
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

176

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Non-replicated Dynamic Data Allocation in Distributed
Database Systems

Arjan Singh† and K.S. Kahlon††

†Department of Computer Science & Engineering, BBSB Engineering College, Fatehgarh Sahib, Punjab, India

††Department of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, Punjab, India

Summary
Allocation of data or fragments in distributed database is a
critical design issue and requires the most effort. It has the
greater impact on the quality of the final solution and hence the
operational efficiency of the system. Performance of the
distributed database system is heavily dependent on allocation of
data among the different sites over the network. The static
allocation provides only the limited response to the change in
workload. So, choosing an appropriate technique for allocation
in the distributed database system is an important design issue.
In this paper, a new dynamic data allocation algorithm for
non-replicated distributed database system has been proposed.
The proposed algorithm reallocates data with respect to the
changing data access patterns with time constraint. This
algorithm will decrease the movement of data over the network
and also improve the overall performance of the system.
Key words:

Distributed Databases, Static Data Allocation, Dynamic Data
Allocation

1. Introduction

Due to demand for system availability, autonomy, and
enabled by advances in database and communication
technology, distributed database systems are becoming
wide-spread [8]. Distributed database technology is one of
the most important developments of the past two decades.
The maturation of database management systems
technology has coincided with significant developments in
distributed computing. It resulted in the emergence of
Distributed Database Management Systems (DDBMS)
[23].Distributed database is a collection of multiple,
logically interrelated database distributed over computer
network and distributed database management system is a
database management system capable of supporting and
manipulating distributed database [23]. The basic
motivations for distributed databases are to improve
system performance, to increase the availability of data,
shareability, expandability and access facility. Distributed
database systems are used in applications requiring access
to an integrated database from geographically dispersed
locations.

The design of distributed databases is an optimization
problem requiring solutions to following two problems
[7]:

• Designing the fragmentation of global relations
• Designing the allocation of fragments to the sites

of communication network

The problem of fragmenting the database is
difficult one in itself and variety of approaches exist for
fragmenting the database. But, this study concentrates only
on data (fragments) allocation problem, assuming that the
database is already fragmented.

 The problem of allocating data in a distributed
database system has an important impact upon the
performance and reliability of the system as a whole [2,10].
The aim is to store the fragments closer to where they are
more frequently used in order to achieve best performance.
So, one key principle in distribution design is to achieve
maximum locality of data and applications. Since,
distributed databases enable more sophisticated
communication between sites; the major motivation for
developing a distributed database is to reduce
communication by allocating data as close as possible to
the applications which use them [8]. Thus in a
well-designed distributed database 90 percent of the data
should be found at the local site, and only 10 percent of the
data should be accessed on a remote site [8]. A poorly
designed data allocation can lead to inefficient
computation, high access cost and high network loads
[23].

Various approaches have already evolved for
allocation of data in distributed database. In most of these
approaches, data allocation has been proposed prior to the
design of a database depending on some static data access
patterns and/or static query patterns. In a static
environment, where the access probabilities of nodes to
fragments never change, a static allocation of fragments
provides the best solution. However, in a dynamic
environment where these probabilities change over time,
the static allocation solution would degrade the database
performance.

Fragment allocation can further be divided into
two different categories: redundant or non-redundant [7,
23]. In a non-redundant allocation exactly one copy of
each fragment will exist across all the sites, while under a
redundant allocation, fragments are replicated over
multiple sites. In this paper a new dynamic data allocation

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

177

algorithm for non-replicated database systems have been
introduced which is an extension of [4] and [29] .The
objective of this work is to design an effective algorithm
that can generate minimum total data transfer cost
allocation schemes in changing load environments. The
rest of the paper is organized as follows.

Section 2 provides an overview of the related work
done so far. Section 3 provides the proposed new
algorithm for non-replicated dynamic allocation of data.
Section 4 describes the comparison of proposed new
algorithm with other dynamic approaches. Finally, Section
5 summarizes the contribution of the study and point out
direction for further research.

