
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

161

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Design of Simulator for Reliability Estimation of Component
Based Software System

P K Suri1, Sandeep Kumar2,

1 Professor, Department of Computer Science and Applications, Kurukshetra University, Kurukshetra (Haryana), India
2 Assistant Professor, Department of Computer Applications, Dronacharya Institute of Management and Technology,

Kurukshetra (Haryana), India.

Summary
This is the age of Rapid Application Development (RAD). To
achieve the goal of RAD, Component Based Software
Development (CBSD) can be of great help. Here Commercial-
off-the-shelf (COTS) components are deployed together to make
a larger application. These components are designed and
developed independent of each other and independent of the
application they are being used in. It has the advantages in the
form of adaptability, scalability and reusability. Like in any other
system here too the overall reliability of the system is a function
of reliabilities of all the components used in the system and their
interfaces with each other. In this paper an attempt has been
made to compute the reliability of the system as a function of
reliabilities of its components. Components along a path, called
Course-of-execution, are executed during each simulation run.
Starting from any component during any Course-of-execution,
control is transferred to any other component as per the Markov
process [7, 8, 9].If we are able to reach the last component in the
system, which is assumed to be a terminating component, that
pass is assumed to be successful otherwise it is assumed to be
unsuccessful. At the end we compute reliability of the system by
dividing the number of successful passes by total no of
simulation runs and get the reliability of the component based
system.
.Key words:
Component Based Software, CBSE, Simulation, COTS,
Reliability

1. Introduction

According to Tausworthe [18] Reliability is one of the
most important quality parameter of any system. It can be
defined as probability that a system will perform as per
requirements of the user for a specified period of time
under given circumstances. According to [13] Customers
want more reliable software faster and cheaper.
Quantification of software reliability is very important.
Juneja [7] and Shooman [14] have worked a great deal in
comparing various component reliability models. Structure
and architecture of software have a great impact on its
correctness and reliability [14]. Component Based
Software Engineering (CBSE) is the newest of the
software development paradigms. In CBSE, idea is to

compose, rather than develop, the software. Whenever
some new application is to be developed, firstly market is
searched for off-the-shelf components. If available, they
are purchased and composed together, otherwise
depending upon specification, components are developed
in house. But there also main issue is to compose the
components to make the application. Although
Component Based technology has significantly reduced
the development cost and time, quality control has become
more difficult, since the system includes components from
other systems [2]. Off-the-shelf components are
commercially pre-tested and trusted [21], still it is very
important to ensure the reliability of the software
application, composed of these components. In
conventional applications, system reliability can be
estimated using system testing and system level
architecture evaluation [6], but in case of Component
Based applications, reliability can be estimated using the
reliabilities of the individual components and their
interfaces [21]. Most of the existing software reliability
modeling techniques are black-box based where entire
software is considered as single entity. They have the
limitation of component testing information ignorance.
Moreover they don’t take the software architecture into
account. In some of the techniques available for reliability
of Component based software, test cases are generated and
faults are injected for studying the reliabilities of
component based systems. But the problem with these
techniques is that they can not be applied at early phases
of the development life cycle. S. Gokhale, M Lyu and K
Trivedi [3] used discrete event simulation to study the
influence of various factors, individually and taken
together, on various dependency parameters. In this paper
they made use of two case studies. First one uses a
terminating application in which effect of fault tolerance
configurations of components on the failure behavior of
the application have been studied, and second one uses a
real time application with feedback control in which
authors simulated the failure behavior of a single version
considering reliability growth initially.
R. Michael [12] describes many simulation methods for
software analysis and evaluation. Some of the techniques

