
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

205

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Securing the interactions between X clients.

Prem Uppuluri
Department of Information Technology

Radford University
Radford, VA, U.S.A

Vivek Diwakara∗

Microsoft Corporation
Redmond, WA, U.S.A

Alok Tongaonkar Dept. of
Computer science Stony
Brook University Stony

Brook, NY, U.S.A

Vikas Rajegowda∗

Acme Packet
Burlington, MA, U.S.A

Abstract

The security of Xwindows is usually divided into au-
thentication/authorization of connections, and autho-
rization of Xclient interactions [5]. The first issue
has been well-addressed in research through mech-
anisms such as xhost and xauth1 . In this paper we
discuss the approaches to the last issue: one of au-
thorization. We present a taxonomy of different ap-
proaches and discuss the effectiveness of a light-
weight mechanism which we proposed.

1 Introduction

Several security issues with Xwindows have been
discussed in previous works [5, 11]. These in-
clude:

• Issues related to authentication and authoriza-
tion of Xclients to connect to an Xserver,

• Authorization of Xclients after they connect to
an Xserver. This deals with the actions that
Xclients can perform once they are authenti-
cated [5, 11].

∗Work done as students at the School of Computing and En-

gineering, University of Missouri, Kansas City, MO 64110 from
2004-2005.

1 www.x.org/archive/X11R6.8.1/doc/xauth.1.html

The security issues as mentioned in [11, 5] are that
once Xclients have been authenticated they can per-
form a number of actions that circumvent the access
control mechanisms provided by operating systems.
These include: reading, modifying and/or control-
ling information displayed by other Xclients as long
as they are connected to the same Xserver [5]. Fig-
ure 1 illustrates some such threats as discussed in [5].

These threats motivate the need for mechanisms to

manage the interactions involving information and
control flow between Xclients. In this paper we:

• Present a taxonomy of the different approaches
that address these issues.

• Present a formal treatment of a light-weight
specification based approach which we devel-
oped.

• A discussion of the effectiveness of such a light-
weight mechanism.

We presented preliminary results on how to use this

approach to prevent information-leaks in Xwindows
[14]. This paper extends and differs from this previ-
ous work in the following ways:

• We present a more detailed discussion of related
work.

• We present more detailed explanations for the
formal aspects of our preliminary work.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

206

Attack category Example attack(s)
Confidentiality Snoop on information displayed by Xclients using screen capture or

copy operation
Integrity Paste data into an open Xclient window being run by another user.

Availability Repeatedly grab the mouse or close other Xclients.

Figure 1: Example of how attacks can exploit Xclient interactions based on [5]

2 Taxonomy of approaches to

Xclient security

An important approach was the Compartmented
Mode Workstation (CMW) model[3]. The proposed
model resulted in several mechanisms to develop se-
cure Xwindows [11]. According to [3] the model
proposed “security requirements” [3] for multi-level
security. [3] also mentions that the CMW proposed
concepts such as “labeling”[3] and a “trusted win-
dow management system”[3]. A more thorough
analysis of the implementation of the CMW model
is discussed in [11].

The Xsecurity extension2 [12] proposed extending
Xfree86 windowing system to make it more secure.
Xclients are ”divided into two groups: trusted and
un-trusted”[12]. The trusted Xclients can interact
with each other without any monitoring while un-
trusted Xclients are “limited in what they do” [12].
The Eros Window System (EWS)[11] builds a win-
dowing server from scratch focusing on security
[11]. EWS is built on the EROS (Extremely Reli-
able Operating System)[10] operating system which
is based on the implementing access control using
capabilities[6]. Coloring schemes are used to label
trusted windows to inform users of the capabilities
of each client. The researchers/developers of EWS
point out in [11] that by using capabilities they are
able to prevent a security flaw in the CMW model:
one client’s vulnerability cannot be exploited to ef-
fect the others [11], thus preventing attacks within a
certain trust level. While EWS is unlike CMW in
that it doesn’t support mandatory access control, the
authors note that this is a small extension [11].
SELinux[5] is a research effort that was inspired by
the CMW model. It is currently distributed as part of

