
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

143

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Query Processing and Optimization in Distributed Database
Systems

B.M. Monjurul Alom, Frans Henskens and Michael Hannaford

School of Electrical Engineering. & Computer Science, University of Newcastle, AUSTRALIA

Summary
Query processing is an important concern in the field of
distributed databases. The main problem is: if a query can be
decomposed into subqueries that require operations at
geographically separated databases, determine the sequence and
the sites for performing this set of operations such that the
operating cost (communication cost and processing cost) for
processing this query is minimized. The problem is complicated
by the fact that query processing not only depends on the
operations of the query, but also on the parameter values
associated with the query. Distributed query processing is an
important factor in the overall performance of a distributed
database system.

Query optimization is a difficult task in a distributed
client/server environment as data location becomes a major
factor. In order to optimize queries accurately, sufficient
information must be available to determine which data access
techniques are most effective (for example, table and column
cardinality, organization information, and index availability).
Optimization algorithms have an important impact on the
performance of distributed query processing.

In this paper, we describe the distributed query
optimization problem in detail. We then present a (ARRQ)
technique to process queries with a minimum quantity of
intersite data transfer. The technique can be used to process the
query where all of the relations referenced by a query are non-
fragmented but distributed in different sites. The proposed
technique is used to determine which relations are to be
partitioned into fragments, and where the fragments are to be
sent for processing. The technique is efficient compared to other
techniques, as it generally chooses more than one relation to
remain fragmented which exploits parallelism, while replicating
the other relations (excluding the fragmented relations) to the
sites of the fragmented relations. Thus the communication costs
and local processing costs can be reduced due to the reduced size
of the fragmented relations and the response time of queries can
be improved.
Key words:
Join, Semijoin, Query, FRS, PRS, LR, and Optimization.

1. Introduction

Distributed and parallel processing is an efficient way of
improving the performance of Database Management
Systems (DBMSs) and applications that manipulate large

volumes of data [1]. A distributed database management
system (DDBMS) supports the formation (creation) and
maintenance of distributed databases, where data are
stored at different sites connected through a network. An
objective of a DDBMSs is to present an easy and unified
interface to the users so that they can access the databases
as if there were a single database [2]. Another important
objective of DDBMS is to process distributed queries
efficiently in addition to providing availability and
reliability. Distributed database systems (DDBS) and
distributed computing systems (DCS) differ in the
resources to be shared. DCS share hard disks and printers
etc. while DDBS distribute data, where the data as well as
operations on the data items are equally important [3] .

Since data are geographically distributed in such
a distributed relational database system, the processing of
a distributed query is composed of the following three
phases: local processing phase, reduction phase, and final
processing phase [4]. The local processing phase involves
local processing such as selections and projections; the
reduction phase uses a sequence of reducers (i.e, semijoins
and joins) to reduce the size of relations; and the final
processing phase sends all resulting relations to the
assembly site where the final result of the query is
constructed. Clearly, a straightforward approach to
processing a distributed query would be to send all
relations directly to the assembly site, where all joins are
performed. This naive method, however, is unfavourable
due to its high transmission overhead and because little
parallelism is exploited. In distributed query processing,
partitioning a relation into fragments, union of the
fragments to form a whole relation, and transferring a
relation/fragment from one database to another database
are common operations [2].

The optimizers of R* [5] and Distributed-
INGRES [6] , take both local processing costs and
communications costs into account. In R*, a join between
two relations is performed at a single site by using the
nested-loop method or the merge-scan method. For a
general query, R* exhaustively enumerates all possible
sequences of joins with all possible join methods and
allocates joins at each possible site. Since each join is
performed at only a single site, existence of multiple

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

144

processors at different sites is not considered for
improving performance through parallel execution. In
contrast, Distributed-INGRES uses the “fragment and
replicate” query processing strategy [7]. The strategy
requires one of the relations referenced by a query to be
fragmented and other relations to be replicated at the sites
that have a fragment of the fragmented relation. The query
is decomposed into the same number of subqueries as the
number of sites and each subquery is processed at one of
these sites. Its main feature is that it allows parallel
processing.

Many other algorithms [8, 9], [10], [11], [12-15]
also take advantage of fragmentation to process queries.
For example, the algorithm given in [12] , called the
Fragment and Replicate Strategy (FRS) algorithm, is
based on the same principle as that of [7]. However, it
takes into account not only the amount of data transferred
and processed at individual sites, but also the presence or
absence of fast access paths (e.g., indexes) to reduce
response time. When all the relations referenced by a
query are unfragmented, the FRS algorithm can not be
used. Another strategy is to partition one of the referenced
relations into a number of fragments and distribute the
fragments to a number of sites so that the query can be
processed in parallel at different sites [13] . In [15], a
Partition and Replicate Strategy (PRS) algorithm is given
to determine which relation and which copy of the relation
is to be partitioned into fragments, how many fragments
are to be produced, and where these fragments are to be
sent for processing.

