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Summary 
This paper investigates an integration of individual and social 
learning, utilising evolutionary neural networks, in order to evolve 
game playing strategies. Individual learning enables players to 
create their own strategies. Then, we allow the use of social 
learning to allow poor performing players to learn from players 
which are playing at a higher level. The feed forward neural 
networks are evolved via evolution strategies. The evolved neural 
network players play first and compete against a nearly perfect 
player. At the end of each game, the evolved players receive a 
score based on whether they won, lost or drew. Our results 
demonstrate that the use of social learning helps players learn 
strategies, which are superior to those evolved when social 
learning is not utilised. 
Key words: 
Evolutionary strategies, neural network, individual learning, 
social learning, Tic-Tac-Toe 

1. Introduction 

When playing a game, humans use a variety of techniques 
in order to develop strategies to defeat other humans. 
Humans can improve their strategy by themselves or 
through the experience of competing against others. 
Humans can also copy strategies from better players and 
develop their own strategy based on this copy. Therefore, 
humans are able to learn through a mixture of individual 
and social learning.  

Games have been used as a test bed for artificial 
intelligence since the 1950’s where, among others, 
pioneering work was carried out by Alan Turing [1], Claude 
Shannon [2] and Arthur Samuel [3]. Several games have 
now reached the stage where a computer implementation is 
able to play at a higher level than most (if not all) human 
players (see, for example, Deep Blue [4], Chinook [5, 6, 7], 
Logistello [8] and TD-Gammon [9]). 

Deep Blue is an automated Chess player which defeated 
Gary Kasporov in May 1997. It exploited a database of over 
700,000 Grandmaster chess games from previous matches 

 
 

(including the matches against Kasparov in 1996 and 1997) 
[4], which included an extended opening book database. 

Chinook, developed by Jonathan Schaeffer’s team at The 
University of Alberta, won the world checkers title in 1994 
[6]. It is another good example of an automated game that 
incorporates human knowledge. There are four aspects that 
contributed to the success of Chinook; these being search, 
an evaluation function, a database of endgame positions and 
an opening book. 

The focus of this work is to evolve an automated player 
that learns to play a game without incorporating any 
knowledge. We draw motivation from Blondie24 [10], 
which learnt strategies for playing Checkers by using a 
combination of an evolutionary algorithm and artificial 
neural networks. In this paper, we will integrate social 
learning within a Blondie24 style framework and 
investigate its effectiveness using the game of Tic-Tac-Toe. 
Unlike Blondie24, the strategies do not compete against 
each other, instead the strategies play against a nearly 
perfect player, drawing inspiration from [11], where the 
evolved player against a nearly perfect player. Our work is 
also motivated by [12, 13], where a simulated stock market 
used co-evolving neural networks, which evolved through a 
process individual and social learning. 

Further reading about the literature evolutionary 
computation and games can be found in [14]. 

2. Social Learning 

Social learning research has been largely based in the 
context of agent-based computational economics [12], [15], 
and according to [15], in individual learning, the agents 
learn exclusively from their own experience and in social 
learning, the agents learn from the experience of other 
agents. In this work, the player will learn individually based 
on experience by playing against a nearly perfect player1 
and after a period of time, we allow the player to “learn” 
from each other in a process we call social learning. 

 
1 is a beatable player which will move randomly 10% of the time 
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In a context of automated game playing, individual 
learning is defined as a player which learns, and develops, 
their own strategy through the experience of playing against 
other players. In this type of learning, the players never 
copy a strategy from other players and never replace its 
strategy with a new (perhaps random) strategy. In contrast, 
the idea of social learning is to give the player the 
opportunity to copy or create a new strategy, replacing their 
current strategy. The player still has the opportunity to 
evolve its own strategy through individual learning, but if 
the strategy is not good enough, or the player is not happy 
with their current strategy, the player can choose to either 
request a superior strategy or create a new random strategy. 