2. Related Work

Many reports have been published on the problem of
allocation of data to nodes. The file allocation problem
was first investigated by [10]. [10] developed a global
optimization model to minimize overall operating costs
under the constraints of response time and storage capacity
with fixed number of copies each file. [5] relaxed the
assumption of fixed number of copies and stressed the
difference between updates and retrieval. [14] proved that
[5]’s formulation was NP-Complete and suggested
heuristic rather than deterministic approaches be
investigated. [26] analyzed a file allocation problem in the
environment of a distributed database for optimization of
query processing. By introducing replicated file, [27]
showed how communication cost attributed to joins can be
minimized. [6] considered the problem of file allocation
for typical distributed database applications with a simple
model of transaction execution.

[3,27] have observed that the fragment allocation
problem differs from the well-studied file allocation
problem. [3] considered the allocation of the distributed
database to the sites so as to minimize total data transfer
cost and devised a comprehensive approach to allocate
relations. [27] provides a nonlinear integer programming
formulation and its linearization. [25] incorporated issues
like concurrency and queuing costs, while [18] presents a
max-flow approach. [28] provides an integrated approach
for fragmentation and allocation. [28] identified seven
criteria that a system designer can use to determine the
fragmentation, replication and allocation. [9] provides
approach for allocating fragments by adapting a machine
learning approach. [24] incorporates a concurrency
mechanism, and [31] present a replication algorithm that
adaptively adjusts to changes in read-write patterns.

[12] provides an approach based on Lagrangian
relaxation and [16] describes heuristic approaches. Beside
allocating data, [13] and [20] present a mathematical
modeling approach and a genetic algorithm-based
approach to allocate operations to nodes. [22] has
presented an integer programming formulation for the

non-redundant version of the fragment allocation problem.
More recently [15] has given a high-performance
computing method for data allocation in distributed
database system. The problem of distributing fragments of
virtual XML repositories over the Web is considered by [1].
[32] has considered the related problem of distributing the
documents of a Web site among the server nodes of a
geographically distributed Web server.

In most of the above approaches, data allocation
has been proposed prior to the design of a database
depending on some static data access patterns and/or static
query patterns. Static allocation of fragments provides the
best solution where the access probabilities of nodes to
fragments never change. But, the static allocation solution
would degrade the database performance in a dynamic
environment, where these probability change over time.

Over past few years, work has been introduced
for dynamic data allocation in database systems. [31] give
a model for dynamic data allocation for data redistribution.
In [4] an algorithm is proposed for dynamic data allocation
algorithm, which reallocates data with respect to bringing
changing data access pattern. [9] presents an approach
based on machine learning, [11] considers incremental
allocation and reallocation based on changes in workload.
[19] has given a dynamic object allocation and replication
algorithm with centralized control. [21] incorporated
security considerations into the dynamic file allocation
process. In [17] an optimal algorithm for non-replicated
database systems is proposed. [29] has introduced a
threshold algorithm for non-replicated distributed
databases. In the threshold algorithm, the fragments are
continuously reallocated according to the changing data
access patterns. In this paper, a new dynamic data
allocation algorithm for non-replicated distributed
database system has been proposed which is an extension
of work carried out by [4] and [29, 30]. The proposed
algorithm reallocates data with respect to the changing
data access patterns with time constraint.

3. NEW NON-REPLICATED DYNAMIC

ALLOCATION OF DATA

A major cost in executing queries in a distributed database
system is the data transfer cost incurred in transferring
fragments accessed by a query from different sites to the
site where the query is initiated [7, 23]. The main objective
of a data allocation algorithm is to allocate fragments at
different sites in such a way that the total data transfer cost
during the execution of a query can be minimized. The
proposed work is an attempt to decrease the data transfer
during the execution of a query.

