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Summary 
Query processing is an important concern in the field of 
distributed databases. The main problem is: if a query can be 
decomposed into subqueries that require operations at 
geographically separated databases, determine the sequence and 
the sites for performing this set of operations such that the 
operating cost (communication cost and processing cost) for 
processing this query is minimized. The problem is complicated 
by the fact that query processing not only depends on the 
operations of the query, but also on the parameter values 
associated with the query. Distributed query processing is an 
important factor in the overall performance of a distributed 
database system.  

Query optimization is a difficult task in a distributed 
client/server environment as data location becomes a major 
factor. In order to optimize queries accurately, sufficient 
information must be available to determine which data access 
techniques are most effective (for example, table and column 
cardinality, organization information, and index availability). 
Optimization algorithms have an important impact on the 
performance of distributed query processing.  

In this paper, we describe the distributed query 
optimization problem in detail. We then present a (ARRQ) 
technique to process queries with a minimum quantity of 
intersite data transfer. The technique can be used to process the 
query where all of the relations referenced by a query are non-
fragmented but distributed in different sites. The proposed 
technique is used to determine which relations are to be 
partitioned into fragments, and where the fragments are to be 
sent for processing. The technique is efficient compared to other 
techniques, as it generally chooses more than one relation to 
remain fragmented which exploits parallelism, while replicating 
the other relations (excluding the fragmented relations) to the 
sites of the fragmented relations. Thus the communication costs 
and local processing costs can be reduced due to the reduced size 
of the fragmented relations and the response time of queries can 
be improved.  
Key words: 
Join, Semijoin, Query, FRS, PRS, LR, and Optimization.   

1. Introduction 

Distributed and parallel processing is an efficient way of 
improving the performance of Database Management 
Systems (DBMSs) and applications that manipulate large  

 

 
 

volumes of data [1]. A distributed database management 
system (DDBMS) supports the formation (creation) and 
maintenance of distributed databases, where data are 
stored at different sites connected through a network. An 
objective of a DDBMSs is to present an easy and unified 
interface to the users so that they can access the databases 
as if there were a single database [2]. Another important 
objective of DDBMS is to process distributed queries 
efficiently in addition to providing availability and 
reliability. Distributed database systems (DDBS) and 
distributed computing systems (DCS) differ in the 
resources to be shared. DCS share hard disks and printers 
etc. while DDBS distribute data, where the data as well as 
operations on the data items are equally  important [3] .  

Since data are geographically distributed in such 
a distributed relational database system, the processing of 
a distributed query is composed of the following three 
phases: local processing phase, reduction phase, and final 
processing phase [4]. The local processing phase involves 
local processing such as selections and projections; the 
reduction phase uses a sequence of reducers (i.e, semijoins 
and joins) to reduce the size of relations; and the final 
processing phase sends all resulting relations to the 
assembly site where the final result of the query is 
constructed. Clearly, a straightforward approach to 
processing a distributed query would be to send all 
relations directly to the assembly site, where all joins are 
performed. This naive method, however, is unfavourable 
due to its high transmission overhead and because little 
parallelism is exploited. In distributed query processing, 
partitioning a relation into fragments, union of the 
fragments to form a whole relation, and transferring a 
relation/fragment from one database to another database 
are common operations [2].  

The optimizers of R* [5] and Distributed-
INGRES [6] , take both local processing costs and 
communications costs into account. In R*, a join between 
two relations is performed at a single site by using the 
nested-loop method or the merge-scan method. For a 
general query, R* exhaustively enumerates all possible 
sequences of joins with all possible join methods and 
allocates joins at each possible site. Since each join is 
performed at only a single site, existence of multiple 
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processors at different sites is not considered for 
improving performance through parallel execution. In 
contrast, Distributed-INGRES uses the “fragment and 
replicate” query processing strategy [7]. The strategy 
requires one of the relations referenced by a query to be 
fragmented and other relations to be replicated at the sites 
that have a fragment of the fragmented relation. The query 
is decomposed into the same number of subqueries as the 
number of sites and each subquery is processed at one of 
these sites. Its main feature is that it allows parallel 
processing. 