Both FRS and PRS require substantial data
transfer and preparation before a query can be processed
in parallel at different sites. By doing local reduction of
the fragments or relations before transferring them, i.e., do
some projections and selections, the data transfer cost can
be reduced and subsequent local processing (join) cost
may also be reduced due to smaller sized relations.
However, performing local reduction takes time and
delays data transfer. It is not always true that local
reduction will reduce the response time for the processing
of a given query. In order to reduce response time for a
query, an algorithm is described in [14], called the Local
Reduction (LR) algorithm which is used to decide the set
of relations to be locally reduced before data transfer.

Two approaches namely semijoin [16] and join
sequence [8] have been used to reduce the amount of data
transmission required for the phases of distributed query
processing. The semijoin operation from Rp to Rq, denoted
by Rq Rp, is defined as follows: Project Rp, on the join
attribute of the join between Rp and Rq first, and then ship
this projection to the site of Rq to remove nonmatching
tuples from Rq. In addition to semijoins, join operations
can also be used as reducers in processing distributed
queries [17, 18] . Using join reducers, a query is translated

into a sequence of joins, and each join is implemented
locally by shipping one of the operand relations to the site
of the other operand so as to exploit parallelism and
minimize the processing overhead. Moreover, joins and
semijoins can be combined to form an integrated scheme
to further improve distributed query processing ([17] ,
[19]). As pointed out in [18] , the approach of combining
join and semijoin operations can be more beneficial due to
the inclusion of join reducers. Also, this approach can
reduce the communication cost further by taking
advantage of the removability of pure join attributes.

While a significant amount of research effort has
been reported on developing algorithms based on joins
and semijoins, there is relatively little progress made to the
complexity of the distributed query processing. As a result,
proving NP-hardness of, or devising polynomial-time
algorithms for, certain distributed query optimization
problems have been elaborated by many researchers [4].
However, due to their inherent difficulty, the complexity
of the majority of problems on distributed query
optimization remains unknown [4]. Traditionally,
distributed query optimization techniques generate static
query plans at compile time. The optimality of these plans
depends on many parameters (such as the selectivities of
operations, the transmission speeds and workloads of
servers) that are not only difficult to estimate but are also
often unpredictable and variable at runtime. The main
difference between centralized and distributed query
optimization is in the method-structure space module,
which offers additional processing strategies and
opportunities for transmitting data for processing at
multiple sites. In [20], Ibaraki and Kameda describe query
optimization as an NP-complete problem whilst using the
nested loops join method.

In this paper we describe (ARRQ) a technique to
process a query where all the relations referenced by a
query are not fragmented but distributed in different sites.
The proposed technique is used to determine which
relations are to be partitioned into fragments, and where
the fragments are to be sent for processing. Our objective
is to process queries by exploiting parallelism, as well as
minimizing the quantity of inter-site data transfer. The
proposed technique provides better efficiency in terms of
query processing cost when the given query references all
the relations or more than one relation (for different sites)
that presents (the where condition) predicates of the query.
We are more concerned to fragment more than one
referenced non fragmented relations as FRS is not
applicable to processing distributed queries in which all of
the relations which are non fragmented but referenced by a
query. We also characterize distributed query optimization
problems.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

145

The remainder of this paper is organized as
follows: different methodologies for distributed query
processing are described in section 2. Components and
problems of distributed query optimization are described
in section 3. The proposed query processing technique is
presented in section 4. The paper concludes with a
discussion and final remarks in section 5.

2. Different Methodologies for Distributed
Query Processing

P. Valduriez [1] has described a methodology of
distributed query processing, and this is shown in Fig.1.

Query
Decomposition

Data
Localization

Global
Optimization

Local
Optimization

Calculus Query on
Distributed Relations

Algebric Query
on Distributed Relation

Fragment Query

Optimized Fragment Query
with communication operation

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENT

LOCAL
SCHEMA

Optimized Local Query

Local Site

Control Site

Fig. 1 Distributed Query Processing Methodology.

The input is a query on distributed data expressed in
relational calculus. Four main layers are involved to map
the distributed query into an optimized sequence of local
operations, each acting on a local database. These layers
perform the functions of query decomposition, data
localization, global query optimization, and local query
optimization. Query decomposition and data localization
correspond to query rewriting. The first three layers are
performed by a central site and use global information.
Local optimization is done by the local sites.

The functionality of distributed query processing
is demonstrated in the following examples using two
different (semijoin and join) strategies:
Suppose a database is distributed into three different sites;
for example Operation, Nursing, and ICU (Intensive Care
Unit) sites. The schemas of these relations are ROP
(Patname, DOB, Admit, Discharge, Dept), RNU (Patname,

DOB, GP), and RICU (Patname, DOB, Weight,
Type_work) respectively. It is required to find Patname,
Admit, Type_work, and Weight from Operation site;
wherein Dept should be Orthopedics, Admission must be
before 1st January, Patname should be common between
Operation and ICU sites, and the weights must be greater
than seventy. The query in SQL is as follows:
Select Patname, Admit, Type_work, Weight
From ROP , RICU
Where (ROP.Patname=RICU.Patname) and (Dept=
Orthopedics) and (Admit > 1st January) and (Weight > 70).