2 www.xfree86.org/current/security.pdf

several standard linux distributions prominently with
Red Hat Linux versions. Unlike EROS, SELinux is
not an OS from ground up but rather builds on the
standard Linux distribution. Access control is en-
forced using a form of domain type enforcement [7].
Currently SELinux is available as extensions to sev-
eral Linux distributions including Fedora Core(TM)3

and Ubuntu(TM)4 . In [5], the authors discuss the key
security requirements and design issues related to
making Xserver secure on an SELinux installation.
Some salient features of their design include:

• There is only a single Xserver with which all the
clients communicate. However, the clients can
be in different domains and information flow
between them is restricted by SELinux policies.

• It provides comprehensive security. Specifi-
cally, policies can be specified to mediate
information flow both at the kernel level as well
as at the Xserver level.

As alternative to these approaches are light-weight
systems that are either wrappers (e.g., sandboxes)
built around existing installations or seek to fix the is-
sues with existing installations. We survey two such
approaches: the Xbox sandboxing system [1, 2] and
retrofitting current Xserver code [4].
XBox/MAPBox[1, 2] was one of the first such sys-
tems. It is a sandbox that restricts each client to only
execute Xprotocol messages on the resources it cre-
ated (with a few exceptions). The clients are not al-
lowed to communicate with other clients (with ex-
ception to child clients) and hence operations such
as copy and paste may not be allowed. This system
was built using the Janus [15] sandbox specification
language that allows for filtering based on individual

3 http://docs.fedoraproject.org/selinux-faq/
4 https://wiki.ubuntu.com/SELinux

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

207

events such as Xprotocol messages.
A recent approach has focused on “retrofitting” [4]

the existing X server code with techniques to enforce
authorization [4]. They do this using two mecha-
nisms which they call AID and ARM. AID is used to
search for “security-sensitive operations”[4] by look-
ing at application traces. Whenever such an oper-
ation is found, the code is instrumented by ARM
with call backs to an authorization module before
the operation is executed. The authorization module
checks “the subject, the operation the subject wants
to execute on an object and either allows or denies
the operation”[4]. According to [4] it does automat-
ically what SELinux did manually over a few years.
This retrofitted Xserver was executed by them on top
of SELinux [4] and hence we consider this a light
weight system.

2.1 Categorizing different approaches

To achieve security, windowing systems need to sat-
isfy certain requirements. In [5] the authors identify
some of the requirements from the CMW model as
needed for implementing secure windowing systems
[5]. These include labeling which requires that users
are informed about the trust level of each Xclient by
the use of labels, trusted path between the user and
the Xclient, confidentiality, integrity, and applica-
tion compatibility which requires that existing clients
should be able to execute unmodified on the secure
server [5]. [5] also notes that all of these require-
ments must be incorporated with as few changes to
the existing Xfree86 as possible.
In addition if the windowing systems are to be used

in a multi-level security model (such as the motiva-
tion for CMW, SELinux and EROS) it is easy to see
that the approach must support the following func-
tionality:

• Selective management of Xclients. To man-
age information flow between Xclients, users
should be able to apply different security mod-
els. For instance, to apply the simple property
of the Bell-LaPadula model[8], the administra-
tor must be able to: (a) group users and assign
hierarchical trust levels to them, and (b) permit

information flow to groups with higher trust lev-
els and deny information flow to groups with
lower trust levels. In terms of Xclients, this im-
plies that the information displayed on Xclients
being run by some users belonging to a group
can be read by Xclients run by users in a group
at a higher trust level but not by Xclients run by
users at lower trust levels. This is similar to the
policy discussed in [4].