Many other algorithms [8, 9], [10], [11], [12-15] 
also take advantage of fragmentation to process queries. 
For example, the algorithm given in [12] , called the 
Fragment and Replicate Strategy (FRS) algorithm, is 
based on the same principle as that of [7]. However, it 
takes into account not only the amount of data transferred 
and processed at individual sites, but also the presence or 
absence of fast access paths (e.g., indexes) to reduce 
response time. When all the relations referenced by a 
query are unfragmented, the FRS algorithm can not be 
used. Another strategy is to partition one of the referenced 
relations into a number of fragments and distribute the 
fragments to a number of sites so that the query can be 
processed in parallel at different sites [13] . In [15], a 
Partition and Replicate Strategy (PRS) algorithm is given 
to determine which relation and which copy of the relation 
is to be partitioned into fragments, how many fragments 
are to be produced, and where these fragments are to be 
sent for processing.  

Both FRS and PRS require substantial data 
transfer and preparation before a query can be processed 
in parallel at different sites. By doing local reduction of 
the fragments or relations before transferring them, i.e., do 
some projections and selections, the data transfer cost can 
be reduced and subsequent local processing (join) cost 
may also be reduced due to smaller sized relations. 
However, performing local reduction takes time and 
delays data transfer. It is not always true that local 
reduction will reduce the response time for the processing 
of a given query. In order to reduce response time for a 
query, an algorithm is described in [14], called the Local 
Reduction (LR) algorithm which is used to decide the set 
of relations to be locally reduced before data transfer.  

Two approaches namely semijoin [16] and join 
sequence [8] have been used to reduce the amount of data 
transmission required for the phases of distributed query 
processing. The semijoin operation from Rp to Rq, denoted 
by Rq Rp, is defined as follows: Project Rp, on the join 
attribute of the join between Rp and Rq first, and then ship 
this projection to the site of Rq to remove nonmatching 
tuples from Rq. In addition to semijoins, join operations 
can also be used as reducers in processing distributed 
queries [17, 18] . Using join reducers, a query is translated 

into a sequence of joins, and each join is implemented 
locally by shipping one of the operand relations to the site 
of the other operand so as to exploit parallelism and 
minimize the processing overhead. Moreover, joins and 
semijoins can be combined to form an integrated scheme 
to further improve distributed query processing  ([17] , 
[19]). As pointed out in [18] , the approach of combining 
join and semijoin operations can be more beneficial due to 
the inclusion of join reducers. Also, this approach can 
reduce the communication cost further by taking 
advantage of the removability of pure join attributes. 

While a significant amount of research effort has 
been reported on developing algorithms based on joins 
and semijoins, there is relatively little progress made to the 
complexity of the distributed query processing. As a result, 
proving NP-hardness of, or devising polynomial-time 
algorithms for, certain distributed query optimization 
problems have been elaborated by many researchers [4]. 
However, due to their inherent difficulty, the complexity 
of the majority of problems on distributed query 
optimization remains unknown [4]. Traditionally, 
distributed query optimization techniques generate static 
query plans at compile time. The optimality of these plans 
depends on many parameters (such as the selectivities of 
operations, the transmission speeds and workloads of 
servers) that are not only difficult to estimate but are also 
often unpredictable and variable at runtime. The main 
difference between centralized and distributed query 
optimization is in the method-structure space module, 
which offers additional processing strategies and 
opportunities for transmitting data for processing at 
multiple sites. In [20],  Ibaraki and Kameda describe query 
optimization as an NP-complete problem whilst using the  
nested loops join method. 

In this paper we describe (ARRQ) a technique to 
process a query where all the relations referenced by a 
query are not fragmented but distributed in different sites.  
The proposed technique is used to determine which 
relations are to be partitioned into fragments, and where 
the fragments are to be sent for processing. Our objective 
is to process queries by exploiting parallelism, as well as 
minimizing the quantity of inter-site data transfer. The 
proposed technique provides better efficiency in terms of 
query processing cost when the given query references all 
the relations or more than one relation (for different sites) 
that presents (the where condition) predicates of the query. 
We are more concerned to fragment more than one 
referenced non fragmented relations as FRS is not 
applicable to processing distributed queries in which all of 
the relations which are non fragmented but referenced by a 
query. We also characterize distributed query optimization 
problems. 
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The remainder of this paper is organized as 
follows: different methodologies for distributed query 
processing are described in section 2. Components and 
problems of distributed query optimization are described 
in section 3.  The proposed query processing technique is 
presented in section 4. The paper concludes with a 
discussion and final remarks in section 5.  

2. Different Methodologies for Distributed 
Query Processing  

P. Valduriez [1] has described a methodology of 
distributed query processing, and this is shown in Fig.1.  

Query
Decomposition

Data
Localization

Global
Optimization

Local
Optimization

Calculus Query on
Distributed Relations

Algebric Query
on Distributed Relation

Fragment  Query

Optimized Fragment Query
with communication operation

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENT

LOCAL
SCHEMA

Optimized Local Query

Local Site

Control Site

 

Fig. 1  Distributed Query Processing Methodology.  