According to the Semijoin strategy the query processing is
as follows:
Step-1:
Restrict ROP (Dept= Orthopedics, Admit> 1st January).
Project Patname from restricted ROP.
Step-2: Transmit the result R1 (from Step-1) to ICU site.
Step-3:

Restrict RICU (Weight > 70) (say N2 tuples).
Join R1 and Restricted RICU (say N3 tuples).
PROJECT these tuples over the required attributes.

Step-4: Move the Result R2 (From step-3) to Operation
site.
Step-5: JOIN result (R2) with restricted ROP at Operation
site.

Cost analysis of the Semijoin Strategy:
Let the cardinality of the Relation R1 be N1 , transmission
cost/attribute be atT −cos , cost per tuple comparison be

tuplecompC − , and cost per tuple concatenation is tuplecnC − .

Processing cost at Step-2:
 atTN −cos1 *
Processing cost at Step-3:

tuplecompCNN −** 21 + tuplecnCN −*3
Processing cost at Step-4:

atTN −cos3 *3* (There are three attributes weight,
type_work, and patname)
Processing cost at Step-5:

 tuplecompCNN −** 31 + tuplecnCN −*3

Hence the total processing cost (joinsemiTPC −) for
Semijoin strategy =

atTN −cos1 * + tuplecompCNN −** 21 + tuplecnCN −*3

+ atTN −cos3 *3* + tuplecompCNN −** 31 +

tuplecnCN −*3

= atTNN −+ cos31 *)*3(+ tuplecnCN −**2 3

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

146

 tuplecompCNNNN −+ *)**(3121 (1)

According to JOIN strategy the same query processing is
as follows:
Step-1: Send qualified tuples in Operation (projected over
three required attributes) to ICU site.
Step-2: JOIN with the restricted RICU at ICU site
Step-3: Move the result to Operation site.

Cost analysis of the join Strategy:
Transmission cost at step-1: atTN −cos1 **3

Processing cost at step-2: tuplecompCNN −** 21 +

tuplecnCN −*3

Transmission cost at step-3:

atCN −cos3 **5 (as total 5 attributes being transferred)

Therefore total cost is: atTN −cos1 **3 +

tuplecompCNN −** 21 + tuplecnCN −*3 +

atTN −cos3 **5

= atTNN −+ cos13 *)*3*5(+ tuplecompCNN −** 21 +

tuplecnCN −*3 (2)

So under the assumption that atT −cos (transmission cost/
attribute) contributes much more significantly to the cost
than tuplecnT − or tuplecompT − . Equation (1) shows that the

cost of the semijoin is probably about half of the cost of
the join strategy (despite having to JOIN at both sites).

The Structure of FRS [12] (Fragmentation and
Replication strategy):

The FRS strategy requires one of the relations
referenced by a query to be fragmented and other relations
to be replicated at the sites that have a fragment of the
fragmented relation. The query is decomposed into the
same number of subqueries as the number of sites and
each subquery is processed at one of these sites. Its main
feature is to allow parallel processing. Considering Table
1, to process the following query (using FRS strategy)
which references fragmented relations R1 and R2 and an
unfragmented relation R3:

Q= {R1.A, R2.C | R1.A= R2.A ∧ R2. B= R3.C}.
If site-S1 is selected for query processing the required steps
are:
Step-1: Find the minimum response time of the strategies
using only one site (site-1 or site-2 or site-3) to process
query.

• Transferring F12, F22 to site-1
• Union (F12 ∪ F11) and (F21 ∪ F22)
• JOIN (F12 ∪ F11) (F21 ∪ F22) R3 .

Similarly queries can be processed at site-2, and site-3.
The one with minimum response time among these three
(sites) is chosen.

Step-2: Determine the relation to remain fragmented and
the set of processing sites.

 If R1 is left fragmented, two sets of sites, {1, 3}, and
{2, 3} can be chosen to process the query Q. If Q is
processed at sites 1 and 3, site-1 will need to get F22 from
site-3 and site-3 will need to get F21 and R3 from site-1.
Therefore R2 and R3 are replicated at site-1 and site-3.

Table 1: Placement of Relation in FRS

Now the query Q is decomposed into two following
subqueries:

Q1: {F11 .A, R2 .C| F11.A=R2.A ∧ R2.B=R3.C};
Q1: {F12 .A, R2 .C| F12.A=R2.A ∧ R2.B=R3.C}; where

R2 is the union of F21 and F22 and the final result of Q =Q1
∪Q2 . Similarly the response times can be obtained for
processing query (Q) at sites 2 and 3.
If R2 is left fragmented, Q will be processed at sites 1
and 3. Similarly response time can be estimated.

The time spent at site-1 can be shown to be smaller

than that of the earlier strategy (step-1) because the
fragment F12 does not need to be transferred and processed
at Site-1. Similarly, the time at site Site-3 can be shown to
be smaller than single site processing (Step-1). Thus, the
response time if R1 is left fragmented will be smaller than
that in which either all processing takes place in site Site-1
or all processing takes place in site Site-3. Thus the
fragment and replicate strategy achieves parallel
processing and improves response time. Let m be the total
number of fragments, n be the total number of relations.
Total number of subqueries (using FRS strategy) at any
site is the product of the total number of fragments and
replicated relation which is 1−nm .