We create a pool to retain the best strategy at a certain 
period. We call this the social pool and this represents the 
best strategies from the population. We then make the 
social pool available to those players which are not 
performing well. This concept is quite similar to the 
concept of hall of fame [16], where all the best evolved 
players at every generation are maintained and can be used 
in the future. During social learning, the player can choose 
to replace their current strategy with a (hopefully) better 
strategy, drawn from the social pool. All strategies in the 
social pool maintain a score, which is updated through time. 
Social learning proceeds as follows: 

1. Rank the players from the highest to the lowest. 
2. Copy the best player (or players, if more than one) to 

the social pool. 
3. For the remaining players, there are two possibilities,  

a) If the players are satisfied with their current 
strategy (based on the current score), keep that 
strategy, else 

b) If the players are not satisfied with their current 
strategy, three alternatives are available, 

i) Copy a strategy from the pool, or 
ii) Create a new random strategy, or 
iii) Retain the current strategy 

 
Social learning in this work is not the same as an island 

model in evolutionary computation. In an island model [17], 
there are several populations, each of which is evolved 
independently. Migration between the sub-populations 
occurs where the best player from the sub-population is 
migrated to another sub-population. A sub-population 
might only receive a better strategy from another 
sub-population and may not create any new strategies. In 
social learning, the individual players have a chance to 
receive a better strategy, retain their current strategy or 
create a new random strategy. 

3. Design Of Learning Techniques 

There are two experimental methodologies in this paper, i.e. 
with and without social learning. We hypothesise that social 

learning provides a superior environment in which 
strategies can evolve. The players outside of the social pool 
are called individual players, and these players attempt to 
develop their own strategies, drawing from the social pool 
at certain times. 

3.1 Design Without Social Learning 

The experimental setup without social learning mimics that 
in [18], with some minor modifications. This experiment 
will be used as a comparison for the experiment which 
includes social learning. The difference between [18] and 
our setup is as follows: 

• The revised neural network architecture consists 
of nine input nodes, nine hidden nodes and an 
output node (see Fig.1). All hidden nodes are 
connected with bias (previously we did not have 
bias, but found through experimentation that it is 
necessary). In [18], the neural networks have nine 
input and output nodes, and the number of hidden 
nodes depends on mutation during the experiment. 

• The architecture in [18] is mutated during the 
experiment, whereas, there is no mutation on the 
network architecture in this work. 

• In [18], the neural network chooses a best move 
based on the highest value from one of the nine 
output nodes from the neural network. However, 
in this work, the evolved neural networks will 
search for the best move using 1-ply search using 
the following algorithm: 

•  
1. Read the current state of the game. 

a. Put a marker ‘X’ on any available square. 
b. Pass the new current state to the neural 

network. 
c. Store the output value. 
d. Remove the marker that was placed in step 1a. 
e. Repeat steps 1a to 1d until all available squares 

have been evaluated by the neural network 
and. 

2. Select the highest output as the best move. 
 

The without social learning algorithm is as follows: 
1. Initialise a random population of neural networks, 

Pi, where P is a neural network player, i = 1, ..., N, 
and N is a total number of neural networks in the 
population. 

2. Each strategy has its associated self-adaptive 
parameter, si, i = 1, ..., N, and are initialised 
randomly. 

3. Generate an offspring for each parent, where for 
each Pi, i = 1, ..., N, an offspring, P’i is created by 
using Eq. 1a and 1b. The total neural networks 
now is N+N: 

s’j = sj.exp(τ.Nj(0, 1))        (1a) 
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w’j = wj + s’j.Nj(0, 1);        (1b) 
4. Each neural network players play against the nearly 

perfect player (see [18] for this algorithm). 
5. In each game, the neural network players receive a 

score based on whether they win, lose or draw. 
This score is used as a fitness and is used for 
selection. 

6. Repeat steps 4 and 5, four times. 
7. At the end of each generation, the N strategies 

(neural networks) with the highest scores are 
selected as parents and retained for the next 
generation. These parents are then mutated to 
create another N offspring using Eq. 1a and 1b. 