The input is a query on distributed data expressed in 
relational calculus. Four main layers are involved to map 
the distributed query into an optimized sequence of local 
operations, each acting on a local database. These layers 
perform the functions of query decomposition, data 
localization, global query optimization, and local query 
optimization. Query decomposition and data localization 
correspond to query rewriting. The first three layers are 
performed by a central site and use global information. 
Local optimization is done by the local sites.  

The functionality of distributed query processing 
is demonstrated in the following examples using two 
different (semijoin and join) strategies: 
Suppose a database is distributed into three different sites;   
for example Operation, Nursing, and ICU (Intensive Care 
Unit) sites. The schemas of these relations are ROP 
(Patname, DOB, Admit, Discharge, Dept), RNU (Patname, 

DOB, GP), and RICU (Patname, DOB, Weight, 
Type_work) respectively. It is required to find Patname, 
Admit, Type_work, and Weight from Operation site; 
wherein Dept should be Orthopedics, Admission must be 
before 1st January, Patname should be common between 
Operation and ICU sites, and the weights must be greater 
than seventy. The query in SQL is as follows: 
Select Patname, Admit, Type_work, Weight 
From ROP , RICU   
Where (ROP.Patname=RICU.Patname) and (Dept= 
Orthopedics) and (Admit > 1st January) and (Weight > 70). 
 
According to the Semijoin strategy the query processing is 
as follows:  
Step-1: 
Restrict ROP (Dept= Orthopedics, Admit> 1st January). 
Project Patname from restricted ROP. 
Step-2: Transmit the result R1 (from Step-1) to ICU site. 
Step-3: 

Restrict RICU (Weight > 70) (say N2 tuples). 
Join R1 and Restricted RICU  (say N3 tuples). 
PROJECT these tuples over the required attributes. 

Step-4: Move the Result R2 (From step-3) to Operation 
site. 
Step-5: JOIN result (R2) with restricted ROP at Operation 
site. 

 
Cost analysis of  the Semijoin Strategy: 
Let the cardinality of the Relation R1 be N1 , transmission 
cost/attribute be atT −cos  , cost per tuple comparison be 

tuplecompC −  , and cost per tuple concatenation is  tuplecnC − .  
 

Processing cost at Step-2:   
     atTN −cos1 *  
Processing cost at Step-3:  

tuplecompCNN −** 21  + tuplecnCN −*3  
Processing cost at Step-4:  

atTN −cos3 *3*  (There are three attributes weight, 
type_work, and patname) 
Processing cost at Step-5:  

 tuplecompCNN −** 31  + tuplecnCN −*3  

Hence the total processing cost ( joinsemiTPC −  ) for 
Semijoin strategy = 

atTN −cos1 * + tuplecompCNN −** 21 + tuplecnCN −*3

+ atTN −cos3 *3* + tuplecompCNN −** 31 +

tuplecnCN −*3  

= atTNN −+ cos31 *)*3( + tuplecnCN −**2 3  
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  tuplecompCNNNN −+ *)**( 3121                              (1) 

According to JOIN strategy the same query processing is 
as follows: 
Step-1: Send qualified tuples in Operation (projected over 
three required attributes) to ICU site. 
Step-2: JOIN with the restricted RICU at ICU site 
Step-3: Move the result to Operation site. 
 
Cost analysis of the join Strategy: 
Transmission cost at step-1: atTN −cos1 **3  

Processing cost at step-2: tuplecompCNN −** 21  + 

tuplecnCN −*3  

Transmission cost at step-3: 

atCN −cos3 **5  (as total 5 attributes being transferred) 

Therefore total cost is: atTN −cos1 **3 + 

tuplecompCNN −** 21  + tuplecnCN −*3 + 

atTN −cos3 **5  

= atTNN −+ cos13 *)*3*5( + tuplecompCNN −** 21  +  

tuplecnCN −*3                                        (2) 

So under the assumption that atT −cos  (transmission cost/ 
attribute) contributes much more significantly to the cost 
than  tuplecnT −  or  tuplecompT −  . Equation (1) shows that the 

cost of the semijoin is probably about half of the cost of 
the join strategy (despite having to JOIN at both sites). 