FRS has drawbacks in terms of efficiency and response
time. FRS is not applicable to processing distributed
queries; in which all of the non fragmented relations are
referenced by a query.

 Site

Relation Site-S1 Site-S2 Site-S3

R1 F11 F11 F12

R2 F21 - F22

R3 R3 - -

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

147

Partition and Replicate Strategy (PRS) [15]:
Assume the set of sites is S = {S1, S2, …..Sm}. The PRS
algorithm works as follows. For a given query, the
minimum response time is estimated if all referenced data
is transferred to and processed at only one of the sites.
Next, for each referenced relation and each copy of the
relation, the response time is estimated if the copy of the
relation is partitioned and distributed to a subset of S and
all the other relations are replicated at the sites where they
are needed. A choice of processing sites and sizes of
fragments for the selected copy of the chosen relation are
determined by PRS so as to minimize the response time.
Finally, the strategy which gives the minimum response
time among all the copies of all the referenced relations is
chosen.

Let a query reference two relations R1 and R2
which are unfragmented and distributed among three sites
S1, S2, and S3 as shown in Table 2. Assume that S3 is
slightly faster than S2 but much faster than S1. If the query
is processed only at a single site without partitioning any
relation, the strategy of sending R1 from S1 to S3 and
processing the query at S3, will give the minimum
response time.

Table 2: Distribution of Data for PRS.

Now, if we partition R1 into two fragments and send the
fragment containing 3000 tuples to S2 and that containing
5000 tuples to S3, processing at the two sites takes place in
parallel. The times incurred at sites S2 and S3 are smaller
than that of the above strategy since only a fragment is
joined with R2 instead of the whole relation. Therefore,
partitioning a relation for parallel processing can reduce
response time of a join query.

3. Components and Problems of Distributed
Query Optimization

There are three components of distributed query
optimization [21]:

 Access Method: In most RDBMS products, tables can
be accessed in one of two ways: by completely scanning
the entire table or by using an index. The best access
method to use will always depend upon the circumstances.
For example, if 90 percent of the rows in the table are
going to be accessed, you would not want to use an index.
Scanning all of the rows would actually reduce I/O and
overall cost. Whereas, when scanning 10 percent of the
total rows, an index will usually provide more efficient

access. Of course, some products provide additional
access methods, such as hashing. Table scans and indexed
access, however, can be found in all of the "Big Six"
RDBMS products (i.e., DB2, Sybase, Oracle, Informix,
Ingres, and Microsoft).

Join Criteria: If more than one table is accessed,
the manner in which they are to be joined together must be
determined. Usually the DBMS will provide several
different methods of joining tables. For example, DB2
provides three different join methods: merge scan join,
nested loop join, and hybrid join. The optimizer must
consider factors such as the order in which to join the
tables and the number of qualifying rows for each join
when calculating an optimal access path. In a distributed
environment, which site to begin with in joining the tables
is also a consideration.

Transmission Costs: If data from multiple sites
must be joined to satisfy a single query, then the cost of
transmitting the results from intermediate steps needs to be
factored into the equation. At times, it may be more cost
effective simply to ship entire tables across the network to
enable processing to occur at a single site, thereby
reducing overall transmission costs. This component of
query optimization is an issue only in a distributed
environment.

Major distributed query optimization problems are
given below:

Local optimization of semijoins ([16, 22]): The
issue is to determine the optimal set of semijoins to reduce
a single relation. The query optimizer of SDD-1[22] is
among the first to apply semijoins to distributed query
processing. The optimizer evaluates the benefit and cost of
all candidate semijoins, performs the most profitable one,
and updates the cardinality of the relation reduced by this
semijoin accordingly. The procedure repeats until there is
no profitable semijoin available. This approach is greedy
and suboptimal. A general version of the above approach
is that the query optimizer computes the most profitable
set of semijoins to reduce Ri for each relation Ri, instead of
the most profitable semijoin. Since all semijoins to Ri , are
considered at the same time, local optimality (with respect
to Ri) can be attained. The solution obtained is locally
optimal in that only the reduction of one relation is taken
into consideration at a time.

 Join sequence optimization ([18] [23]): Using the
join sequence method for distributed query processing,
some joins are performed locally first, and the resulting
relations are then sent to the assembly site. In [23], join
sequence optimization is formulated as a graph problem.
Suppose there are n relations in the query. Construct a
directed graph with n+ 1 nodes, where there is one node
corresponding to the assembly site A, and each of the
remaining n nodes is one-to-one associated with a relation.
An edge (Ri , Rj) means Ri can be sent to Rj to perform a

Relation Total tuples1 Site-S1 Site-S2 Site-S3

R1 8000 R1 -

R2 5000 - R2 R2

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

148

join. An edge (Ri , A) means Ri can be sent to the assembly
site directly. The objective is to find an inversely directed
spanning tree toward A with the minimal transmission cost.
Relations are transmitted to A along the path determined
by the spanning tree. Each intermediate node on the path
represents a join. An example spanning tree is shown in
Fig. 2. For example, consider the edge (R3, R4), after R1
and R2 are joined with R3, the cardinality of R3
becomes 3

2231
3
1 .|||).|.||.(σσ RRR ; where j

iσ is the
join selectivity which is associated with each join such
that iR| |jR = j

iσ . || iR . || jR . The transmission
cost of (R3, R4) is therefore

4
3

3
2231

3
1 ..|||).|.||.(JCRRR tpσσ ; where j

itp JC is

the transmission cost per tuple of sending Ri to Rj . The
total cost of the spanning tree in Fig. 2 is thus equal to,

3
11 || JCR tp + 3

22 || JCR tp +
4
3

3
2

3
1321)..|||||(| JCRRR tpσσ +

A
tp JCRRRR 4

4
34

3
2

3
1321)||..|||||(| σσσ ; where

A
itp JC is the transmission cost per tuple of sending Ri to

A the final assembly (query) site.