• Dynamically manage Xclient groups: Consider
an example of a transitive policy. Suppose a
user wishes to enforce a simple confidentiality
policy which states that information displayed
by an Xclient X can be copied by Xclient Y ,
but not by Xclient Z . In addition, assume that
the current trust relationships allow Z to copy
the information displayed by Y . An informa-
tion leak can occur, when the following interac-
tions occur: Y reads from X , and then, Z reads
from Y , thus effectively reading X ’s informa-
tion. Such leaks must be prevented.

In addition to the above requirements the follow-
ing categories can be used to distinguish these ap-
proaches:

• Heavy-weight vs. light-weight: We define
heavy-weight systems as those that in some
ways represent a significant change from the ex-
isting windowing systems in use. We consider
EWS and SELinux are both heavy-weight ap-
proaches. EWS is part of a completely new op-
erating system: EROS[10]. While EROS was
developed for an academic environment, its suc-
cessor the CapROS5 is being developed as a
commercial system. However to our knowl-
edge, based on the current website of CapROS5

it has been ported to run only on a few archi-
tectures (IA-32 and ARM-9) and has limited
functionality. While SELinux unlike EWS
builds on standard linux installations (and is
infact being shipped with several Linux flavors),
it represents a paradigm shift from the
discretionary access control mechanisms that
current OSes support. While there are efforts
to develop GUI based policy edi-

5 http://www.capros.org
5 ,

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

208

tors such as SEedit6 to make policy develop-
ment easier for SELinux there are certain com-
mon functions that users perform on general
purpose OSes such as porting new applications
seems to be non-trivial as pointed out in a blog7 .
Even as these are subjective opinions, we be-
lieve that regular users currently used to simple
discretionary based access control model need
to learn about domains, types and other facets
of SELinux in order to effectively deploy its se-
curity mechanisms and moreover, the learning
curve to do so maybe large. Hence, we consider
it to be a heavy-weight system.

• Comprehensive vs. Limited to windowing sys-
tem: Some of the systems provide compre-
hensive security right from regular applications
to windowing clients. For instance in EWS
and SELinux the information flow policy can
be enforced not only at the windowing level but
also across every process. While XBox is
specific to Xwindows, the authors note in [1]
that it should be used in conjunction with a
more comprehensive system such as their
kernel level sand- box, MAPBox [1]. Xbox by
itself is however a light-weight sandbox.
Similarly, while we put [4]’s mechanism into
Limited, we must note that the researchers
executed this system on top of SELinux [4]
making it comprehensive.

Figure 2 summarizes all the approaches. In sum-
mary, a light-weight system such as Xbox fails
to provide multi-level security, while EWS and
SELinux are either not easy to use or have not been
widely deployed for general purpose environments.
Our goal was to develop a light-weight system that
addresses these issues.

3 Overview of our approach

The preliminary results of the mechanism we devel-
oped were presented at [14].
For ease of explaining we will refer to our mech-

anism as Xfilter in the rest of the paper. Xfilter

6 http://seedit.sourceforge.net
7 http://blog.stevecoinc.com/2008/08/selinux.html

builds on top of MapBox/Xbox[1] by seeking to
add a multi-level security system and more expres-
sive policies. Our approach is based on specifying
and dynamically managing trust relationships be-
tween Xclients. A trust relationship between any two
clients connected to the same server defines the poli-
cies that govern the interactions between them.
[14] presented an overview and description of the

approach. In this section we present a summary of
that work, in some places reproduced verbatim and
in some places expanded for clarifying the approach.
In our approach (based on Xbox) Xprotocol mes-
sages are intercepted and delivered to a policy en-
forcement engine (EE). Note that this is an extension
from Xbox which simply intercepts Xprotocol mes-
sages and makes a decision on them. An EE maps
to an Xclient and monitors its interaction with the
Xserver.
The EE is very similar to the detection engines

(DEs) from our work on intrusion detection[13], the
cruicial difference being that they are tailored to-
wards Xprotocol messages. An EE is composed of
three parts:

• Class specification. A monitored client can
have a different trust relationship with each of
the other clients. For instance, if trust were
categorized hierarchically (i.e., multi-level se-
curity), such as in a military establishment, the
trust between a monitored client and another
client depends on the sensitivity of both the
clients. Class specifications, allow a user to
specify these different classes of trust and as-
sign specific trust relationship policies for each
class.