 
The Structure of FRS [12] (Fragmentation and 
Replication strategy):  

The FRS strategy requires one of the relations 
referenced by a query to be fragmented and other relations 
to be replicated at the sites that have a fragment of the 
fragmented relation. The query is decomposed into the 
same number of subqueries as the number of sites and 
each subquery is processed at one of these sites. Its main 
feature is to allow parallel processing. Considering Table 
1, to process the following query (using FRS strategy) 
which references fragmented relations R1 and R2 and an 
unfragmented relation R3: 

Q= {R1.A, R2.C | R1.A= R2.A ∧  R2. B= R3.C}. 
If site-S1 is selected for query processing the required steps 
are: 
Step-1: Find the minimum response time of the strategies 
using only one site (site-1 or site-2 or site-3) to process 
query. 

• Transferring F12, F22 to site-1 
• Union (F12 ∪  F11) and (F21 ∪  F22) 
• JOIN (F12 ∪  F11)  (F21 ∪  F22)  R3 . 

 

Similarly queries can be processed at site-2, and site-3.  
The one with minimum response time among these three 
(sites) is chosen. 

 
Step-2: Determine the relation to remain fragmented and 
the set of processing sites. 

    If R1 is left fragmented, two sets of sites, {1, 3}, and 
{2, 3} can be chosen to process the query Q. If Q is 
processed at sites 1 and 3, site-1 will need to get F22 from 
site-3 and site-3 will need to get F21 and R3 from site-1. 
Therefore R2 and R3 are replicated at site-1 and site-3. 

Table 1: Placement of Relation in FRS  

 

 

 

 

 
Now the query Q is decomposed into two following 
subqueries: 

Q1: {F11 .A, R2 .C| F11.A=R2.A ∧  R2.B=R3.C}; 
Q1: {F12 .A, R2 .C| F12.A=R2.A ∧  R2.B=R3.C}; where 

R2 is the union of F21 and F22 and the final result of Q =Q1 
∪Q2 . Similarly the response times can be obtained for 
processing query (Q) at sites 2 and 3. 
If R2 is left fragmented, Q will be processed at      sites 1 
and 3. Similarly response time can be estimated. 

 
The time spent at site-1 can be shown to be smaller 

than that of the earlier strategy (step-1) because the 
fragment F12 does not need to be transferred and processed 
at Site-1. Similarly, the time at site Site-3 can be shown to 
be smaller than single site processing (Step-1). Thus, the 
response time if R1 is left fragmented will be smaller than 
that in which either all processing takes place in site Site-1 
or all processing takes place in site Site-3. Thus the 
fragment and replicate strategy achieves parallel 
processing and improves response time. Let m be the total 
number of fragments, n be the total number of relations. 
Total number of subqueries (using FRS strategy) at any 
site is the product of the total number of fragments and 
replicated relation which is 1−nm . 

FRS has drawbacks in terms of efficiency and response 
time. FRS is not applicable to processing distributed 
queries; in which all of the non fragmented relations are 
referenced by a query.  
 
 
 
 

   Site   

Relation Site-S1 Site-S2 Site-S3 

R1 F11 F11 F12 

R2 F21 - F22 

R3 R3 -  - 
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Partition and Replicate Strategy (PRS) [15]: 
Assume the set of sites is S = {S1, S2, …..Sm}. The PRS 
algorithm works as follows. For a given query, the 
minimum response time is estimated if all referenced data 
is transferred to and processed at only one of the sites. 
Next, for each referenced relation and each copy of the 
relation, the response time is estimated if the copy of the 
relation is partitioned and distributed to a subset of S and 
all the other relations are replicated at the sites where they 
are needed. A choice of processing sites and sizes of 
fragments for the selected copy of the chosen relation are 
determined by PRS so as to minimize the response time. 
Finally, the strategy which gives the minimum response 
time among all the copies of all the referenced relations is 
chosen.  

Let a query reference two relations R1 and R2  
which are unfragmented and distributed among three sites 
S1, S2, and S3 as shown in Table 2. Assume that S3 is 
slightly faster than S2 but much faster than S1. If the query 
is processed only at a single site without partitioning any 
relation, the strategy of sending R1 from S1 to S3 and 
processing the query at S3, will give the minimum 
response time. 

Table 2: Distribution of Data for PRS. 

 
Now, if we partition R1 into two fragments and send the 
fragment containing 3000 tuples to S2 and that containing 
5000 tuples to S3, processing at the two sites takes place in 
parallel. The times incurred at sites S2 and S3  are smaller 
than that of the above strategy since only a fragment is 
joined with R2 instead of the whole relation. Therefore, 
partitioning a relation for parallel processing can reduce 
response time of a join query. 