R1

R3

R2

R4 A

 Fig. 2 Spanning Tree for join sequence optimization.

Relation Semijoin on Broadcasting Networks ([24],
[25]):

Taking advantage of the broadcasting property of local
area networks as shown in [24] and [25], the semijoin
method is applied to improve query processing. Using this
method, a distributed semijoin is accomplished by sending
the entire relation, rather than the join attribute, to its
recipient. The advantage is that multiple stations may
receive the relation and apply different semijoins at the
same time. Further, the assembly site also receives the
relation broadcast, and each relation thus needs to be
scanned only once. To optimize the transmission cost, the
query optimizer has to determine the broadcasting order of
the relations.

Semijoin Optimization for Tree Queries ([26], [27]):
It has been shown that as far as optimizing the effect of
semijoins is concerned, tree queries are fundamentally
easier than cyclic queries [16], [28]. Optimization on the
semijoin application for tree queries, though less

complicated than that for cyclic queries, is still
computationally difficult, and precisely NP-hard. A
relation is said to be fully reduced if, after the execution of
a sequence of semijoins, no other semijoins can further
reduce its cardinality. A semijoin program is called
optimal if it fully reduces the relations required in the join
phase with the minimal transmission cost incurred. There
are two types of queries, namely single-reducer tree
queries and full-reducer tree queries. In single-reducer tree
queries, after the semijoin reduction phase, only one
relation is needed for final processing, whilst in full-
reducer tree queries, after the semijoin reduction phase, all
relations are needed for final processing.

4. Proposed Technique for Query Processing
in DDBS

Our proposed technique is based on the six definitions D-1
to D-6. We first explain that the straightforward (naive)
approach to processing a distributed query would be
sending all relations directly to the assembly site, where
all joins are performed. This naive method, however, is
unfavourable due to its high transmission overhead and
low level of parallelism.

CN

S1 S2

S3S5

S4 R4

R3
R5

R1 R2

Fig. 3 Relation in different sites.

According to the straightforward approach, the given
query (Q): {R1.A, R2.B, R3.C, R4.D, R5.E | R1.A=R3.A
∧ R2.B=R4.B ∧ R3.C=R5.C} will be processed at any of
the sites shown in Fig.3 and therefore the query is as
follows:
Step-1: 1[(R 3R) ∪ (2R 4R) ∪ 3(R)]5R
Step-2: Project over the joined relations.

Table 3: Different sites have different relations.

S1 S2 S3 S4 S5

F11 F12 F13 F14 F15

F21 F22

 R3

 R5

 R4

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

149

Definition-1: Let S be a set of all the relations referenced
by the given query, let SPR (which is a subset of S,
SPR⊆ S) be the set of all the distinct relations that exist in
the predicate of the referenced query that needs to be
fragmented, and let SRR be the set of replicas that need to
transferred, which is the set difference between S and SPR
(S \ SPR).

Definition-2: Let m be the number of query processing
sites, equal to the total number of the relations (NTR)
referenced by the query. The total number of relations
(TNFR) needed to be fragmented across m sites is equal to
the number of relations in SPR, and the total number of
relations (TNRP) needed to be replicated as to the number
of relations in {S \ SPR}; where {1≤TNFR < NTR } .

Definition-3: No replica transference is necessary, but the
number of relations needed to be fragmented as in
definition-2, if TNFR = NTR and the query processing
sites m is equal to the total number of the relations (NTR)
referenced by the query.

Definition-4: If the given query has only PO (project
operation) without having any WC (predicate or where
condition), no fragmentation or replication is required.
Rather, all the relations referenced by the query are
processed at the sites where they are stored. After then all
the processed results are combined at any of the m sites.

Definition-5: If any relation (R) ⊆ SPR and the relation
(R) is already fragmented across m sites, it is not
necessary to fragment that relation (R); whereas if any
relation (R) ⊆ SPR, is fragmented across p sites which is
less than to the number of total m sites, it is required that
relation to be fragmented to the total number of)(pm − .

Definition-6:

∧∧∀)(|].....[: 1 RPFRmS SSJoinSS
)]([| 1 i

m
iS SJR=∪∃ ; where FRS and RPS represent all the

fragmented and replicated relations to any site and JR be
the joined relations.

Explanation of the Technique:
Let us consider the query (Q): {R1.A, R2.B, R3.C, R4.D,
R5.E | R1.A=R3.A ∧R2.B=R1.B∧R3.C=R2.C} and the
relations given R2 in Table 3.