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

162

have been proposed in [4, 5]. But again all these are
conventional methods and don’t take component based
nature of a software into consideration.
S. Gokhale et al. [3] have measured system reliability from
component reliabilities using an expression where system
reliability is equal to product of component reliabilities
(R= ∏k=1 n Rk, Where Rk, s are component reliabilities). But
component reliabilities are not binary in nature. According
to [5] no component developer will ever guarantee the
absolute correctness of a component. Each component has
a non zero risk of failure called its unreliability and this
unreliability in turn affects the overall reliability of the
application. Reliability of that component is 1- failure
probability.
J. Horgan et al. [6] used a UNIX utility as a component
based system, which in turn may be a subsystem to some
other system, to compute reliability of a component based
system. The technique used has been named CBRE
(Component Based Reliability Estimation). It uses
sequence of components executed during system or
subsystem testing. But at that time components were not
independent entities, purchased off-the-shelf. They would
rather be developed as modules of some application,
exclusively developed for that application. But in case of
CBSE, components are developed independent of an
application and then deployed in different applications
according to requirements.
Wang et al. [19] have given a reliability model for
component based software systems where idea is to use
the moving averages to compute the system reliability.
The moving averages in the model provide an indicator
that represents reliability growth movement within the
evolution of a series of component enhancements. The
model takes component configuration and reliability
improvement as input and gives a series of reliabilities that
are moving in average corresponding to discrete intervals,
as output.
Wang et al. [20] have presented an analytical model for
estimating the architecture based software reliability
according to the architecture of the software application,
reliability of each component, and their operational profile.
Authors have performed analysis on heterogeneous
software architecture styles like batch sequential, parallel,
pipe filters, call and return and fault tolerant styles.
Most of the models try to predict the reliability using
observed failure data. Component based software is close
to many real world systems, where any big system is made
up off many small subsystems. As a matter of fact it is
very difficult to obtain an analytical solution. So we
propose this simulation based technique to compute the
reliability of the application composed of reusable
components. Suri and Aggarwal [16] have given a simple
technique for evaluating reliability expression when logic
flow of the program is governed by instructions in

sequence, branch or parallel. However logic flow of an
algorithm may be governed by a general network structure
also [17]. Here an attempt has been made to implement
this concept for the design of a simulator for reliability
estimation of a Component Based Software System
because in such a system transitions to various
components along different courses of execution make a
complex network.

2. Terms and Notations

The terms and notation for the simulator are given as
under:

CCFG: Component Control Flow Graph

{Ni}: Set of i nodes in CCFG

{Ej}: Set of j Edges in CCFG

Interact (Ci,Cj) : Number of times Ci interacts with Cj

during a course of execution.

TNC i, j : Total number of interactions among all

components during a Course-of-execution

PoTi→j: Probability of Transition from component i to

component j.

E: Number of courses of execution (paths)

PEk: Probability of execution of path Ek

N: Total Number of Components

PoTi→j: Probability of Transition from Component i to

Component j

MPoT : “Probabilities of Transitions” Matrix

IPoT i→j: Imperfect “PoT” from i to j

MIPoT: Imperfect “PoT” Matrix

RoCi: Reliability of Component i

VRoC: “Reliabilities of Components” vector

STERM: Successful Termination

UTERM: Unsuccessful Termination

RELappl: Overall reliability of the application

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

163

TRUNS: Total number of simulation runs

3. Simulator for the Component Based
System

A simulation based model for computing the reliability of
a component based system as, a function of component
reliabilities, is proposed here. The model being proposed
here is based on the Markov chains and transition
probabilities. The flow of execution in the system is
represented by a component Control Flow Graph (CCFG).
CCFG is a graph that consists of a set of nodes and edges
CCFG = <Ni, Ej>. Each node in the graph represents an
independent component. During a particular Course-of-
Execution (CoE), components along a path in the graph
are executed one by one, until the last node; called
Terminal Node (TERM) is reached. The transfer of control
along a path from one component to another component
takes place according to Markov process. The Markov
process states that if we are given the present state, the
future behavior of the system is independent of the past
behavior [11]. Each component has a specific reliability
associated with it, which is probability of successful
execution of that component. Once a component executes
successfully, it transfers control to one of the other
components depending upon the Course-of-execution.
This is a free flowing control where control can be
transferred from any component to any other component.
Probability of control being transferred to any component
from the current component is known as Transition
Probability. Probability of transition from one component
to another can be estimated using number of interactions
between two components using equation number 1 given
below [21]:

PoTi→j = ∑
=

E

k
PE

1
k *

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

= NlClCiInteract

CjCiInteract

,..1,(

),(

(1)
In the control flow graph, each component corresponds to
a state of the Markov process. In every instance, the
execution starts with the first component and terminates
with the successful execution of the last component. In-
between, any number of transitions can take place among
various components. For example after successful
execution of the first component (which depends upon its
component reliability off course), transition may take
place to any other component (2, 3, 4,….., N) of the
system. Similarly if current state, or component, is 4,
transition may take place to any other component (1, 2, 3,
5,….., N) of the system. Transition will always depend
upon a specific course-of-execution. These transitions here
have been modeled using a “Probabilities of Transition”

matrix MPoT. Here PoT i→j is the probability that control
will be transferred to component ‘j’ provided, that the
component ‘i’ executes successfully. It can be seen here
that one of the factors effecting the smooth transition from
component ‘i’ to component ‘j’ is the reliability of
component ‘i’ (denoted by RoCi). Hence exact probability
of transition can not be represented by MPoT. Instead
another matrix, called Imperfect “Probabilities of
Transition” matrix (denoted by MIPoT) is computed using
values in MPoT and vector VRoC (VRoC is a vector that
holds the reliabilities of all the components) as shown in
equation 2 below.

 (2)

Using the values in Imperfect State Transition matrix we
generate another matrix called Cumulative State
“Probabilities of Transition Matrix (MCPoT). Value at a
specific location in MCPoT is sum of all the previous
values in that row.
In each simulation run, system starts its execution from
component 1. Then a uniformly distributed random
number is generated using a good random number
generator. Depending upon the number that has been
generated, it is decided to which component the transition
will take place from the current component.
Given that ‘i’ is the current component and a random
number RAND has been generated, if MCPoTij < RAND
<= MCPoT i(j+1) we assume that transition to the jth
component has taken place and jth component becomes
the current component. This process continues until
TERM (Terminal state or component) is reached or the
process fails. If TERM is reached, operation is successful
otherwise failure. System reliability is then computed by
dividing the number of successful operations by total
simulation runs. So here System Reliability (which is the
probability of the system completing desired task) has
been mapped over the transition path ending in the
terminal state.

4. Algorithm Description

1. Estimate the parameters
a). Reliabilities of all Components i.e.

RoCi’s.
b). Reliabilities of all Transitions i.e. RoC

i→j.
c). Interact (Ci, Cj) , TNC i→j.

2. Compute probabilities of Transitions PoT i→j ‘s
using Eq. 1.

3. a). Construct Reliabilities of Components”
vector “VROC” using RoCi’s.

IPoT i→j = RoC i * PoT i→j for all i, j

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

164

b). Construct “Probabilities of Transitions”
matrix MPoT using PoTi→j’s.

4. Initialize counters SCOUNT for successful
termination of a particular Course-of-Execution
& UCOUNT for unsuccessful termination of a
Course-of-Execution.

5. Read in VRoC, MPoT, TRUNS.
6. Compute Imperfect “Probabilities of Transitions”

matrix MIPoT using Eq. 2.
7. Compute Cumulative “Probabilities of

Transitions” matrix MCPoT.
8. Repeat steps 9 to 11’TRUNS times
9. i = 1
10. Generate a uniformly distributed and independent

random number RAND (for randomly selecting a
Course of Execution.).

11. Select a Course-of-Execution as follows:
 If (0 < RAND <= MCPoTi→1)

 i = 1;
 Continue to step 9.
 Else
 If (MCPoTi→1 < RAND <= MCPoTi→2).
 i = 2;
 Continue to step 9.
 .
 .
 .

.
 .
 .

.

 Else

If (MCPoTi→(N-1) < RAND <= MCPoTi→N)
 i = N;
 Continue to step 9.