The proposed algorithm for dynamic allocation
of data in distributed database system is a variation of
existing two approaches: Optimal algorithm [4] and
Threshold algorithm [29].

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

178

In optimal algorithm [4], initially all the
fragments are distributed over the different sites using any
static data allocation method. After the initial allocation,
optimal algorithm maintains access counters matrix for
each locally stored fragment at each node or site. Every
time an access request is made for the stored fragment then
the access counter of the accessing node for the stored
fragment is increases by one. If the accessing node is the
current owner then there is no problem, otherwise if the
counter of a remote node is greater than the counter of the
current owner than move the fragment to the accessing
node. So, a node having the highest access value for a
particular fragment is the primary candidate for the
fragment. The problem of this technique is that if the
changing frequency of access pattern for each fragment is
high, then it will spend more time for transferring
fragments to different sites.

Threshold algorithm [29] has solved the problem
of optimal algorithm. In threshold algorithm only one
counter per fragment is maintained. Threshold algorithm
guarantees the stay of the fragment for at least (t+1)
accesses at the new node after a migration, where t is the
value of threshold. The most important point in this
algorithm is the choice of threshold value. If the threshold
value increases then the migration of fragment will be less.
But, if the threshold value decreases then there will be
more migration of fragments. But threshold algorithm has
following problem with its approach:

• Every time a node is going for a local access, it
reset the counter of local fragment to zero.

• Whenever the counter exceeds the threshold
value, the ownership of the fragment is
transferred to another node. But, it does not
specify which node will be the fragment’s new
owner.

• It does not give the information about past
accesses of the fragments.

• It is not considering the time variable of the
access pattern.
The new algorithm will remove all the above

problems of threshold algorithm. It will reallocate data
with respect to the changing data access patterns with time
constraint. The new algorithm will add time constraint to
the existing threshold technique. While migrating fragment
from one node to another node, this algorithm will not
only consider the threshold value but will also consider the
time of access made to a particular fragment. This
algorithm is called Threshold and Time Constraint
Algorithm (TTCA). TTCA is illustrated as follow:

TTCA Algorithm:- Initially all the fragments are
distributed over different nodes using any static allocation
method in non-redundant manner. TTCA maintain a n×m
counter matrix M, where n denotes the total number of
fragments and m denotes the total number of nodes or sites.
Mij is the number of accesses to fragment i by node j.

Step 1: For each fragment, initialize the counter values

equal to zero (i.e. set Mij = 0, where i = 1,2,----,n

and j = 1,2,----,m)

Step 2: Process an access request for the stored fragment.

Step 3: Increase the corresponding access counter of the

accessing node by one for the stored fragment

and also store the time of corresponding access.

Step 4: If the accessing node is the current owner, go to

Step 2. (i.e. Local access, otherwise it is remote

access).

Step 5: If the counter of the remote node is greater than

the threshold value (t) and all last “t+1” accesses

are made in a specified time (T) then reset

corresponding fragment’s counter to zero for all

the node and transfer the fragment to the node

who’s counter value was greater than threshold

value (t).

Step 6: Go to step 2.

TTCA will further decrease the migration of

fragments over different sites as compare to simple
threshold algorithm. It will migrate only that fragment
which is most recently accessed for t numbers of times,
where t is the threshold value. So if we increase the value
of time variable then the migration of fragment will be
more. But, if the value of time variable decreases then
there will be less migration of fragments.

4. COMPARISON

Comparison of TTCA with the optimal and threshold has
been made on the following three different parameters:

• Migration Condition
• Network overhead
• Storage Cost

Optimal algorithm migrate the fragment when
the counter for remote node in the access matrix is greater
than the counter of the owning node. Threshold algorithm
migrate the fragment when the counter with particular
fragment is greater than the threshold value. TTCA
migrate fragment when the counter of the remote node is
greater than the threshold value (t) and all last “t+1”
accesses are made in a specified time (T).