 Table 4: Distributed relations using proposed technique.

Fig. 4 Fragmented Relations on distributed sites.

According to Definition-1, we have S= {R1, R2,
R3, R4, R5), SPR= { R1, R2, R3} and SRR={R4 , R5 }.
Any given query satisfies either Definition-2 or
Definition-3 or Definition-4, and thereafter the query
satisfies definition-6.

According to Definition-2, m = NTR =5, TNFR =3,
TNRP =2, and {1<TNFR < NTR }. The given query does
not satisfy Definition-3 and Definition-4.

According to Definition-5, relation R1 ⊆ SPR,

and R1 is already fragmented to all m sites, hence R1
won’t be required to be fragmented , also relation R2⊆
SPR , which is fragmented across p {S1, S2} sites that is
less than m , so relation R2 is required to be fragmented

)(pm − sites.
According to the definition, and explanation the
distribution of the relations are presented in Table 4, and
in Fig. 4. Applying Definition-6, all the fragmented
relations and replicated relations are joined to each of the
sites and all the joined results are unioned to any of the
sites.

S1 S2 S3 S4 S5

F11 F12 F13 F14 F15

F21 F22 F23 F24 F25

F31 F32 F33 F34 F35

R4 R4 R4 R4 R4

R5 R5 R5 R5 R5

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

150

4.1 Cost Analysis of the Proposed Query
Processing Technique

Let 1N be the cardinality of each fragmented relation, 2N

be the cardinality of each replicated relation, 3N be the

cardinality of the joined relation, joinN be the cardinality

of each joined relation , k be the number of attributes in
both fragmented and replicated relations, joinK be the
number of attributes after joining the relations from any
site, pK be the number of attributes to be

projected , atttT −cos be transmission cost per attribute,

FRTC be the fragmented relation transmission cost,

RPTC be the replication transmission costs, ESJC be the

join cost for each site, compCT be cost per tuple

comparison, conCT be the cost per tuple concatenation,

attperCP − be the cost per projected attribute , JRTT be the
total transfer cost of joined relation , m be the total
number of fragments, and UC be the union cost for all the
relations to the destination site.

If the given query satisfies the definition-2, the
transmission cost of the fragmented and replicated
relations are respectively:

FRTC = FRattt TNmkNT **** 1cos − (1)

RPTC = RPattt TNmkNT **** 2cos − (2)
After satisfying definition-6, the joined cost for each of
the site is ESJC =

concompRPFR CTNCTTNNTNN **)**(321 ++ (3)

The total transferring cost of)1(−m joined relations to
the assembly site

JRTT =)1(*)**(cos −− mkNT joinjoinattt (4)

The union cost

UC = j

m

j
conjoinjoin CTNk]**[

1
∑
=

 (5)

 Therefore the total cost we have (satisfying Definition-2
and Definition-6) using equation (1), (2), (3), (4), and (5).

FPARRQTC − = FRTC + RPTC +∑
=

m

j
jESJC

1

)(+ JRTT +UC

(6)
Similarly if the given query satisfies Definition-3, the
transmission cost of the fragmented (no replication
transfer necessary) relation is:

FRTC = TRattt NmkNT **** 1cos − (7)

Therefore we have the total cost (satisfying definition-3,
definition-6) using equation (7), (3), (4), and (5).

FGARRQTC − = FRTC +∑
=

m

j
jESJC

1

)(+ JRTT +UC (8)

If the given query satisfies Definition-4, all the relations
are transferred to any of the sites, to project and union the
relations. Therefore the costs:

UNIPROTC − =∑
=

−

RNT

i
iattperp CPkN

1
2]**[UC+ (9)

Considering equation (6), (8), and (9) we conclude that

FGARRQTC − FPARRQTC −< UNIPROTC −< , because

sending all relations directly to the assembly site, where
all joins are performed, is unfavourable due to its high
transmission overhead and little parallelism exploitable.

4.2 Cost Analysis of the FRS Strategy

The FRS algorithm [12] requires one of the relations
referenced by a query to be fragmented and other relations
to be replicated at the sites that have a fragment of the
fragmented relation. The query is decomposed into the
same number of subqueries as the number of sites and
each subquery is processed at one of these sites.

Let RN be the total number of relations, p be the

total number of sites, 1N be the cardinality of the
fragmented relation, n be the number of fragments of the
fragmented relation , 2N be the cardinality of each other

()1−RN replicated relations, 3N be the cardinality of the

joined relations, k be the number of attributes in both
fragmented and replicated relations, n be the number of
selected sites to process the query, compCT be cost per

tuple comparison, conCT be the cost per tuple
concatenation. The cost for one of the relation to be
fragmented across m sites is

FROTC − = nTkN attt *** cos1 − (10)

The cost for all other)1(−RN relations to be
replicated across n sites is

RPTC =)1(*)**(cos2 −− Rattt NTkN (11)
The local processing costs of these sites are (union cost for
fragmented relation and natural join cost)

=ASLPC +∪ =
=
∑ ji

n
i

p

j
FRCost)])([1

1

pCTNCTNNN concompR *]**))1(*1*[(321 +−+
 (12)
Therefore the total cost for FRS strategy is

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

151

FRSTC = +−FROTC +RPTC ASLPC (13)

4.3 Comparison of Cost Analysis

 FRS or PRS requires substantial data transfer and
preparation before a query can be processed in parallel at
different sites. Performing local reductions before data
transfer can reduce the data replication cost and the join
processing cost. To achieve this goal, a heuristic Local
Reduction (LR) algorithm is presented in [14]. However,
local reduction takes time and it delays data transfer. It is
not always true that local reduction will reduce the
response time for the processing of a given query.

