
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

294

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Summary
This paper investigates an integration of individual and social
learning, utilising evolutionary neural networks, in order to evolve
game playing strategies. Individual learning enables players to
create their own strategies. Then, we allow the use of social
learning to allow poor performing players to learn from players
which are playing at a higher level. The feed forward neural
networks are evolved via evolution strategies. The evolved neural
network players play first and compete against a nearly perfect
player. At the end of each game, the evolved players receive a
score based on whether they won, lost or drew. Our results
demonstrate that the use of social learning helps players learn
strategies, which are superior to those evolved when social
learning is not utilised.
Key words:
Evolutionary strategies, neural network, individual learning,
social learning, Tic-Tac-Toe

1. Introduction

When playing a game, humans use a variety of techniques
in order to develop strategies to defeat other humans.
Humans can improve their strategy by themselves or
through the experience of competing against others.
Humans can also copy strategies from better players and
develop their own strategy based on this copy. Therefore,
humans are able to learn through a mixture of individual
and social learning.

Games have been used as a test bed for artificial
intelligence since the 1950’s where, among others,
pioneering work was carried out by Alan Turing [1], Claude
Shannon [2] and Arthur Samuel [3]. Several games have
now reached the stage where a computer implementation is
able to play at a higher level than most (if not all) human
players (see, for example, Deep Blue [4], Chinook [5, 6, 7],
Logistello [8] and TD-Gammon [9]).

Deep Blue is an automated Chess player which defeated
Gary Kasporov in May 1997. It exploited a database of over
700,000 Grandmaster chess games from previous matches

(including the matches against Kasparov in 1996 and 1997)
[4], which included an extended opening book database.

Chinook, developed by Jonathan Schaeffer’s team at The
University of Alberta, won the world checkers title in 1994
[6]. It is another good example of an automated game that
incorporates human knowledge. There are four aspects that
contributed to the success of Chinook; these being search,
an evaluation function, a database of endgame positions and
an opening book.

The focus of this work is to evolve an automated player
that learns to play a game without incorporating any
knowledge. We draw motivation from Blondie24 [10],
which learnt strategies for playing Checkers by using a
combination of an evolutionary algorithm and artificial
neural networks. In this paper, we will integrate social
learning within a Blondie24 style framework and
investigate its effectiveness using the game of Tic-Tac-Toe.
Unlike Blondie24, the strategies do not compete against
each other, instead the strategies play against a nearly
perfect player, drawing inspiration from [11], where the
evolved player against a nearly perfect player. Our work is
also motivated by [12, 13], where a simulated stock market
used co-evolving neural networks, which evolved through a
process individual and social learning.

Further reading about the literature evolutionary
computation and games can be found in [14].

2. Social Learning

Social learning research has been largely based in the
context of agent-based computational economics [12], [15],
and according to [15], in individual learning, the agents
learn exclusively from their own experience and in social
learning, the agents learn from the experience of other
agents. In this work, the player will learn individually based
on experience by playing against a nearly perfect player1
and after a period of time, we allow the player to “learn”
from each other in a process we call social learning.

1 is a beatable player which will move randomly 10% of the time

Razali Yaakob1 and Graham Kendall2

1Faculty of Computer Science and IT, University Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia.

2School of Computer Science, The University of Nottingham,
Wollaton Road, Nottingham NG8 1BB, United Kingdom

An Adaptation of Social Learning in Evolutionary
Computation for Tic-Tac-Toe

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 295

In a context of automated game playing, individual
learning is defined as a player which learns, and develops,
their own strategy through the experience of playing against
other players. In this type of learning, the players never
copy a strategy from other players and never replace its
strategy with a new (perhaps random) strategy. In contrast,
the idea of social learning is to give the player the
opportunity to copy or create a new strategy, replacing their
current strategy. The player still has the opportunity to
evolve its own strategy through individual learning, but if
the strategy is not good enough, or the player is not happy
with their current strategy, the player can choose to either
request a superior strategy or create a new random strategy.

We create a pool to retain the best strategy at a certain
period. We call this the social pool and this represents the
best strategies from the population. We then make the
social pool available to those players which are not
performing well. This concept is quite similar to the
concept of hall of fame [16], where all the best evolved
players at every generation are maintained and can be used
in the future. During social learning, the player can choose
to replace their current strategy with a (hopefully) better
strategy, drawn from the social pool. All strategies in the
social pool maintain a score, which is updated through time.
Social learning proceeds as follows:

1. Rank the players from the highest to the lowest.
2. Copy the best player (or players, if more than one) to

the social pool.
3. For the remaining players, there are two possibilities,

a) If the players are satisfied with their current
strategy (based on the current score), keep that
strategy, else

b) If the players are not satisfied with their current
strategy, three alternatives are available,

i) Copy a strategy from the pool, or
ii) Create a new random strategy, or
iii) Retain the current strategy

Social learning in this work is not the same as an island

model in evolutionary computation. In an island model [17],
there are several populations, each of which is evolved
independently. Migration between the sub-populations
occurs where the best player from the sub-population is
migrated to another sub-population. A sub-population
might only receive a better strategy from another
sub-population and may not create any new strategies. In
social learning, the individual players have a chance to
receive a better strategy, retain their current strategy or
create a new random strategy.