3. Components and Problems of Distributed 
Query Optimization 

There are three components of distributed query 
optimization [21]: 

 Access Method: In most RDBMS products, tables can 
be accessed in one of two ways: by completely scanning 
the entire table or by using an index. The best access 
method to use will always depend upon the circumstances. 
For example, if 90 percent of the rows in the table are 
going to be accessed, you would not want to use an index. 
Scanning all of the rows would actually reduce I/O and 
overall cost. Whereas, when scanning 10 percent of the 
total rows, an index will usually provide more efficient 

access. Of course, some products provide additional 
access methods, such as hashing. Table scans and indexed 
access, however, can be found in all of the "Big Six" 
RDBMS products (i.e., DB2, Sybase, Oracle, Informix, 
Ingres, and Microsoft). 

Join Criteria: If more than one table is accessed, 
the manner in which they are to be joined together must be 
determined. Usually the DBMS will provide several 
different methods of joining tables. For example, DB2 
provides three different join methods: merge scan join, 
nested loop join, and hybrid join. The optimizer must 
consider factors such as the order in which to join the 
tables and the number of qualifying rows for each join 
when calculating an optimal access path. In a distributed 
environment, which site to begin with in joining the tables 
is also a consideration. 

Transmission Costs: If data from multiple sites 
must be joined to satisfy a single query, then the cost of 
transmitting the results from intermediate steps needs to be 
factored into the equation. At times, it may be more cost 
effective simply to ship entire tables across the network to 
enable processing to occur at a single site, thereby 
reducing overall transmission costs. This component of 
query optimization is an issue only in a distributed 
environment.  

Major distributed query optimization problems are 
given below: 

Local optimization of semijoins ([16, 22] ): The 
issue is to determine the optimal set of semijoins to reduce 
a single relation. The query optimizer of SDD-1[22] is 
among the first to apply semijoins to distributed query 
processing. The optimizer evaluates the benefit and cost of 
all candidate semijoins, performs the most profitable one, 
and updates the cardinality of the relation reduced by this 
semijoin accordingly. The procedure repeats until there is 
no profitable semijoin available. This approach is greedy 
and suboptimal. A general version of the above approach 
is that the query optimizer computes the most profitable 
set of semijoins to reduce Ri for each relation Ri, instead of 
the most profitable semijoin. Since all semijoins to Ri , are 
considered at the same time, local optimality (with respect 
to Ri ) can be attained. The solution obtained is locally 
optimal in that only the reduction of one relation is taken 
into consideration at a time.  

  Join sequence optimization ([18] [23]): Using the 
join sequence method for distributed query processing, 
some joins are performed locally first, and the resulting 
relations are then sent to the assembly site. In [23], join 
sequence optimization is formulated as a graph problem. 
Suppose there are n relations in the query. Construct a 
directed graph with n+ 1 nodes, where there is one node 
corresponding to the assembly site A, and each of the 
remaining n nodes is one-to-one associated with a relation. 
An edge (Ri , Rj ) means Ri can be sent to Rj to perform a 

Relation Total tuples1 Site-S1 Site-S2 Site-S3 

R1 8000 R1 -  

R2 5000 - R2 R2  
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join. An edge (Ri , A) means Ri can be sent to the assembly 
site directly. The objective is to find an inversely directed 
spanning tree toward A with the minimal transmission cost. 
Relations are transmitted to A along the path determined 
by the spanning tree. Each intermediate node on the path 
represents a join. An example spanning tree is shown in 
Fig. 2. For example, consider the edge (R3, R4), after R1 
and R2 are joined with R3, the cardinality of R3 
becomes 3

2231
3
1 .|||).|.||.( σσ RRR  ; where j

iσ  is the 
join selectivity which is associated with each join such 
that iR| |jR = j

iσ . || iR . || jR . The transmission 
cost of (R3, R4) is therefore 

4
3

3
2231

3
1 ..|||).|.||.( JCRRR tpσσ  ; where j

itp JC   is 

the transmission cost per tuple of sending Ri to Rj . The 
total cost of the spanning tree in Fig. 2 is thus equal to, 

3
11 || JCR tp + 3

22 || JCR tp +
4
3

3
2

3
1321 )..|||||(| JCRRR tpσσ +

A
tp JCRRRR 4

4
34

3
2

3
1321 )||..|||||(| σσσ ; where 

A
itp JC  is the transmission cost per tuple of sending Ri  to 

A the final assembly (query) site.  
 

R1

R3

R2

R4 A
 

 Fig. 2  Spanning Tree for join sequence optimization.  

