in Fig. 10.  
 

 
Fig. 9. N4.1 

 

 
Fig. 10. N4.2 

6. Experimental Result  

In this work, we tested our algorithm on a PC with an Intel 
dual core 1800 MHz, 1GB RAM. These results were 
obtained out of 11 runs and 200,000 iterations. We use 
Socha benchmark test datasets (see Socha [11] for more 
details of the problem description) to test the performance 
of our approaches.  
 
Table 2 shows the comparison between PCA, SA and GD 
searches that we applied on socha benchmark datasets 
under 200,000 iterations with the same neighbourhood 
structures.  

Table 2. Comparison between PCA and SA and GD 

    PCA     SA       GD Data 
Set Min  Avg Min Avg  Min Avg 
S1 1 2.09 1 2.72  0 2.45 
S2 1 1.54 1 2.72  0   1.72 
S3 1 2.36 1 2.54  1 1.69 
S4 1 1.63 1 2.09  0 2.45 
S5 0 1.54 0 2.63  0 1.72 
M1 136 156.09 143 174  151 169.36 
M2 138 152.18 148 168.09  148 160.90 
M3 165 177.72 191 211.63  174 187.45 
M4 143 160.09 152 168  137 150.09 
M5 135 165.09 158 181.45  121 145.18 
L 789 834 772 838.90  734 808 

 
Table. 2, shows that the results obtained indicates that PCA 
outperformed SA and GD in some instances such as 
medium1, medium2 and medium 3 datasets and the other 
datasets were within the range of the SA and GD results 
and obtained good-quality solutions for all small, medium 
and large datasets. Also Table. 2, shows that GD 
outperformed PCA and SA in some instances such as 
small1, small2, small3, small4, medium4, medium5 and 
large and the other datasets were within the range of the 
PCA and SA. Also Table. 2, shows that SA obtained result 
better than PCA in the large dataset and better than GD in 
medium 1 dataset. Fig. 11, Fig. 12., Fig. 13, shows the box 
and whisker plot that summarise the results of 11 runs on 
Socha benchmark datasets for each of PCA, SA and GD 
algorithms respectively.   

  

 
Fig. 11. Box and whisker plot of PCA  for all datasets 

 

 
Fig. 12. Box and whisker plot of SA for all datasets 
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Fig. 13. Box and whisker plot of GD for all datasets 

 
From Fig. 11, Fig. 12, Fig. 13   above shows that PCA In 
small1, small3, small4, small5, medium1, medium2, 
medium3 and medium4 dataset the median more close to 
the best than worst of these runs.  
 
In addition, Fig .11 shows that the algorithm is stable and 
consistent and most of the time can produce very good 
quality solution. Also shows SA in small2, small4, small5, 
medium2, medium3 and medium4 dataset, we can see that 
the median more close to the best than worst of these runs. 
These indicate that the algorithm is stable and consistent 
but sometimes can produce good quality solution. Also 
shows that GD in small1, small4, small5, medium1, 
medium2, medium3, medium4 and large dataset, we can 
see that the median more close to the best than worst of 
these runs. These indicate that the algorithm most of the 
time can produce very good quality solution 
 
Table 3, Table 4, Table 5 illustrates the statistical analysis 
of applying PCA, SA and GD algorithms respectively on 
the Socha benchmark datasets for more understanding 
about the robustness and consistency. The statistical 
readings are based on the following performance 
indicators: the best score (fmin), the average score ( favg ) , 
the standard deviation (σ std). If there are multiple hits on 
the best solution in each independent runs (11 runs for 
small, 11 runs for medium, and 11 runs for the large 
instances), the values listed in the table are the average 
over these multiple best. 