• Policy specification: These specify the valid
and invalid sequences of interactions between
clients. For instance, a client can have a pol-
icy to prevent some clients from reading its data
buffer. Policies are specified using a high level
specification language. We used the Behavior
modeling specification language [13] which we
developed for intrusion detection [9]. BMSL
was developed specifically to express security
policies and hence was ideally suited for this
work.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

209

Installation type

Applicability

SELinux
Heavy-weight

Comprehensive

EWS (EROS window system
Heavy-weight Comprehensive

Retrofit [4]
Light-weight

Limited

Xbox/MapBOX
Light-weight

Limited

(comprehensive
when used with a

kernel-level
mechanism such
as MAPBox[1])

Security aspects:
Trusted path

Yes

Yes

No

Controlling Copy
and Paste
Labeling

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No
Support

Multilevel
security
models

Yes Yes
(implements
Capabilities)

Yes (Can be
supported by
developing

specific
authorization

code)

Limited
(Sandbox is

fixed
before client

executes

Policy
granularity

Not very
granular.[7].

NA Can be
extended

No.

Policies are
mostly based on

a single event

with a
high-level
language.

Policies are
simple

sandbox
rules based

on Janus[15].

Figure 2: Taxonomy of different approaches to controlling information flow in Window systems

• Reactions/Responses: are triggered when a se-
quence of interactions match a specified policy.
These reactions can be simple, such as disallow-
ing the interactions or can be more complex.

3.1 Managing Trust relationships between

Xclients

Our goal was to allow users to manage the interac-
tions between Xclients with a high-level of granular-
ity. As this mechanism will run on general purposes
OSes that support discretionary access control, the
user can either be a system administrator or a reg-
ular user. Specifically, the user must be able to (a)
selectively apply different policies between different
Xclients, and (b) the policies should be able to cap-
ture the interactions precisely. To achieve these goals
we designed the framework such that it provided the
following functionality.

• Flexible grouping of Xclients to selectively
apply policies : An Xclient can be identified
based on two types of characteristics:

– runtime specific. At runtime, each Xclient
has two specific identities: effective user
id and a client id – which is a unique id
that the client gets from the server. In
addition, an Xclient maybe executing re-
motely or locally.

– static characteristics. Every client has a

program name, a program owner and a
program category such as editors (can edit
information they display) and browsers
(which cannot edit displayed informa-
tion).

Out of these client id is a runtime characteristic
which is arbitrarily assigned by the Xserver and
does not capture any property of the Xclient.
Hence, it does not have any useful information

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

210

′

′

when specifying trust relationships. The rest
of the characteristics on the other hand, can be
used to specify trust relationships.

• Specifying expressive policies to manage the
interactions between Xclients: Every interac-
tion is a sequence of messages and events be-
tween the Xclients and the Xserver. Policies to
manage these interactions must capture the se-
quential nature of these messages. Moreover,
messages (both requests and events) have ar-
guments, such as client id, whose relationships
across the messages must be captured for pre-
cise specification of the interaction. For in-
stance, the copy and paste operation, described
in [14], which allows one Xclient to copy
certain information from another Xclient can
only be captured precisely by consider-

3.2 Grouping Xclients

We use a simple language based on the way groups
are organized in Linux (which we will call Xclient
trust specification language (Xspec) in the rest of the
paper), to selectively group Xclients and associate
the groups with policies. This is inspired by the way
groups are created in UNIX operating systems. Each
Xspec has three parts: in the first two parts Xclients
are grouped based on their static and runtime char-
acteristics respectively and in the third part, policies
are selectively applied to the various groups.
Groups based on static characteristics are cre-

ated using the following syntax (note similarity to
UNIX):

clientT ype −→ clientT ypeN ame‘:’clientSet
clientSet −→ clientN ame[’,’]clientSet

′ ′ clientN ame −→ string id| ∗ |ǫ

ing the sequence of messages/requests involved.
[14] includes more details on this.