Relation Semijoin on Broadcasting Networks ([24], 
[25]): 

Taking advantage of the broadcasting property of local 
area networks as shown in [24] and [25], the semijoin 
method is applied to improve query processing. Using this 
method, a distributed semijoin is accomplished by sending 
the entire relation, rather than the join attribute, to its 
recipient. The advantage is that multiple stations may 
receive the relation and apply different semijoins at the 
same time. Further, the assembly site also receives the 
relation broadcast, and each relation thus needs to be 
scanned only once. To optimize the transmission cost, the 
query optimizer has to determine the broadcasting order of 
the relations. 

Semijoin Optimization for Tree Queries ([26], [27]): 
It has been shown that as far as optimizing the effect of 
semijoins is concerned, tree queries are fundamentally 
easier than cyclic queries [16], [28]. Optimization on the 
semijoin application for tree queries, though less 

complicated than that for cyclic queries, is still 
computationally difficult, and precisely NP-hard. A 
relation is said to be fully reduced if, after the execution of 
a sequence of semijoins, no other semijoins can further 
reduce its cardinality. A semijoin program is called 
optimal if it fully reduces the relations required in the join 
phase with the minimal transmission cost incurred. There 
are two types of queries, namely single-reducer tree 
queries and full-reducer tree queries. In single-reducer tree 
queries, after the semijoin reduction phase, only one 
relation is needed for final processing, whilst in full-
reducer tree queries, after the semijoin reduction phase, all 
relations are needed for final processing. 

4. Proposed Technique for Query Processing 
in DDBS 

Our proposed technique is based on the six definitions D-1 
to D-6. We first explain that the straightforward (naive) 
approach to processing a distributed query would be 
sending all relations directly to the assembly site, where 
all joins are performed. This naive method, however, is 
unfavourable due to its high transmission overhead and 
low level of parallelism.  
 

CN

S1 S2

S3S5

S4 R4

R3
R5

R1 R2

 

Fig. 3 Relation in different sites.     

According to the straightforward approach, the given 
query (Q): {R1.A, R2.B, R3.C, R4.D, R5.E | R1.A=R3.A 
∧ R2.B=R4.B ∧ R3.C=R5.C} will be processed at any of 
the sites shown in Fig.3 and therefore the query is as 
follows: 
Step-1:  1[(R 3R ) ∪ ( 2R 4R ) ∪ 3(R )]5R  
Step-2: Project over the joined relations. 

Table 3: Different sites have different relations. 

S1 S2 S3 S4 S5 

F11 F12 F13 F14 F15 

F21 F22     

  R3   

    R5 

   R4  
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Definition-1: Let S be a set of all the relations referenced 
by the given query, let SPR (which is a subset of S, 
SPR⊆ S) be the set of all the distinct relations that exist in 
the predicate of the referenced query that needs to be 
fragmented, and let SRR be the set of replicas that need to 
transferred, which is the set difference between S and SPR 
(S \ SPR). 

 
Definition-2: Let m be the number of query processing 
sites, equal to the total number of the relations (NTR ) 
referenced by the query. The total number of relations 
(TNFR) needed to be fragmented across m sites is equal to 
the number of relations in SPR, and the total number of 
relations (TNRP) needed to be replicated as to the number 
of relations in {S \ SPR}; where {1≤TNFR <  NTR } . 

 
Definition-3: No replica transference is necessary, but the 
number of relations needed to be fragmented as in 
definition-2, if TNFR =  NTR  and  the query processing 
sites m is equal to the total number of the relations (NTR) 
referenced by the query.  

 
Definition-4: If the given query has only PO (project 
operation) without having any WC (predicate or where 
condition), no fragmentation or replication is required. 
Rather, all the relations referenced by the query are 
processed at the sites where they are stored. After then all 
the processed results are combined at any of the m sites. 

 
Definition-5: If any relation (R) ⊆ SPR and the relation 
(R) is already fragmented across m sites, it is not 
necessary to fragment that relation (R); whereas if any 
relation (R) ⊆ SPR,  is fragmented across p sites which is 
less than to the number of total m sites, it is required that 
relation to be fragmented to the total number of )( pm − . 

 
Definition-6: 

∧∧∀ )(|].....[: 1 RPFRmS SSJoinSS
)]([| 1 i

m
iS SJR=∪∃ ; where FRS and RPS represent all the 

fragmented and replicated relations to any site and JR be 
the joined relations. 
 