Table 3. Statistical analysis of our algorithm (PCA) applied to Socha 
benchmark datasets 

Data Set fmin favg Std. Dev.(σ) 
Small 1 1 4 1.22 
Small 2 1 2 0.52 
Small 3 1 4 0.92 
Small 4 1 3 0.81 
Small 5 0 4 1.29 

Medium 1 136 177 12.64 
Medium 2 138 172 10.68 
Medium 3 165 199 11.31 
Medium 4  143 180 11.53 
Medium 5 135 184 15.08 

large 789 859 19.04 

Table 4. Statistical analysis of our algorithm (SA) applied to Socha 
benchmark datasets 

Data Set fmin favg Std. Dev.(σ) 
Small 1 1 4 1.01 
Small 2 1 4 1.01 
Small 3 1 5 1.29 
Small 4 1 4 0.94 
Small 5 0 5 1.63 

Medium 1 143 203 22.11 
Medium 2 148 194 16.38 
Medium 3 191 247 16.44 
Medium 4 152 193 12.77 
Medium 5 158 198 11.81 

large 772 875 34.47 

Table 5. Statistical analysis  of our algorithm (GD) applied to Socha 
benchmark datasets 

Data Set fmin favg Std. Dev.(σ) 
Small 1 0 6 1.63 
Small 2 0 4 1.50 
Small 3 1 5 1.58 
Small 4 0 5 1.63 
Small 5 0 5 1.79 

Medium 1 151 195 16.06 
Medium 2 148 182 10.87 
Medium 3 1474 208 10.65 
Medium 4 137 162 8.083 
Medium 5 121 165 16.19 

large 734 808 23.74 
 
From Table 3, Table 4 and Table 5 above, shows the 
average score of PCA better than SA in all datasets and 
equal small1 dataset, also better than GD in all datasets 
except medium4, medium5 and large datasets. Also Table 
3, Table 4 and Table 5, shows that the standard deviation 
of PCA better than SA in all datasets and except small1 
dataset, also better than GD in all datasets except medium3, 
medium4 datasets. 
 
From Fig. 11, Fig. 12, Fig. 13, Table 2, Table 3, Table 4 
and Table 5, the result in Table 2 indicate that PCA 
obtained good quality solution in the all medium datasets. 
Meanwhile the result in Box and whisker plot and the 
Statistical analysis shows that PCA obtained good quality 
solution for all datasets comparable with SA and GD.  
 
Table 6 shows the comparison between PCA with other 
local hybrid meta-heuristic searches. The best results are 
presented in bold. The observation of the results obtained 
indicates that PCA performed well and obtained a 
good-quality solution for all the small, medium and large 
datasets. The results of all small datasets scored zeros, the 
same as some of those published results; whilst for 
medium and large datasets our result are comparable to 
other published results.  
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Table 6. Comparison between PCA and other local hybrid 
meta-heuristic search results on course timetabling problem 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: 
R1. VNS-TS [15].   R2. ELM-GD[16].    R3. EGD [17].       
R4.HEA [18].      R5. DHC-OABA[19].  R6. FMHA [20].    
R7. GA-LS [21].    R8. RII-C N [22].     R9. GBHH [23].  
R10. NLGD [13].   R11. AMMA-LS [24]. 
 
Abdullah et al. [15] reproduced the used of eight 
neighbourhoods in Randomized  Iterative Improvement 
with Composite Neighborhood (RII-CN) [22] along with 
three additional neighbourhoods had been used in Variable 
Neighbourhood Structure with Tabu Search (VNS-TS) 
algorithm for clarity and completeness.  
 
The Result for Electromagnetic like Mechanism and Great 
Deluge (ELM-GD) from S1 to M5 datasets obtained 
within 10 hours and 200,000 iterations for each [16]. 
 
 Extended Great Deluge (EGD) has produced the best 
results of all datasets except the large dataset and each best 
result has been obtained within a range between 15 to 60 
seconds for the small datasets, and 200,000 iterations with 
10 runs for each to obtain an average value [17].  
 
Hybrid Evolutionary Algorithm (HEA) obtained feasible 
results for the whole datasets, and 8 best results out of 11 
for among Evolutionary Algorithm along with beating 
only 1 dataset (large) among local search methods; their 

termination criterion is set to 200,000 iterations, and 10 
hours to obtain each result [18]. 
 
Graph-Based Hyper-Heuristic (GBHH) produced only one 
good quality and competitor result for the 5th medium 
datasets. They considered the number of iterations as 5 
multiply by number of events [23].  
 
