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Summary 
Many computer applications use random numbers as an 
important computational resource, and they often require random 
numbers of particular probability distributions.  We consider a 
very general model of random number generation that converts a 
source that produces symbols according to a probability 
distribution into a random numbers of another probability 
distribution. In such a procedure, we are particularly interested in 
the average amount of source symbols to produce an output, 
which we call efficiency of the procedure.  We discuss the 
entropy bound for the efficiency of random number generation, 
and as a main contribution, we give a new elementary proof for 
the entropy bound. 
Key words: 
Random number generation, Shannon entropy, information-
theoretic bound, coin flip. 

1. Introduction 

Random numbers are essential in many computer 
applications including computer simulation, cryptography, 
randomized algorithms, Monte Carlo methods, etc., and 
they often require random numbers of particular 
probability distributions.  In this paper, we consider a very 
general model of random number generation that converts 
a source that produces symbols according to a probability 
distribution into a random numbers of another probability 
distribution.  The distribution of the source may be known 
beforehand, or may be unknown.  For both cases, there are 
known methods using the model to produce a given 
probability distribution [1, 2].  

In such a procedure, we are particularly interested in the 
average amount of source symbols to produce an output, 
which we call efficiency of the procedure.  The efficiency 
is subject to an information-theoretic lower bound which is 
called the entropy bound.  The entropy bound is written as 
the ratio of the Shannon entropies of the source 
distribution and the target distribution.  We discuss the 
efficiency and its entropy bound in the context of the 
model of random number generation that we call tree 
functions, and as a main contribution, we give a new 
elementary proof for the entropy bound.  

Section 2 summarizes previous works related to the 
random number generation that we discuss in this paper.  
Then we discuss a general model of random number 
generation called tree functions and the entropy bound in 

Section 3.  The model is general enough to cover all the 
methods mentioned in the related works.  In Section 4, we 
prove the main theorem, from which the entropy bound is 
derived and proved.  Section 5 concludes the paper. 

2. Related Works 

Many previous papers addressed the problem of simulating 
a discrete probability distribution using another source of 
randomness. Von Neumann’s method is probably the 
earliest known solution for this problem [3].  His trick 
converts a biased coin, where the bias may be unknown, to 
a unbiased coin.  Although von Neumann’s algorithm is 
more than fifty years old, it is still used, for example, in a 
modern computing device, an Intel chipset for random 
number generation [4].  

The fact that von Neumann’s algorithm works for 
unknown source bias is important because the source of 
randomness is not only usually biased, but also its 
distribution may be unknown.  Diaconis et al. [5, 6] gave a 
dramatic demonstration of this fact: if we toss a coin with 
heads up, the probability that we will get heads as a result 
is more than 0.51, even if the coin is physically perfect.  

Elias discussed an infinite sequence of (increasingly 
complicated) functions that converts a nonuniform discrete 
probability distribution into a uniform distribution, whose 
efficiencies approach arbitrarily close to the entropy bound 
[7].  Peres also devised procedures whose efficiencies 
approach the entropy bound [8].  Interestingly, Peres’s 
procedures are defined recursively, and thus they are easily 
implementable.  Dijkstra presented an elegant algorithm 
that simulates an m-faced (uniform) roulette from m flips 
of biased coins, where m is a prime number [9].  

The above works are mostly concerned with generating 
uniform random numbers from a biased source.  In a 
somewhat opposite direction, Knuth and Yao addressed 
the problem of simulating a given discrete probability 
distribution using an unbiased coin [10].  Their method 
results in optimal solutions in terms of efficiency in the 
usage of the source of randomness.  Han and Hoshi studied 
a more general problem where the source bias is known 
but not necessarily 0.5 and proposed a method based on 
interval subdivision [11].  Their work addresses the 
problem of converting a probability distribution to another 
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distribution in a full generality to which the entropy bound 
applies.  However, their method does not result in optimal 
solutions in general.  Recently, Pae and Loui studied the 
previous methods for random number generation in a 
framework called randomizing functions and discussed 
their efficiency and computational complexity [1, 2].  

3. Random Number Generation by Tree 
Functions 

Suppose that a source produces symbols from Σ = {x1, …, 
xn}  according to a probability distribution p = <p1,…,pn>,  
and each produced symbol is independent of each other. 
Consider a function f : T → {y1,…, ym}, where T is an 
exhaustive prefix-free subset of Σ*. Then f can be 
represented by an n-ary tree such that a string  in T 
corresponds to a path from the root to a leaf, and the value 
associated with the leaf is ( ).  Such a function can be 
used to convert a probability distribution to another 
distribution: the probability that  outputs  is 
Pr[ ].  