Explanation of the Technique: 
Let us consider the query (Q): {R1.A, R2.B, R3.C, R4.D, 
R5.E | R1.A=R3.A ∧R2.B=R1.B∧R3.C=R2.C} and the 
relations given R2 in Table 3. 

 

 

  

  Table 4: Distributed relations using proposed technique.   

 

 

 

 

 

 

Fig. 4 Fragmented Relations on distributed sites.     

According to Definition-1, we have S= {R1, R2, 
R3, R4, R5), SPR= { R1, R2, R3} and SRR={R4 , R5 }. 
Any given query satisfies either Definition-2 or 
Definition-3 or Definition-4, and thereafter the query 
satisfies definition-6. 

According to Definition-2, m = NTR =5, TNFR =3, 
TNRP =2, and {1<TNFR <  NTR  }. The given query does 
not satisfy Definition-3 and Definition-4.  

 
According to Definition-5, relation R1 ⊆  SPR, 

and R1  is already fragmented to all m sites, hence R1 
won’t be required to be fragmented , also relation R2⊆  
SPR , which is fragmented across p {S1, S2} sites that is 
less than m , so relation R2 is required to be fragmented 

)( pm −  sites. 
According to the definition, and explanation the 
distribution of the relations are presented in Table 4, and 
in Fig. 4. Applying Definition-6, all the fragmented 
relations and replicated relations are joined to each of the 
sites and all the joined results are unioned to any of the 
sites.   

S1 S2 S3 S4 S5 

F11 F12 F13 F14 F15 

F21 F22 F23 F24 F25 

F31 F32 F33 F34 F35 

R4 R4 R4 R4 R4 

R5 R5 R5 R5 R5 
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4.1 Cost Analysis of the Proposed Query 
Processing Technique  

Let 1N  be the cardinality of each fragmented relation, 2N  

be the cardinality of each replicated relation, 3N be the 

cardinality of the joined relation, joinN be the cardinality 

of each joined relation , k  be the number of attributes in 
both fragmented and replicated relations, joinK be the 
number of attributes after joining the relations from any 
site, pK be the number of attributes to be 

projected , atttT −cos be transmission cost per attribute, 

FRTC be the fragmented relation transmission cost, 

RPTC be the replication transmission costs, ESJC be the 

join cost for each site, compCT be cost per tuple 

comparison, conCT be the cost per tuple concatenation, 

attperCP − be the cost per projected attribute , JRTT be the 
total transfer cost of joined relation , m be the total 
number of fragments, and UC be the union cost for all the 
relations to the destination site. 

If the given query satisfies the definition-2, the 
transmission cost of the fragmented and replicated 
relations are respectively: 

FRTC = FRattt TNmkNT **** 1cos −                           (1) 

RPTC = RPattt TNmkNT **** 2cos −                          (2) 
After satisfying definition-6, the joined cost for each of 
the site is ESJC = 

concompRPFR CTNCTTNNTNN **)**( 321 ++   (3) 

The total transferring cost of )1( −m joined relations to 
the assembly site   

JRTT = )1(*)**( cos −− mkNT joinjoinattt                    (4) 

The union cost  

UC = j

m

j
conjoinjoin CTNk ]**[

1
∑
=

                              (5) 

  Therefore the total cost we have (satisfying Definition-2 
and Definition-6) using equation (1), (2), (3), (4), and (5). 

FPARRQTC − = FRTC + RPTC +∑
=

m

j
jESJC

1

)( + JRTT +UC                                                           

(6) 
Similarly if the given query satisfies Definition-3, the 
transmission cost of the fragmented (no replication 
transfer necessary) relation is: 

FRTC = TRattt NmkNT **** 1cos −                          (7) 

Therefore we have the total cost (satisfying definition-3, 
definition-6) using equation (7), (3), (4), and (5). 

FGARRQTC − = FRTC +∑
=

m

j
jESJC

1

)( + JRTT +UC    (8)                                

If the given query satisfies Definition-4, all the relations 
are transferred to any of the sites, to project and union the 
relations. Therefore the costs: 

UNIPROTC − =∑
=

−

RNT

i
iattperp CPkN

1
2 ]**[ UC+     (9)  

Considering equation (6), (8), and (9) we conclude that   

FGARRQTC − FPARRQTC −< UNIPROTC −<  , because 

sending all relations directly to the assembly site, where 
all joins are performed, is unfavourable due to its high 
transmission overhead and little parallelism exploitable. 