• Reactions to launch when managing inter-
actions: Managing interactions involves spec-
ify permissible or non-permissible interactions.
When the interactions match the policies, then
suitable reactions need to be launched. Reac-
tions can be simple. For instance, if an inter-
action matches a non-permissible policy, a sim-
ple reaction would deny that interaction. Re-
actions can also be complex. For instance, as-
sume that the policy permits copy and paste be-
tween Xclients X and Y and also between Y
and Z , but not between X and Z . Consider the
sequence of interactions in which Y copies in-
formation from X (which is permitted) and then
Z copies the same information from Y (which
is also permitted). These sequences bypass the
intention of the policy. To prevent this, when Y
copies from X , the policy could trigger a reac-
tion which restricts Y ’s interactions with other
Xclients to those of X ’s interactions. In our
approach reactions can be developed using an
general purpose programming language such as
C/C++.

clientT ypeN ame −→ string id

Terminals are indicated within single quotes. The

terminal ’*’ is a special name which can be used to
specify any Xclient program.
In the first part, each group has a name followed

by the Xclient program names separated by a “,”.
For instance, consider two groups (example first
used in our previous paper [14]) based on the type
of Xclients: editors which groups Xclients that
modify the files they display, and browsers which
groups Xclients that only display files and do not
modify them. They are specified as:

editors: XEmacs, gedit, Xfig

browsers: acrobat, xdvi

To group based on runtime characteristics we use

the following syntax:

user −→ usrT ypeN ame‘:’usrGroups
usrGroups −→ usrGroupN ame’:’

I P Address‘, usrGroups
usrGroupN ame −→ usrN ame’,’usrGroupN ame

usrN ame −→ string id|‘ ∗ |epsilon

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

211

Here are two examples (from our previous paper
[14]) of such groups: localUsers (represents all
the users on the local machine, i.e., IP address
127.0.0.1) and the privilegedUsers representing
administrator defined users such as root on a local
machine and and user P on a machine with IP
address 192.168.0.0.

localUsers: X, Y:127.0.0.1
privilegedUsers: root:127.0.0.1, P:192.168.0.0

The semantics of a group is the set of Xclient
processes, whose characteristics (runtime or static)
match the groups characteristics. For instance the
Xclient processes with program names XEmacs and
gedit match the editors group, while Xclients
which are being run by user X on the local machine,
match localUsers. Special characteristic “*” can
also be used in groups and it matches any Xclient.
Each Xclient can thus be represented as a tu-
ple: (static group, runtime group). For in-
stance, consider a tuple: (browsers, localUsers).
This tuple represents several Xclients including:
{(acrobat, Y:127.0.0.1).

Groups are associated with policies Trust rela-
tionships are specified as rules which associate a set
of policies with a source Xclient characteristic C and
a destination set of Xclient characteristics C. Infor-
mally, it specifies the policies that govern the inter-
action of Xclient processes that match the specified
destination characteristics C, with the Xclient which
matches the source characteristic C . This definition
allows us to apply different policies to the same set
of Xclients, depending on which Xclient initiated the
interactions. An example of such an association (first
shown in [14] is:

copy: (browsers, privilegedUsers) ::

(editors, localUsers), (editors,

privilegedUsers)

Here, copy is the name of the poly specification that
defines the policies that govern copying buffers from
Xclients which match the source characteristics
defined by (browsers, privilegedUsers) to

Xclients which match one of the characteristics in
the set of destination characteristics {(editors,

localUsers), (editors, privilegedUsers)}.
This policy has been described in [14].
In addition to the above rules which explicitly as-

sociate policies with specific Xclient interactions,
every Xspec specification also has a default rule,
which associates all the interactions that are not part
of the above associations with specific user defined
policies. This rule is specified using the keyword
default.