8. Repeat steps 4 to 7 until the stopping criterion is 
reached (i.e. generations = 1,000).  
 

 
Fig.1: The new structure of the neural network 

 
We choose four iterations in step 6 so as to make sure the 

experiment will not take too long to run, but at the same 
time it gives an opportunity for the player to play several 
times. In this paper, the neural network players receive +1 
for win, -1 for lose and 0 for draw. Since each player will 
play against the nearly perfect player 32 times (eight second 
possible moves and four trials), the highest score for each 
player, at each generation, is 32 points. 

 3.2 Design With Social Learning 

The design is similar to the algorithm without social 
learning, including the structure of the networks, the move 
selection and calculating the fitness. However, in the 
experiment with social learning, social learning activities 
occur at every kth generation. The fitness calculated before 
the social activity is called the individual fitness. 

There are several issues that we need to address for this 
algorithm. The first is how to avoid copying the same 
strategy too many times, especially when the social pool 

does not have many entries. To solve this problem, we limit 
the number of times a strategy can be copied from the social 
pool to be four, at a given generation. 

The other issue is how to maintain variation in the 
population and also have a significant number of better 
strategies in the population? We propose two phases of 
social learning, which we call minor and major social 
learning. The objective of minor social learning is to copy 
the best player at a certain generation to the social pool 
without carrying out any other social activities. The 
algorithm for this technique is as follows: 

1. Follow the steps 1 until 6 as in Section III-A 
2. If (minor social learning) 

• Keep the best player or players (if more than 
one) in the social pool. 

• Select N strategies (neural networks) with the 
highest scores as parents and retain for the next 
generation. These parents are then mutated to 
create another N offspring using Eq. 1a and 1b, 

3. If (major social learning), 
a. Keep the best player or players (if more than 

one) in the social pool. 
b. For the rest of the players, there are two 

possibilities, 
i) If the players are satisfied with their current 

strategy, keep the current strategy, else 
ii) If the players are not satisfied with their 

current strategy, three alternatives are 
available, 
• Copy a strategy from the pool, or 
• Create a new random strategy, or 
• Retain the current strategy. 

4. If (not minor or major social learning) 
• Select N strategies (neural networks) with the 

highest scores as parents and retain for the next 
generation. These parents are then mutated to 
create another N offspring using Eq. 1a and 1b, 

5. Repeat steps 4 until 6 (as in Section III-A)  until the 
stopping criterion is reached (generations = 
1,000). 
 

The algorithm for the activities in social learning is as 
follows: 

1. Normalise all the 50 evolved players, i, between 0.0 
and 1.0 based on their individual fitness, F, using 
Eq. 2, and sort in descending order. 

 
Vi = MIN+(MAX - MIN)x(Fi - dmin) / (dmax - dmin)   (2) 

 
where 

Vi is the normalised value for player i. 
MIN and MAX is the lowest and highest 

value for the range of the normalized 
value (0.0 and 1.0 respectively). 
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Fi is the fitness of player i before being 
normalised. 

dmin and dmax is the lowest and highest score 
in the current population among all 
players. 

2. If (Vi = 1.0) and the strategy has never been 
published, 
• Publish the player i into the social pool and 

assign pool score, Pj , using Eq. 3, where j is an 
index of the best player in the social pool. 

3. If (Vi = 1.0) and the strategy has previously been 
published to the social pool, 
• Do not publish the player i but update the pool 

score, Pj using the Eq. 3. 
4. If (Vi < 0.9) and (Vi < 1.0), 

• The player i is satisfied with their current 
strategy and the player stays in the population 
for the next generation. 

5. If (Vi < 0.9), 
• There are three possibilities, one of which is 

chosen randomly: 
a) Case 1, 

• The player chooses to replace their 
current strategy with a strategy from the 
social pool. 

• Based on the scores assigned to each 
player in the pool, Pj , roulette wheel 
selection is used to select a strategy from 
the pool. 

b) Case 2, 
• The player chooses to retain with their 

current strategy for the next generation. 
c) Case 3, 

• The player chooses to replace their 
current strategy with a new randomly 
created strategy.  
 