Optimal algorithm increases the traffic on
network when changing frequency of access pattern for

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

179

each fragment is high. Threshold algorithm decreases the
overhead on the network by limiting the migration of
fragment. TTCA further decreases the network overhead
as compare to both optimal and threshold algorithms by
including both the number of access and most recent
access conditions for migration of fragments.

Optimal algorithm uses extra storage cost for
access counter matrix. Threshold algorithm required less
storage cost as compare to optimal algorithm, because it
stores only one counter for each fragment. But TTCA
requires more storage as compare to both optimal and
threshold algorithms, as it stores access counter matrix and
respective time of particular access.

5. CONCLUSION
Distributed databases are being increasingly used in
various organizations, supported by availability of various
distributed database management system software
products. The decision on how to distribute organizational
database using distributed database management system is
an important issue, affecting both cost and performance.
Performance of distributed database system is heavily
dependent on allocation of data among different sites,
because major cost in executing queries in a distributed
database system is the data transfer cost incurred in
moving data accessed by a query from different sites to
site where the query is initiated. The static allocation
provides only limited response to changing workload. This
paper provides a dynamic algorithm for non-replicated
distributed database systems. Purposed algorithm will
decrease the movement of fragment during the reallocation
process as compare to optimal and threshold algorithms.
This work is a significant effort to minimize the amount of
data transferred during processing the application.

References
[1] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,

and T. Milo, “Dynamic XML Documents with
Distribution and Replication,” Proc. 2003 ACM
SIGMOD Int’l Conf. Management of Data, pp.
527-538, 2003.

[2] S. Agrawal, V. Narasayya, and B. Yang, “Integrating
Vertical and Horizontal Partitioning into Automated
Physical Database Design,” Proc. 2004 ACM
SIGMOD International Conf. Management of Data,
pp. 359-370, 2004.

[3] P. Apers, “Data Allocation in Distributed Databases,”
ACM Trans. Database Systems, vol. 13, no. 3, pp.
263-304, Sept. 1988.

[4] A. Brunstroml, S.T. Leutenegger and R. Simhal,
“Experimental Evaluation of Dynamic Data
Allocation Strategies in a Distributed Database with
changing Workload”, ACM Trans. Database Systems,
1995.

[5] R. G. Casey, “ Allocation of Copies of a File in an
Information Network”, in Proc. AFIPC 1972 SJCC,
Vol 40, 1972, pp. 617-625.

[6] S. Ceri, G. Martella, and G. Pelagatti, “Optimal file
Allocation for a Distributed Database on a Network
of Minicomputers”, in Proc. International
Conference on Database, Aberdeen, July 1980,
British Computer Society Hayden.

[7] S. Ceri and G. Pelagatti, “Distributed Databases:
Principles & Systems”, McGraw-Hill International
Editions.

[8] S. Ceri, B. Pernici and G. Wiederhold, “Distributed
Database Methodologies”, Proceedings of IEEE, Vol.
75, No. 7, May 1987.

[9] A. Chaturvedi, A. Choubey, and J. Roan, “Scheduling
the Allocation of Data Fragments in a Distributed
Database Environment: A Machine Learning
Approach,” IEEE Trans. Eng. Management, vol. 41,
no. 2, pp. 194-207, 1994.

[10] W.W. Chu, “Optimal File Allocation in Multiple
Computer Systems” IEEE Transaction on
Computers, Vol. C-18, No.10, 1969.

[11] A. Chin, “Incremental Data Allocation and
Reallocation in Distributed Database Systems,”
Journal of Database Management, Vol. 12, No. 1, pp.
35-45, 2001.

[12] G. Chiu and C. Raghavendra, “A Model for Optimal
Database Allocation in Distributed Computing
Systems,” Proc. IEEE INFOCOM 1990, vol. 3, pp.
827-833, June 1990.