Asmuni et al. [20] provided a comparison of solution 
quality and rescheduling procedure (required for 
producing solutions) between the Fuzzy Multiple Heuristic 
Approach (FMHA) and single heuristics ordering in 
solving the problem [20]. The single heuristic ordering is a 
basic version of the timetabling problem and can be 
considered as a graph coloring problem, which means, 
does not handle the soft constraints. The used single 
heuristics ordering in their work are: Largest Degree first, 
Largest Enrolment first, Least Saturation Degree first, 
Largest Colored Degree first and for large dataset).  
 
Die Hard Co-Operative Ant Behaviour Approach 
(DHC-OABA) [19] obtained a feasible competitor results 
to others in some datasets.  
 
The hybrid meta-heuristics Non-Linear Great Deluge 
(NLGD)performed well and obtained good quality results 
for all medium datasets, and large dataset as well, beside 
one optimal solution for the S5 dataset with a fixed 
computational time in seconds (3600 for small datasets, 
4700 for medium, 6700 for the large dataset), and run the 
algorithm 10 times for each dataset[13].  
 
Genetic Algorithm and Local Search (GA-LS) [21] 
perform separate Local Search routine with genetic 
algorithm but the result were not comparable, Ant 
MAX-MIN Algorithm (AMMA )with a separate Local 
Search routine (10 runs and 200,000 iterations, and a 
limited given time: 90sec for small datasets, 900sec for 
medium datasets, and 9000sec  takes approximately 10 
hours for each datasets)[24]. 
 
The result also shows that PCA capable of 
producing feasible solution for all datasets with 
high quality solutions that are comparable with the 
best-known results obtained in the literature. 
Results of the PCA are seems to be quite good for 
all the datasets (best results obtained out of 11 
runs, 200,000 iterations). 
 
7. Conclusions  
 
The overall goal of this work is to investigate the 
effectiveness of applying PCA as a meta-heuristic search 
for solving the university course timetabling problem. In 

PCA Data 
Set Min Avg 

 R1 R2 R3 R4 R5 

S1 1 2.09 0 0 0 0 5 
S2 1 1.54 0 0 0 0 5 
S3 1 2.36 0 0 0 0 3 
S4 1 1.63 0 0 0 0 3 
S5 0 1.54 0 0 0 0 0 
M1 136 1569 338 175 80 221 176 
M2 138 152.18 326 197 105 147 154 
M3 165 177.72 384 216 139 246 191 
M4 143 160.09 299 149 88 165 148 
M5 135 165.09 307 190 88 130 166 
L 789 834 - 912 730 529 798 

Data 
Set R6 R7 R8 R9  R10  R11

S1 10 2 0 6 3 1 
S2 9 4 0 7 4 3 
S3 7 2 0 3 6 1 
S4 17 0 0 3 6 1 
S5 7 4 0 4 0 0 
M1 243 254 242 372 140 195 
M2 225 258 161 419 130 184 
M3 249 251 265 359 189 248 
M4 285 321 181 348 112 164.5
M5 132 276 151 171 141 219.5
L 1138 1027 - 1068 876 851.5
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order to evaluate the effectiveness of our approach, we test 
it on Socha benchmark test datasets. PCA start by generate 
solution by any constructive heuristic then apply random 
neighbourhood selection to generate new solution and a 
function ‘‘Exploration’’ performs local search to enhance 
the solution.  In the Exploration’’ phase we apply Hill 
Climbing search. In addition the function ‘‘Scattering’’ in 
PCA consider as the acceptance criteria, where the 
algorithm is more likely to accept little bit worse solution 
based on scattering formula. Results indicate that using the 
Particle Collision Algorithm approach and defining the 
suitable Neighbourhood Structure (N1-N4) is comparable 
with the other approaches in the literature in small, 
medium and large datasets and is particularly suitable for 
solving course timetabling problems. The PCA approach is 
capable of producing high quality solutions in reasonable 
time. Our future work is to improve the PCA with other 
optimisation methods and to improve PCA to be capable 
with all kind of datasets. 
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