4 Examples of specifying trust rela-

tionships

In [14] we presented a confidentiality policy using
our framework. Here, we present a simple integrity
policy which seeks to preserve the integrity of infor-
mation being edited using an editor such as XEmacs
by privileged users X and Y. The requirements in
terms of Xclients are that, no client other than those
run by the two users locally on the machine running
the Xserver can change the information. The com-
plete specification for this policy is shown in Fig-
ure 3 where the event ConvertSelection is assumed
to denote the event that occurs during a paste opera-
tion.

4.1 Implementation

As [14] presents more detailed implementation re-
sults of our preliminary prototype, in this paper we
focus only on how our implementation extends Xbox
[1]. Specifically, the Xbox source code in C pro-
gramming language has been instrumented as fol-
lows:

• Every time an Xprotocol message is intercepted
it is redirected to an enforcement engine using
a method call: deliverEvent(...). This
was inspired (and is similar) to our work on in-
trusion detection systems [9].

• The enforcement engines (currently need to be
written manually) keep track of the sequence of
Xprotocol messages and apply the appropriate
response when necessary.

In our prototype Xspec and EE compilers were
not implemented and required manual
integration.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

212

/* Specifying types of Xclient programs */
editors: XEmacs, gedit, xfig, kedit /* editors = Xclients which can modify information */
allXclients: * /* allXclients is the group of all Xclients */
allUsers: * /* all the users, remote or local */
privilegedUsers: X,Y:127.0.0.1

/* Specifying trust relationship rules */
paste: (editors, privilegedUsers) :: (allXclients, privilegedUsers)
denyPaste: (editors, privilegedUsers) :: (allXclients, allUsers)

/* BMSL specification */
/* paste specification contains one policy. ConvertSelection is an event that occurs during the paste operation. */
paste {
(any())* · (ConvertSelection(clientID)) → { allow() ; }

}
/* denyPaste specification is the same as paste, except it denies all copies */
denyPaste {
(any())* · (ConvertSelection(clientID)) → { deny() ; }

}
/* Default section of the specification, denies copies to all other interactions */

default: denyPaste

Figure 3: Example of an Integrity Policy Specification

• We extended Xbox to handle clients connected
via SSH tunnel.

• Finally the effective user id of a user is extracted
using the getsockopt system call on the socket
created by the clients. We are therefore using
the same user-id given by the operating system.

4.2 Experiences and Discussion

Based on the performance results and the effective-
ness results from our preliminary work in [14], we
can summarize that the approach effectively man-
ages information flow between Xclients through the
Xserver at a very low-level of granularity. However,
such a light-weight approach does not still address
certain issues. Specifically,

• Complete mediation is not possible. Xfilter as-
sumes that the clients do not communicate with
themselves directly. Such an assumption could
be flawed. Furthermore, as Xfilter (and Xbox
[1] on which it is based) runs as a user-level
process, many attacks can easily launch a DOS
attack on it. One solution for this is to build the
filter as a kernel level monitor. As the clients
connect to the server using sockets, the kernel
level module could intercept, the socket system

calls (e.g.., the socketcall in Linux). How-
ever, this is not trivial: as pointed out in [5]
there is a need to keep Xserver structure sep-
arate from the kernel.

• Trusted path is not possible. Once again, we
believe a user-level filter cannot simply achieve
trusted path without kernel support or without
modifications to the Xserver.

• Comprehensive security: for a user-level exten-
sion such as Xfilter to provide comprehensive
security there needs to be a kernel level secu-
rity mechanism such as an intrusion detection
system. As [1] points out, even Xbox requires
to be run in association with the MapBOX soft-
ware. In addition, without kernel support for
mandatory access control of some form, it is not
possible to support multi-level security.