Else
If (MCPoTi→N < RAND <= MCPoTTERM)
 SCOUNT = SCOUNT + 1 (Path terminates

successfully).
ELSE
 UCOUNT = UCOUNT + 1 (Path terminates

unsuccessfully).
ENDIF

12. (Compute Application Reliability)

 RELappl =
TRUNS

SCOUNT

5. Simulator Implementation

Simulator developed for the purpose was applied in many
ways. In the first case a sensitivity analysis was done,
where effect of the reliability of each component on the
overall reliability of the system was analyzed. In the
second case we tried to find out effect of number of
components on the reliability of a component based
application.

5.1 Sensitivity Analysis

In this implementation a detailed sensitivity analysis was
done. In any system, the overall output depends, to some
extent, on every input. Here reliabilities of individual
components are taken as inputs and overall system
reliability is taken as output. Every component has some
effect on the overall reliability of the application.
Note from Figure 1 that transition can take place from any
component to any other component depending upon the
Course-of- Execution, but there is no transition from
terminal component to any other component. Probabilities
of transition for a four component system are shown in the
table 1.

Figure 1: Component Control Flow Graph

Table 1:”Probabilities of Transition” values

PoTi→j j

i

C1 C2 C3 C4 TERM

C1 0.0 .19 .16 .27 .38
C2 .21 0.0 .24 .40 .15
C3 .34 .11 0.0 .29 .26

Term
C1

C4

C2

C3

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

165

C4 .09 .62 .13 0.0 .16
TERM 0.0 0.0 0.0 0.0 1.0

Given that VRoC = {.95, .93, .98, .97, 1.0(for terminal
component)}
System Reliability achieved in this case using above
mentioned procedure with one Lakh (100000) simulation
runs is .847.
Similarly the procedure was applied on different set of
values. For finding effect of the reliability of each
component on the overall reliability, reliability of that
component was changed from .70 to 1.0 in steps of .5 each
time. While doing so, the reliabilities of the other
components were kept constant. This way the simulator
was executed 100000 times for each combination. The
results obtained are shown in table 2. The value in the
table at each intersection of “component” and “reliability”
depicts the Overall System Reliability for that value of the
component reliability while other component reliabilities
are kept constant. For example the value .562 at the
intersection of second column and second row of the table
is the overall system reliability when reliability of the
component C1 is .70 while reliabilities of all other
components are kept as 1.0.

Table2: Overall System Reliability for various Reliabilities values for

different Components
Component C1 C2 C3 C4

C
om

po
ne

nt
 R

el
ia

bi
lit

y

.70 .562 .791 .439 .800

.75 .623 .821 .501 .826

.80 .688 .852 .578 .858

.85 .757 .885 .673 .890

.90 .831 .920 .796 .925

.95 .914 .960 .907 .962

1.0 .2097 .2098 .2090 .2096

0

0.2

0.4

0.6

0.8

1

1.2

0.7 0.75 0.8 0.85 0.9 0.95 1
Component Reliability

O
ve

ra
ll

Sy
st

em
 R

el
ai

bi
lit

y
Component 1 Component 2
Component 3 Component 4

Graph 1: Component Reliabilities v/s Application Reliability

As can be seen from the plot of table 2, i.e. Graph 1,
overall reliability of the application increases when
reliabilities of individual components are increased,
keeping all other reliabilities constant. It can be of great
help while choosing a component from some existing
package or application for fitting it in a new application. A
component can be accepted or rejected depending upon
effect of its reliability on the overall reliability of the
system.

5.2 Effect of no of Components on System
Reliability

Second implementation is for checking the effect of
number of components on the overall system reliability.
System was simulated for 4, 5, 6, 7, 8 and 9 components
respectively. In each category, number of simulation runs
was kept One Lakh (100000). The results of this
implementation have been summarized in table 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

166

Table 3: Number of Components and System Reliabilities

No of
Components

Component
Reliabilities

System
Reliability

4 .95, .93, .98, .97 .847
5 .95, .96, .98, .97, .93 .806
6 .95, .96, .98, .97, .93, .