For example, let , and suppose that a source 
produces h with probability 1/3 and t with probability 2/3. 
Let T = , where  = {h} { } 
and  ={ }, and  outputs 0 and 1 on 

 and , respectively. The function  can be represented 
as the following infinite tree: 
 
 
 
 
 
 

(1) 
 
 
 
 
 

It is straightforward to verify that the probability that  
outputs 0 is 1/2.  So the output of  can be regarded as a 
fair coin flip, and  converts the probability distribution 
<1/3,2/3> to <1/2,1/2>.  The average depth of the tree (1) 
is 15/7, which means that the procedure represented by the 
tree takes 15/7 coin flips on average to produce an output 
symbol.  

Let us call such a function a tree function.  If the set T is 
computable, then we can compute the corresponding 
function f.  In this case, we may call such an algorithm tree 
algorithm.  For example, in (1), f is computable using a 
finite automaton.  In general, a prefix-free set may not be 

computable.  Call the probability distribution of the output 
of a tree function the target distribution. When the 
probability distribution of the source and the target of  
are p = <p1,…,pn> and r = <r1,…,rm>, respectively, let us 
say  is a tree function for (p, r). We will call the average 
number of source symbols per target symbol of a tree 
function the efficiency.  

Now we are ready to state the entropy bound:  
Theorem  1.  For the source distribution p=<p1,…,pn> 
and the target distribution r=<r1,…,rm>, the efficiency of a 
tree function for (p, r) is at least H(r)/H(p), where H is the 
Shannon entropy function.  

The Shannon entropy of a two-valued distribution <p, 
p> is defined to be 

 

and more generally, for a probability distribution, p = 
<p1,…,pn>, it is defined as follows [12]:  

 

In this paper, we assume that  x = .  

This theorem seems intuitively correct, because the 
Shannon's entropy is meant to be the minimum number of 
bits to represent the source of the given distribution.  
 
As shown above, the efficiency of the tree function 
represented by (1) is 15/7, which is approximately 2.14. 
The entropy bound for the case, where source distribution 
is <1/3,2/3> and target distribution is  is 
approximately 1.09.  
 
As another example of tree functions, consider the 
function   defined by (ht) = 0, 

(ht) = 1, (hh) = λ, and (tt) = λ, where λ is an 
empty string. By extending the function appropriately to 
{h, t}*, we obtain a tree function, which is the famous von 
Neumann's method [3]: to obtain a fair coin using a biased 
coin, flip the coin twice; if the result is heads-tails, then 
regard it as a heads, if tails-heads, regard it as a tails, 
otherwise repeat the procedure. The infinite tree 
corresponding to von Neumann's method can be 
represented as follows:  

 
 
 
 
 
 
 
Contrary to the procedure 
represented by the tree (1), which produces a different 
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distribution for source distribution other than <1/3,2/3>, 
von Neumann's method always produces the uniform 
distribution for any source distribution.  Suppose that the 
bias of the source coin is p. Then, the efficiency of von 
Neumann's method, which is not hard to compute, is 
1/2p(1  p), while the entropy bound is H(1/2)/H(p) = 
1/H(p).  Figure 1 compares the efficiency of von 
Neumann's method and the entropy bound as the source 
bias p varies between 0 and 0.5.  There are known methods, 
which are more complicated than von Neumann's, whose 
efficiencies approach to the entropy bound.  (See, for 
example, [2].)  

 

 

 

 

 

 

 

 

Fig. 1  The efficiency of von Neumann’s method and the entropy bound. 

Several versions of this theorem appear in literature: Elias 
[7] and Peres [8] for the generation of a fair coin from a 
biased coin, Knuth and Yao [10], and Cover and Thomas 
[13, Section 5.12] for the generation of a general discrete 
distribution from a fair coin, and Roche [14] and Han and 
Hoshi [11] for the generation of a general discrete 
distribution from another general discrete distribution like 
our case.  

We can see Theorem 1 as a corollary of Theorem 2 
below.  The main purpose of this paper is to give an 
elementary proof of Theorem 2. Cover and Thomas [13, 
Theorem 5.12.1] proves a special case of Theorem 2, in 
which the source distribution is two-valued and uniform.  
However, their proof does not generalize.  Han and Hoshi 
[11] mentions Theorem 2 without a proof.  Our proof is 
interesting because it is purely algebraic. 

4. Entropy of an Induced Random Variable 

Let X be a random variable that takes values over Σ = {x1, 
…, xn} such that Pr[X = xi] = pi for each i = 1,…,n. 
Consider a random variable Y over an exhaustive prefix-
free subset T of * such that for =xi1…xik in T, the 
probability Pr[Y = ] = pi1…pik. Since T is exhaustive, 

σ∈T Pr[Y = ] = 1.  We say that Y is induced from X via T.  