4.2 Cost Analysis of the FRS Strategy  

The FRS algorithm [12] requires one of the relations 
referenced by a query to be fragmented and other relations 
to be replicated at the sites that have a fragment of the 
fragmented relation. The query is decomposed into the 
same number of subqueries as the number of sites and 
each subquery is processed at one of these sites. 

Let RN be the total number of relations, p be the 

total number of sites, 1N  be the cardinality of the 
fragmented relation, n  be the number of fragments of the 
fragmented relation , 2N  be the cardinality of each other 

( )1−RN replicated relations, 3N be the cardinality of the 

joined relations, k  be the number of attributes in both 
fragmented and replicated relations, n be the number of 
selected sites to process the query, compCT be cost per 

tuple comparison, conCT be the cost per tuple 
concatenation. The cost for one of the relation to be 
fragmented across m sites is 

FROTC − = nTkN attt *** cos1 −               (10) 

The cost for all other )1( −RN  relations to be 
replicated across n sites is 

RPTC = )1(*)**( cos2 −− Rattt NTkN                   (11) 
The local processing costs of these sites are (union cost for 
fragmented relation and natural join cost) 

=ASLPC +∪ =
=
∑ ji

n
i

p

j
FRCost )])([ 1

1

pCTNCTNNN concompR *]**))1(*1*[( 321 +−+
 (12) 
Therefore the total cost for FRS strategy is  
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FRSTC = +−FROTC +RPTC ASLPC                    (13) 

4.3 Comparison of Cost Analysis   

 FRS or PRS requires substantial data transfer and 
preparation before a query can be processed in parallel at 
different sites. Performing local reductions before data 
transfer can reduce the data replication cost and the join 
processing cost. To achieve this goal, a heuristic Local 
Reduction (LR) algorithm is presented in [14]. However, 
local reduction takes time and it delays data transfer. It is 
not always true that local reduction will reduce the 
response time for the processing of a given query.  

Considering equation (6), (8), and (13) we conclude 
that  FGARRQTC − FPARRQTC −< FRSTC<  ; because 
equation (6), and (8) support more than one relation to be 
fragmented which reduces the size of the relation. This 
results in lower transmission costs and local processing 
costs than that supported by equation (13) in which one 
relation remains to be fragmented. 

But comparing equations (9) and (13) it is concluded 
that FRSUNIPRO TCTC >− ; as it is always true that sending 
all relations directly to the assembly site, where all joins 
are performed, is unfavourable due to its high transmission 
overhead and little exploitation of parallelism. According 
to our approach, this case is the worst case depending on 
the given input query (wherein there are no conditions or 
predicates in the where clause of the given query). 

5 Conclusions and Future Work 

The (FRS) fragment and replicate strategy [12] permits 
parallel processing of a query. Fragments and replicate 
(FRS) strategies are not applicable for processing 
distributed queries; in which all the non fragmented 
relations are referenced by a query. In [29], a new 
placement dependency algorithm is presented to improve 
FRS strategy, but the problem of this algorithm, when the 
number of sites increases is that, the data distribution 
becomes sparse and the chances that the corresponding 
fragments of the referenced relations are placed at the 
same site become smaller. As a consequence the algorithm 
becomes less favourable. Another drawback of this 
algorithm is that the average improvement decreases as the 
number of referenced relations increases though the 
decrease is rather slow. 
       In case of FRS strategy, if no relation referenced by a 
query is fragmented, it is necessary to decide which 
relation is to be partitioned into fragments; which copy of 
the relation should be used; how the relation is to be 
partitioned; and where the fragments are to be sent for 
processing. To resolve this problem, PRS (Partition and 

Replicate strategy) is presented in [15]. But PRS algorithm 
favours joins involving small numbers of relations, and 
improvement decreases as the number of relations 
involved in joins increases. Improvement of PRS over 
single site processing depends heavily on how fast a 
relation can be partitioned. If the implementation of 
relation partitioning is inefficient, PRS actually gives 
worse response time than single site processing. 

The technique generally fragments the relations 
that exist in the predicates (the WHERE condition) of the 
query. The proposed technique is efficient comparing to 
other techniques, as more than one relation is allowed to 
remain fragmented which exploits parallelism, while 
replicating the other relations (excluding the fragmented 
relations) to the sites of the fragmented relations. Hence 
the communication costs and local processing costs are 
reduced due to the reduced size of the fragmented 
relations. This also improves the query response time. If 
the given query references all the relations but only one 
relation that exists in the predicates (the WHERE 
condition), this technique works as a FRS strategy which 
is the worst case situation of the proposed technique.  

Experimental results will be reported as the research 
progresses. 
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