Considering equation (6), (8), and (13) we conclude
that FGARRQTC − FPARRQTC −< FRSTC< ; because
equation (6), and (8) support more than one relation to be
fragmented which reduces the size of the relation. This
results in lower transmission costs and local processing
costs than that supported by equation (13) in which one
relation remains to be fragmented.

But comparing equations (9) and (13) it is concluded
that FRSUNIPRO TCTC >− ; as it is always true that sending
all relations directly to the assembly site, where all joins
are performed, is unfavourable due to its high transmission
overhead and little exploitation of parallelism. According
to our approach, this case is the worst case depending on
the given input query (wherein there are no conditions or
predicates in the where clause of the given query).

5 Conclusions and Future Work

The (FRS) fragment and replicate strategy [12] permits
parallel processing of a query. Fragments and replicate
(FRS) strategies are not applicable for processing
distributed queries; in which all the non fragmented
relations are referenced by a query. In [29], a new
placement dependency algorithm is presented to improve
FRS strategy, but the problem of this algorithm, when the
number of sites increases is that, the data distribution
becomes sparse and the chances that the corresponding
fragments of the referenced relations are placed at the
same site become smaller. As a consequence the algorithm
becomes less favourable. Another drawback of this
algorithm is that the average improvement decreases as the
number of referenced relations increases though the
decrease is rather slow.
 In case of FRS strategy, if no relation referenced by a
query is fragmented, it is necessary to decide which
relation is to be partitioned into fragments; which copy of
the relation should be used; how the relation is to be
partitioned; and where the fragments are to be sent for
processing. To resolve this problem, PRS (Partition and

Replicate strategy) is presented in [15]. But PRS algorithm
favours joins involving small numbers of relations, and
improvement decreases as the number of relations
involved in joins increases. Improvement of PRS over
single site processing depends heavily on how fast a
relation can be partitioned. If the implementation of
relation partitioning is inefficient, PRS actually gives
worse response time than single site processing.

The technique generally fragments the relations
that exist in the predicates (the WHERE condition) of the
query. The proposed technique is efficient comparing to
other techniques, as more than one relation is allowed to
remain fragmented which exploits parallelism, while
replicating the other relations (excluding the fragmented
relations) to the sites of the fragmented relations. Hence
the communication costs and local processing costs are
reduced due to the reduced size of the fragmented
relations. This also improves the query response time. If
the given query references all the relations but only one
relation that exists in the predicates (the WHERE
condition), this technique works as a FRS strategy which
is the worst case situation of the proposed technique.

Experimental results will be reported as the research
progresses.

References

[1] P. Valduriez and T. Ozsu, "Principle of Distributed

Database Systems.," Prentice Hall, 1999.
[2] C. Liu and C. Yu, "Performance Issues in Distributed

Query Processing," IEEE, vol. 4:8, pp. 889-905, 1993.
[3] S. Upadhyaya and S. Lata, "Task Allocation in

Distributed Computing VS Distributed Database
Systems: A Comparative Study," IJCNS (International
Journal of Computer Science and Network Security),
vol. 8:3, pp. 338-346, 2008.

[4] C. Wang and M.-S. Chen, "On the Complexity of
Distributed Query Optimization," IEEE vol. 8, pp. 650-
662, 1994.

[5] L. M. Hass, "R*:A Research Project on Distributed
Relational DBMS," Database Engineering, vol. 5:4,
1982.

[6] M. Stonebraker and E. Neuhold, "A Distributed
Database Version of INGRES," in Second Berkley
Workshop on Distributed data Management &
Computer Networks, USA, 1977, pp. 19-36.

[7] R. Epstein, M. Stonebraker, and E. Wong, "Distributed
Query Processing in Relational Database System," in
ACM SIGMOD Austin, USA, 1978.

[8] J. S. J. Chen and V. O. K. Li, "Optimizing Joins in
Fragmented Database Systems on a Broadcast Local
Network," IEEE Trans. & Software Engineering, vol.
15:1, pp. 26-38, 1989.

[9] G. Pelagatti and F. A. Schreiber, "A Model of an
access Strategy in Distributed Database System," in
International Conference of Database Architecture,
Venice, Italy, 1979.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

152

[10] E. Wong and R. H. Katz, "Distributing a Database for
parallelism," in ACM SIGMOD San Jose, CA, 1983.

[11] B. Gavish and A. Segev, "Set Query Optimization in
Distributed Database System," ACM TODS, vol. 11:3,
1986.