5 Conclusion

In this paper we reviewed the current state of the art
in windowing system security. As our paper shows,
while there are comprehensive heavy-weight solu-
tions, they are much harder to use or are not widely
used. Meanwhile achieving a light-weight solution

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

213

is possible, but these solutions may not address all
the security relevant issues. Hence, we conclude
that currently a heavy-weight system that provides
security and flexibility such as SELinux maybe best
suited for monitoring.

References

[1] M. Raje A. Acharya. Mapbox using param-

eterized behavior classes to confine applica-
tions. Technical Report TRCS99-15, Univer-
sity of California, Davis, 31, ’99.

[2] Anurag Acharya and Mandar Raje. Mapbox:
using parameterized behavior classes to confine
untrusted applications. In SSYM’00: Proceed-
ings of the 9th conference on USENIX Security
Symposium, pages 1–1, Berkeley, CA, USA,
2000. USENIX Association.

[3] Jeffrey L. Berger, Jeffrey Picciotto, John P. L.
Woodward, and Paul T. Cummings. Com-
partmented mode workstation: Prototype high-
lights. volume 16, pages 608–618, Piscataway,
NJ, USA, 1990. IEEE Press.

[4] Vinod Ganapathy, Trent Jaeger, and Somesh
Jha. Retrofitting legacy code for authorization
policy enforcement. In SP ’06: Proceedings of
the 2006 IEEE Symposium on Security and Pri-
vacy, pages 214–229, Washington, DC, USA,
2006. IEEE Computer Society.

[5] D. Kilpatrick, W. Salamon, and C. Vance. Se-
curing the x window system with selinux. Tech-
nical report, NAI Labs, January 2003.

[6] Theodore A. Linden. Operating system struc-
tures to support security and reliable software.
ACM Comput. Surv., 8(4):409–445, 1976.

[7] Bill McCarty. SELinux: NSA’s Open Source
Security Enhanced Linux. O’Reilly, 2004.

[8] J. A McLean. A comment on the basic secu-
rity theorem of bell and lapadula. In US Naval
Research Library, 1985.

[9] R. Sekar and P. Uppuluri. Synthesizing fast
intrusion prevention/detection systems from
high-level specifications. In Proceedings of the
USENIX Security Symposium, 1999.

[10] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: a fast capability sys-
tem. In Symposium on Operating Systems Prin-
ciples, pages 170–185, 1999.

[11] Jonathan S. Shapiro, John Vanderburgh, and
Eric Northup. Design of the eros trusted win-
dow system. In 13th USENIX Security Sympo-
sium, 2004.

[12] Chris Tyler. X Power Tools, pages 186–187.
O’Reilly Publications, 2007.

[13] Prem Uppuluri. Intrusion Detection/Prevention
Using Behavior Specfications. PhD thesis,
SUNY Stony Brook, August 2003.

[14] V. Rajegowda V. Diwakara and P. Uppuluri.
Preventing information leaks in xwindows. In
Communication Network and Information Se-
curity (CNIS), 2005.

[15] David A. Wagner. Janus: an approach for con-
finement of untrusted applications. Technical
Report CSD-99-1056, 12, 1999.

Authors Biography
Dr. Prem Uppuluri is an Assistant Professor of
Information Technology at Radford University,
U.S.A. His research interests are Computer Security
and Grid computing.

Dr. Alok Tongaonkar graduated with a PhD in
Computer Science from Stony Brook University. He
currently works in Qualcomm Innovation Center Inc,
U.S.A. His research focuses on performance
optimization mainly in the fields of computer
networks and compilers.

Vikas Rajegowda and Vivek Diwakara worked on
the implementation during the course of their
Masters Degree program at the University of
Missouri Kansas City, U.S.A