The pool score in the social pool for each best player, Pj , is 
updated every time social learning occurs using Eq. 3, 
where the value of the pool score is based on how long the 
player has been in the pool and what was its individual 
score, Fi when it was published into the pool. 
 

        (3) 

 
Where, 

• j is an index of the best player in the social 
pool, 

• g is a generation when published into the 
social pool, 

• gj is a generation for player j when published 
into the social pool, 

• I is the normalised value of individual score, 
F, between 1 and 10, 

• C is a sum of times player j has been reused. 
The objective of this function is to give better players, 
which have recently been introduced (or updated) to the 
pool, a higher probability of being selected as replacements 
for poorly performing individual players. The age of the 
player is controlled by , where the previous 
best players will receive less points than the current best 
players. However, the final calculation for calculating the 
pool score is also dependent on the individual score of the 
best player when publishing into the social pool and how 
many times they have been reused2 since they were first 
published. Table 1 shows an example of a social pool for 
trial number two where social learning occurs at every 
100th generation. 

Based on Table 1, the player in social pool with j = 0, 
receives very small value of pool score since this player has 
the lowest individual score and also has already been in the 
pool from generation 100. Players j = 11, 12 and 13 have the 
same individual score, i.e. 30. However, since they have 
been published into the social pool from different 
generations, the player recently published into the social 
pool receives highest pool score. 

4. Results 

There are two types of experiments in this work, which 
have a different number of generations, i.e. 1,000 and 
5,000. 
The objective of running for 5,000 generations is to see 
what will happen to the experiment with social learning 
when we run for a longer period. All experiments were run 
50 times for 1,000 generations. They were run on a 
computer Intel(R) Pentium(R) 4, CPU 3.20GHz, and 2.00 
GB of RAM. 
 

Table 1: An Example Of Social Pool 
Index 
Player 

Pool Score Individual 
Score 

Generation Reused 

j P F g C 
0 0.0362438 10 100 0 
1 0.279615 13 200 0 
2 3.97937 18 300 0 
3 3.97937 18 300 0 
4 32.0984 22 400 0 
5 25.5836 21 500 0 
6 25.5836 21 500 0 
7 185.726 25 600 0 
8 185.726 25 600 0 
9 185.726 25 600 0 

10 339.822 26 700 0 
11 2349.49 30 800 0 
12 2643.18 30 900 0 
12 2936.86 30 1000 0 

 
2 The strategy that has been published in the social pool and receives Vi 

= 1 on the next social learning 
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4.1 Results for the Experiment with Number of 
Generations= 1,000 

In each trial, we kept the highest score at each generation, 
y1,…, y1000. Figure 2 shows the mean of the highest score (in 
percent) from the 50 trials (Eq. 4) for the experiment with 
(marked WSL on the graph) and without social learning 
(marked NSL on the graph). Based on the Figure 2, at the 
end of the experiment without social learning, the highest 
mean score is about 75%. 

         (4) 
Where, 

• n is a generation, n = 1,...,1000, 
• yn is a highest score at the generation n, 
• Yn is an average highest score at the generation n, 

In the experiment with social learning, at every 50th 
generation and 100th generation, the minor and major social 
learning occur respectively. The experiments (with and 
without social learning) took about 7 hours to complete 
1,000 generations. Fig. 2 shows the mean of the highest 
score (in percentage) from 50 trials (Eq. 4) on the extended 
experiment with social learning versus the experiment 
without social learning. Based on Fig. 2, the experiment 
with social learning is constantly better than the experiment 
without social learning from the beginning until the end, 
where at the end of this experiment, the score for the 
experiment with social learning is about 80% and 74% for 
the experiment without social learning. 