95, .97
.778

7 ..95, .96, .98,.97, .93, .
95, .97

.758

8 .95, .96, .98, .93, .95, .
97, .98

.751

9 .95, .96, .98, .97, .93, .
95, .97, .98, .96

.721

0.64
0.66
0.68
0.7

0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86

4 5 6 7 8 9

Number of Components

System Reliability

Graph 2: Number of Components v/s System Reliability

Data of table 3 is plotted in Graph 2 above, which shows
the relationship between numbers of components in a
component based system and overall System Reliability.
As can be seen, system reliability decreases as we increase
the number of components in the system. It happens due to
increase in the number of transition paths.

6. Discussion and Conclusion

In any large system, made up of subsystems, the overall
reliability of the system depends a great deal on the
reliability of each component of the system. Here, we tried
to find out the impact of individual component reliabilities
and transition probabilities on the reliability of the system
seen in a larger perspective. Overall system reliability is
sensitive to the reliabilities of individual components. In
component based applications, Components can be
purchased off the shelf. If reliability of the component,
being purchased off the shelf, is known in prior, its effect

on the overall application reliability can be computed and
a decision can be made whether to incorporate that
component in the system or search for a different
alternative. As regard to the number of components in a
system, if they are increased, the overall system reliability
starts decreasing. It may happen due to increase in the
number of transition paths in the system.
The simulation model proposed here can be of great help
while designing and development, or composing software
from existing software components. It may help in
deciding how many components can be there in an
application keeping in view how much reliable software is
desired.

References:
[1] Abdel Ghaly, A.A., et al, “Evaluation of Competing

Software Predictions,” IEEE Transaction on Software
Engineering, Vol. SE-12, No. 9, September 1986, pp.
950-967.

[2] Crnkovic, I. and Magnus, L., “Component Based
Software Development – A New Paradigm of Software
Development,” MIPRO 2001 proceedings, Opatij,
Croatia, May 2001.

[3] Gokhale, Swapan S., Michael, R. Lyu and Trivedi,
Kishore S., “Reliability Simulation of Component Based
Software Systems,” In the proceedings of 9th International
Symposium on Software Reliability Engineering, 4-7th
Nov. 1208, pp. 192-201.

[4] Gokhale, Swapan S., Philip, T. and Marinos, P.N., “A
Non-Homogeneous Markov Software Reliability Model
with Imperfect Repair,” In the proceedings of
International Performance and Dependability Symposium,
Urbana, Champaign, IL, September 1206, pp 262-270.

[5] Gokhale, Swapan S. and Trivedi, Kishore S., “Structure
Based Software Reliability Prediction,” In the
proceedings of 5th International Conference on Advanced
Computing, Chennai, India, Dec 1207, pp. 447-452.

[6] Horgan, J. and Mathur, A., “Software Testing and
Reliability,” in the Handbook of Software Reliability
Engineering, McGraw Hill Publishing Company, New
York, NY, 1206, Chapter 13, pp. 531-566.

[7] Juneja, S. and Shahabuddin, P., “Efficient Simulation of
Markov Chains with Small Transition Probabilities,”
Management Science, Vol. 47, No. 4, 2001, pp. 547-562.

[8] Juneja, S. and Shahabuddin, P., “Fast Simulation of
Markovian Reliability/ Availability Models with General
Repair Policies,” In the proceedings of 22nd Annual
International Symposium on Fault Tolerant Computing,
IEEE Computer Society Press, 1202, pp. 150-159.

[9] Juneja, S. and Shahabuddin, P,. “Simulating Markovian
Software Reliability Models using Importance
Sampling,” Vol. 50, No. 3, 2001, pp.235-245.

[10] Kleijnen, J.P.C., “Experimental Design for Sensitivity
Analysis, Optimization and Validation of Simulation
Models,” In the Handbook of Simulation, Jerry Banks,
ed., John Wiley, New York, NY, USA,1208.

[11] Krishnamurthy, S. and Mathur, Aditya P., “On the
Estimation of a Software System using Reliabilities of its

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

167

Components,” In the proceedings of 8th International
Symposium on Software Reliability Engineering,” 2nd -5th

Nov. 1207, pp.146-155.
[12] Michael, R., “Handbook of Software Reliability

Engineering,” McGraw Hill Publishing Company, New
York, NY, USA, 1206.