[12] C. T. Yu, K. C. Guh, C. C. Chang, C. H. Chen, M.
Templeton, and D. Brill, "An Algorithm to Process
Queries in Distributed Network," in IEEE Real-Time
Syst. Symp., 1984.

[13] C. T. Yu, K. C. Guh, W. Zhang, M. Templeton, D.
Brill, and A. L. P. Chen, "Partitioning Relation for
Parallel Processing in Fast Local Networks," in
International Conference on Parallel Processing, 1986,
pp. 1021-1028.

[14] C. T. Yu, K. C. Guh, W. Zhang, M. Templeton, D.
Brill, and A. L. P. Chen, "An Integrated Algorithm for
Distributed Query Processing," in IFIP Conference on
Distributed processing Amsterdam, 1987.

[15] C. T. Yu, K. C. Guh, W. Zhang, M. Templeton, D.
Brill, and A. L. P. Chen, "Partition Strategy for
Distributed Query Processing in Local Fast Networks,"
IEEE Trans. & Software Engineering, vol. 15:6, pp.
780-793, 1989.

[16] P. A. Bernstein and W. C. D-M, "Using semi-joins to
solve relational queries," ACM vol. 28:1, pp. 25-40,
1981.

[17] M. S. Chen and P. S. Yu, "Combining Join and Semi
Operations for Distributed Query Processing," IEEE
Trans. of Knowledge & Data Engineering, vol. 5:3, pp.
534-542, 1993.

[18] M. S. Chen and P. S. Yu, "A Graph Theoritical
Approach to Determine a Join Reducer Sequences in
Distributed Query Processing," IEEE Trans. of
Knowledge & Data Engineering, vol. 6:1, pp. 152-165,
1994.

[19] M. S. Chen and P. S. Yu, "Interleaving a Join
Sequence with Semijoins in Distributed Query
Processing," IEEE Trans. on Parallel and Distributed
Systems, vol. 3:5, pp. 611-621, 1992.

[20] T. Ibaraki and T. Kameda, "On the Optimal Nesting
Order for N-Relatioanl Joins," ACM (TODS), vol. 9:3,
pp. 482-502, 1984.

[21] C. S. Mullins, "Distributed Query Optimization," 1996.
[22] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve,

and J. B. Rothie, "Query Processing in a System for
Distributed Databases (SDD-1)," ACM Transactions on
Database Systems, , vol. 6: 4, pp. 602-625, 1981.

[23] K. T. Huang, "Query Optimization in Distributed
Databases," in Laboratory for Information and
Decision Systems: MIT, 1982.

[24] A. R. Hevner, O. Q. Wu, and S. B. Yao, "Query
Optimization on Local Area Networks,," ACM Trans.
Ofice Information, vol. 3, pp. 35-62, 1985.

[25] W. Perrizo, J. Y. Li, and W. Hoffman, " Algorithms for
Distributed Query Processing in Broadcasting Local
Area Networks," IEEE Trans. Knowledge and Data
Eng., vol. 1:2 pp. 215-225, 1989.

[26] A. L. P. Chen and V. O. K. Li, "Improvement
Algorithms for Semijoin Query Processing Programs in

Distributed Database Systems," IEEE Trans. Comput. ,
vol. 33:11, pp. 959-967, 1984.

[27] D. M. Chiu and Y. C. Ho, "A Methodology for
Interpreting Tree Queries into Optimal Semi-loin
Expressions " in Proc. ACM SIG-MOD, 1980, pp. 169-
178.

[28] N. Goodman and Shmueli, "Tree Queries: A Simple
Class of Relational Queries," ACM Trans. Database
Systems, vol. 7:4, pp. 653-677, 1982.

[29] C. Liu, H. Chen, and W. Krueger, "A Distributed
Query Processing Strategy Using Placement
Dependency," in Internation Conference on Data
Engineering, LA, USA, 1996, pp. 477-484.

B.M. Monjurul ALom who born in
Bagherpara, Jessore, Bangladesh, is a
research (PhD) student in the School of
Electrical Engineering and Computer
Science, The University of Newcastle,
Australia. Mr Alom has completed his MSc
engineering degree from Bangladesh
University of Engineering and Technology,

Dhaka. His research interest is Distributed (Structured and
Semistructured) Database Management. Mr. Alom was an
assistant professor in CSE dept from 2004 to 2007 and a lecturer
from 2000 to 2004 in Dhaka University of Engineering and
Technology, Gazipur, Bangladesh.

 Dr. Frans Henskens is an Associate
Professor in the School of Electrical
Engineering and Computer Science,
Newcastle University Australia. He is also
Head, Discipline of Computer Science &
Software Engineering, Deputy Head,
School of Electrical Engineering &
Computer Science, and Assistant Dean IT
in Faculty of Engineering & Built

Environment. His research interests include engineering of
flexible software systems, bioinformatics, operating systems and
computer forensics, distributed and grid computing, resilience
and availability in database systems.

Dr. Michael Hannaford is Assistant
Dean (Postgraduate Studies) of FEBE, and
a Senior Lecturer in the School of
Electrical Engineering and Computer
Science at the University of Newcastle.
His research interests are in the areas of
Distributed Computing, and Programming
Language Design and Implementation.