[13] A. Corcoran and J. Hale, “A Genetic Algorithm for
Fragment Allocation in a Distributed Database
System,” Proc. 1994 ACM Symp. Applied Computing,
pp. 247-250, 1994.

[14] K.P. Eswaran, “Placement of Records in a File and
File Allocation in a Computer Network”, on Proc.
IFIP Congr. North-Holland, 1974.

[15] I.O. Hababeh, M. Ramachandran and N. Bowring,
“ A high-performance computing method for data
allocation in distributed database systems”, Springer,
J Supercomput (2007) 39:3-18.

[16] Y. Huang and J. Chen, “Fragment Allocation in
Distributed Database Design,” J. Information
Science and Eng., vol. 17, pp. 491- 506, 2001.

[17] L.S. John, “A Generic Algorithm for Fragment
Allocation in Distributed Database System”, ACM
1994.

[18] K. Karlaplem and N. Pun, “Query-Driven Data
Allocation Algorithms for Distributed Database
Systems,” Proc. Eighth International Conf. Database
and Expert Systems Applications (DEXA ’97), pp.
347- 356, Sept. 1997.

[19] W.J. Lin and B. Veeravalli, “A Dynamic Object
Allocation and Replication Algorithm for Distributed
System with Centralized Control,” International
Journal of Computer and Application, Vol. 28, no. 1,
pp. 26-34, 2006.

[20] S. March and S. Rho, “Allocating Data and
Operations to Nodes in Distributed Database

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

180

Design,” IEEE Trans. Knowledge and Data Eng., vol.
7, no. 2, pp. 305-317, 1995.

[21] A. Mei, L. Mancini, and S. Jajodia, “Secure Dynamic
Fragment and Replica Allocation in Large-Scale
Distributed File Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 14, no. 9, pp. 885-896, Sept.
2003.

[22] S. Menon, “Allocating Fragments in Distributed
Databases”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 16, No. 7, July 2005.

[23] M. Ozsu and P. Valduriez, “Principles of Distributed
Database Systems”, Prentice Hall, second ed. 1999.

[24] S. Ram and R. Marsten, “A Model for Database
Allocation Incorporating a Concurrency Control
Mechanism,” IEEE Trans. Knowledge and Data Eng.,
vol. 3, no. 3, pp. 389-395, 1991.

[25] S. Ram and S. Narasimhan, “Database Allocation in
a Distributed Environment: Incorporating a
Concurrency Control Mechanism and Queuing
Costs,” Management Science, vol. 40, no. 8, pp. 969-
983, 1994.

[26] C.V. Ramamoorthy and B.W. Wah, “The Placement
of Relations on a Distributed Relational Database”,
in Proc. 1st Conf. On Distributed Computing System
1979.

[27] R. Sarathy, B. Shetty, and A. Sen, “A Constrained
Nonlinear 0-1 Program for Data Allocation,”
European J. Operational Research, vol. 102, pp.
626-647, 1997.

[28] A. Tamhankar and S. Ram, “Database
Fragmentation and Allocation: An Integrated
Methodology and Case Study,” IEEE Trans. Systems,
Man and Cybernetics—Part A, vol. 28, no. 3, May
1998.

[29] T. Ulus and M. Uysal, “Heuristic Approach to
Dynamic Data Allocation in Distributed Database
Systems”, Pakistan Journal of Information and
Technology, 2(3): pp. 231-239, 2003.

[30] T. Ulus and M. Uysal, “A Threshold Based Dynamic
Data Allocation Algorithm- A Markove Chain Model
Approach”, Journal of Applied Science 7(2), pp
165-174, 2007.

[31] O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive
Data Replication Algorithm,” ACM Trans. Database
Systems, vol. 22, no. 2, pp. 255-314, 1997.

[32] L. Zhuo, C. Wang, and F. Lau, “Document
Replication and Distribution in Extensible
Geographically Distributed Web Server,” J. Parallel
and Distributed Computing, vol. 63, no. 10, pp. 927-
944, 2003.