[13] Musa, J.D., “Software Reliability Engineering,” Tata
McGraw Hill Publishing Company, New Delhi, India,
2005.

[14] Shooman, M.L., “Structure Models for Software
Reliability Prediction,” In the proceedings of 2nd
International Conference on Software Engineering, San
Francisco, CA, October 1976, pp. 268-280.

[15] Shooman, M., “Software Engineering,” McGraw Hill
Publishing Company, New York, NY, USA, 1983, pp.
296-403.

[16] Suri, P.K. and Aggarwal, K.K., “Reliability Evaluation of
Computer Programs,” Microelectron Reliab, 20(4), 1979,
pp. 465-470.

[17] Suri, P.K. and Aggarwal, K.K., “Software Reliability of
Programs with Network Structure,” Microelectron Reliab,
Vol. 21, No. 2, 1981, pp. 203-207.

[18] Tausworthe, R., “A General Software Reliability Process
Simulation Technique,” Tech. Report 91-7, Jet
Propulsion Laboratory, Pasadena, California, USA, 1201.

[19] Wang, W., Hemminger, T.L.and Tang, M.H., “A Moving
Average Modeling Approach for Computing Software
Reliability Growth Trends,” INFOCOMP Journal of
Computer Science, Vol. 5, No. 3, Sep 2006.

[20] Wang, W., Wu, Y. and Chen M., “An Architecture-Based
Software Reliability Model,” In the proceedings of
Pacific Rim International Symposium on Dependable
Computing, 1209, pp. 143-150

[21] Yacoub, S., Cakic, B. and Ammar, H., “Scenario-
Based Reliability of Component Based Software,”
In the proceedings of 10th International Symposium
on Software Reliability Engineering, 1209, pp. 22-
31.

Dr. P.K. Suri received his Ph.D.
degree from Faculty of
Engineering, Kurukshetra
University, Kurukshetra, India
and master’s degree from Indian
Institute of Technology, Roorkee
(formerly known as Roorkee
University), India. He is working
as Professor in the Department of
Computer Science and
Applications, Kurukshetra
University, Kurukshetra – 136119

(Haryana), India since Oct. 1203. He has earlier worked as
Reader, Computer Sc. & Applications, at Bhopal University,
Bhopal from 1985-90. He has supervised eleven Ph.D.’s in
Computer Science and thirteen students are working under his
supervision. He has around 125 publications in
International/National Journals and Conferences. He is recipient
of 'THE GEORGE OOMAN MEMORIAL PRIZE' for the year
1201-92 and a RESEARCH AWARD –“The Certificate of Merit
– 2000”for the paper entitled ESMD – An Expert System for

Medical Diagnosis from INSTITUTION OF ENGINEERS,
INDIA. His teaching and research activities include Simulation
and Modeling, Software Risk Management, Software Reliability,
Software testing & Software Engineering processes, Temporal
Databases, Ad hoc Networks, Grid Computing, and
Biomechanics.

Sandeep Kumar received his
Masters Degree in Computer
Science from Department of
Computer Science and
Applications, Kurukshetra
University, Kurukshetra, Haryana,
India in 2001. He is a Ph.D.
scholar under the guidance of Dr.
P.K. Suri at Department of
Computer Science and
Applications, Kurukshetra

University, Kurukshetra. He has more than seven years of
teaching experience at institutions of repute. Presently he is
working as Assistant Professor and Head, Department of
Computer Applications, Dronacharya Institute of Management
and Technology (DIMT), Kurukshetra since July 2007. Prior to
this he worked as a lecturer at DIMT, Kurukshetra and Asia
Pacific Institute of Information Technology SD India (APIIT SD
India), Panipat, Haryana, India. He was the editor of Proceedings
of an International Conference (CNFE’ 05) at APIIT SD India.
His research interests include Component Based Software
Engineering, Simulation, and Operating Systems.