An induced random variable can be represented as a 
complete n-ary tree. Conversely, a complete n-ary tree 
defines an induced random variable.  As an example, let 

 with probabilities <p, q>.  The following tree 
(2) represents an induced random variable over {1, 00, 010, 
011}, whose probability distribution is <q, p2, p2q, pq2>.  

 
 
 
 

(2) 
 

 
 
 
 

 
Now let D = |Y|. Then D is the random variable 
representing the length of a word in T. So E(D), the 
expected value of D, is the average length of the words in 
T, or equivalently, the average depth of the tree 
corresponding to the induced random variable Y.  We will 
show that the entropy of the induced random variable Y 
equals the entropy of the random variable X multiplied by 
E(D).  

Theorem  2.  Let Y be a random variable induced from X 
and let D = |Y|.  Then H(Y) = E(D)H(X).  

Proof. We first present a proof in the case n = 2. Because 
the probabilities for the words in T sum to 1, with a slight 
abuse of notation we can write  

 

where k is the number of left edges taken in the path from 
the root to a terminal node of the tree (or the number of 0's 
in the corresponding word in T), and l is the number of 
right edges, hence the probability  for a terminal node. 
The average length of the words in T, or equivalently the 
average depth of T is  

 

which is the sum of probabilities of terminal nodes 
multiplied by their depths.  Consequently, 

 

Now the entropy of Y is  
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It suffices to prove the following equalities to prove 
Theorem 2 for n = 2: 

 
(3) 

 
(4) 

In the following, we will prove these two equalities. 
Consider the function 

 

(5) 

The function F(x) is a polynomial in the case T is finite, 
and an infinite series of functions when T is infinite. By 
definition, F is identically 1 on [0, 1].  (In fact, F does not 
need to be restricted on the interval [0, 1].)  Therefore, the 
first derivative of F is identically zero: 

 

(6) 

 

In case that T is infinite, hence the sum (5) is an infinite 
series of functions, the derivation (6) is justified because 
the series converges uniformly to 1. (See, for example, 
[15].)  

Hence for every p in [0, 1], we obtain an identity 

 

(7) 

The identity (7) is used in the following manipulation of 
equations, which proves the identity (3). 

 

 

 

 
The identity (4) is proved similarly.  

The above proof generalizes to an n-valued distribution 
<p1,…,pn>.  Consider the function of the form  

 (8) 

where T is a complete n-ary tree and the summation is over 
the words in T, and  is the number of the ith edges taken 
in the path from the root to the corresponding terminal 
node. The function F( ) is identically 1 on the 
hyperplane deifined by the equation . 

Then by taking partial derivatives at a point ( ,…, ) on 
the same hyperplane, we have 

 

 
  

for i = 1,…,n.  As a result, we obtain the following 
identity:  

 

 
With this identity, the proof follows for an n-valued 
distribution as in the two-valued case. □  

Note that the summands of the functions (5) and (8) are 
very simple polynomials of the forms  and 

. Especially, in the two-valued case, if the 
corresponding tree T is a full tree of depth d, then the 
function is written as 

 

The summands  are known as Bernstein 
polynomials, and they are also called Bernstein basis 
because they are linearly independent.  They have nice 
numerical properties that are bases of the usefulness of 
Bézier curves.  Given an exhaustive prefix-free set T, call 
the polynomials  (or  in n-
dimensional case) corresponding to the words in T leaf 
polynomials.  Pae and Loui discussed a criterion for the set 
of leaf polynomials to be linearly independent, and in that 
case, there is a method that assigns the output values to the 
leaves of T such that the corresponding random number 
generation, which generates the target distribution 
regardless of the source distribution, is the most efficient 
among all possible random number generations for the 
target and source [2].  

Theorem 1 follows from Theorem 2. Let X be a random 
variable with alphabet Σ = {x1, …, xn} with distribution p. 
If  is a tree function for (p, r), then 

 is a random variable over  with 
probability distribution r, where Y is induced from X via T.  
By a well-known property of the Shannon entropy we have 

 

Hence we have  
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where D = |Y|.  Note that the efficiency of a tree function 
is the average depth of the corresponding tree. Therefore, 
we have proved Theorem 1. 

4. Conclusion 

We discussed the problem of generating a random 
numbers of a particular probability distribution from 
another distribution.  The problem can be studied using the 
tree functions that model the conversion processes 
naturally.  The efficiency of the procedures, the average 
number of source symbols to generate an output symbol, is 
subject to an information-theoretical lower bound called 
the entropy bound, which is described in terms of the 
Shannon entropies of the source distribution and the target 
distribution.  

We gave a new proof for the entropy bound for random 
number generation.  The tree function model applies to 
most known methods for converting a probability 
distribution to another distribution, and the proof is based 
on elementary properties of polynomial functions and 
infinite series of functions that arise in the tree structure of 
the random number generation process. 
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