Looking at Fig. 2, the hypothesis that the experiment 
with minor and major social learning is shown. 
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Fig. 2:  An experiment with social learning vs. experiment without 

social learning where number of generations=1,000 

4.2 Results for the Experiment with the Number of 
Generations = 5,000 

Fig. 3 shows the mean of a highest score (in percent) from 
30 trials (the same formula as Eq. 4 was used but for only 30 
trials) for the individual player at each generation for the 
experiment with and without social learning (marked as 

WSL and NSL respectively). The objective is to investigate 
whether social learning still can give better performance 
than without social learning. 
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Fig. 3: The mean of best score for 50 trials at each generation 

(generations = 5000) 
 
Based on Fig. 3, the experiment with social learning 
produces statistically different and better results when 
compared to the experiment without social learning, with 
95% confidence level. 
Table 2 shows the details of social pool at generation 100 
for the trial number three of the experiment run 5,000 
generations. In this experiment, minor social learning 
occurs at the first generation and also at every 50th 
generation. There are two players that have the same score 
at the first generation and three players at the 50th and 
100th generations. These show that the social pool have 
eight different strategies at the first time major social 
learning occurs. Therefore, at this level, the number of 
strategy that can be copied from the social pool is about 32 
strategies. However, because of two players have negative 
values, there are only a maximum of 24 strategies that be 
copied. 
 
Table 2: An Example Of Social Pool At Generation 100 Of The 

Experiment Running For 5,000 Generations 
Index 
Player 

Pool Score Individual 
Score 

Generation Reused 

j P F g C 
0 -0.018 -3 1 0 
1 -0.018 -3 1 0 
2 1522.86 15 50 0 
3 1522.86 15 50 0 
4 1522.86 15 50 0 
5 4873.11 16 100 0 
6 4873.11 16 100 0 
7 4873.11 16 100 0 
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Table 3 shows the distribution activities that been chosen by 
the poor strategies at generation 100. There are 14 strategies 
(or about 28%) that have been chosen for the next 
generation, from the social pool. With reference to Table 3, 
the number of poor strategies reflects the number of 
individual players that have Vi < 0.9; number of copies is 
number of individual players that copy a strategy from the 
pool; number of new random is number of individual 
players that replace the current strategy with random 
strategy; number of stays is number of individual players 
that choose to retain their current strategy. 
 

Table 3 : Distribution Activities Of Poor Strategies For Trial 
Number Three Of The Experiment Running For 

5,000 Generations 
Generation #100  
Number of poor strategies: 43 
Number of copies: 14 
Number of new random: 14 
Number of stays: 15 
Generation #200  
Number of poor strategies: 49 
Number of copies: 17 
Number of new random: 19 
Number of stays: 13 
Generation #300  
Number of poor strategies: 47 
Number of copies: 14 
Number of new random: 15 
Number of stays: 14 

 
Based on the above results, we manage to increase the 
variety of strategies in the social pool and also increased the 
number of better strategies in the population. Even though, 
the end scores for the experiment with social learning are 
not significantly better than the experiment without social 
learning, but the experiment with social learning are 
consistently better than without social learning. 
Based on Table 1 and Table 2, we found that minor social 
learning did help the population to have more superior 
strategies in the population. 

5. Conclusions 

In this work, we have run several experiments to investigate 
the effect of an integration of individual and social learning 
in the learning process to play the game of Tic-Tac-Toe. We 
also run an experiment without social learning for 
comparison. Learning has occurred in all experiments, with 
the inclusion of social learning producing superior 
strategies. 

As mentioned earlier, one of the issues from our early 
studies was how to maintain variety of better player in the 
population pool. We have proposed two phases of social 
learning (minor and major social learning). The objective is 

to increase the variety of strategies in the social pool from 
the very start of the evolution, giving more strategies for the 
individual players to copy from. Table 2 has shown that the 
proposed technique has increased the number of strategies 
at the beginning of the experiment and Fig. 2 and Fig. 3 
have shown that the experiment with social learning is 
consistently better than the experiment without social 
learning.  
In conclusion, two phases of social learning has improved 
the evolution of game playing strategies. From observation, 
we must have as many best players in the social pool as 
possible before the social activities take place. In future 
work, our focus will be on increasing the number of 
superior strategies in the social pool, in the hope that it will 
improve the performance even further. We also plan to use 
more complex game to ascertain of this evolutionary 
process is able to scale up. 
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