3. Design Of Learning Techniques

There are two experimental methodologies in this paper, i.e.
with and without social learning. We hypothesise that social

learning provides a superior environment in which
strategies can evolve. The players outside of the social pool
are called individual players, and these players attempt to
develop their own strategies, drawing from the social pool
at certain times.

3.1 Design Without Social Learning

The experimental setup without social learning mimics that
in [18], with some minor modifications. This experiment
will be used as a comparison for the experiment which
includes social learning. The difference between [18] and
our setup is as follows:

• The revised neural network architecture consists
of nine input nodes, nine hidden nodes and an
output node (see Fig.1). All hidden nodes are
connected with bias (previously we did not have
bias, but found through experimentation that it is
necessary). In [18], the neural networks have nine
input and output nodes, and the number of hidden
nodes depends on mutation during the experiment.

• The architecture in [18] is mutated during the
experiment, whereas, there is no mutation on the
network architecture in this work.

• In [18], the neural network chooses a best move
based on the highest value from one of the nine
output nodes from the neural network. However,
in this work, the evolved neural networks will
search for the best move using 1-ply search using
the following algorithm:

•
1. Read the current state of the game.

a. Put a marker ‘X’ on any available square.
b. Pass the new current state to the neural

network.
c. Store the output value.
d. Remove the marker that was placed in step 1a.
e. Repeat steps 1a to 1d until all available squares

have been evaluated by the neural network
and.

2. Select the highest output as the best move.

The without social learning algorithm is as follows:
1. Initialise a random population of neural networks,

Pi, where P is a neural network player, i = 1, ..., N,
and N is a total number of neural networks in the
population.

2. Each strategy has its associated self-adaptive
parameter, si, i = 1, ..., N, and are initialised
randomly.

3. Generate an offspring for each parent, where for
each Pi, i = 1, ..., N, an offspring, P’i is created by
using Eq. 1a and 1b. The total neural networks
now is N+N:

s’j = sj.exp(τ.Nj(0, 1)) (1a)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 296

w’j = wj + s’j.Nj(0, 1); (1b)
4. Each neural network players play against the nearly

perfect player (see [18] for this algorithm).
5. In each game, the neural network players receive a

score based on whether they win, lose or draw.
This score is used as a fitness and is used for
selection.

6. Repeat steps 4 and 5, four times.
7. At the end of each generation, the N strategies

(neural networks) with the highest scores are
selected as parents and retained for the next
generation. These parents are then mutated to
create another N offspring using Eq. 1a and 1b.

8. Repeat steps 4 to 7 until the stopping criterion is
reached (i.e. generations = 1,000).

Fig.1: The new structure of the neural network

We choose four iterations in step 6 so as to make sure the

experiment will not take too long to run, but at the same
time it gives an opportunity for the player to play several
times. In this paper, the neural network players receive +1
for win, -1 for lose and 0 for draw. Since each player will
play against the nearly perfect player 32 times (eight second
possible moves and four trials), the highest score for each
player, at each generation, is 32 points.

 3.2 Design With Social Learning

The design is similar to the algorithm without social
learning, including the structure of the networks, the move
selection and calculating the fitness. However, in the
experiment with social learning, social learning activities
occur at every kth generation. The fitness calculated before
the social activity is called the individual fitness.

There are several issues that we need to address for this
algorithm. The first is how to avoid copying the same
strategy too many times, especially when the social pool

does not have many entries. To solve this problem, we limit
the number of times a strategy can be copied from the social
pool to be four, at a given generation.

The other issue is how to maintain variation in the
population and also have a significant number of better
strategies in the population? We propose two phases of
social learning, which we call minor and major social
learning. The objective of minor social learning is to copy
the best player at a certain generation to the social pool
without carrying out any other social activities. The
algorithm for this technique is as follows:

1. Follow the steps 1 until 6 as in Section III-A
2. If (minor social learning)

• Keep the best player or players (if more than
one) in the social pool.

• Select N strategies (neural networks) with the
highest scores as parents and retain for the next
generation. These parents are then mutated to
create another N offspring using Eq. 1a and 1b,

3. If (major social learning),
a. Keep the best player or players (if more than

one) in the social pool.
b. For the rest of the players, there are two

possibilities,
i) If the players are satisfied with their current

strategy, keep the current strategy, else
ii) If the players are not satisfied with their

current strategy, three alternatives are
available,
• Copy a strategy from the pool, or
• Create a new random strategy, or
• Retain the current strategy.

4. If (not minor or major social learning)
• Select N strategies (neural networks) with the

highest scores as parents and retain for the next
generation. These parents are then mutated to
create another N offspring using Eq. 1a and 1b,

5. Repeat steps 4 until 6 (as in Section III-A) until the
stopping criterion is reached (generations =
1,000).

The algorithm for the activities in social learning is as
follows:

1. Normalise all the 50 evolved players, i, between 0.0
and 1.0 based on their individual fitness, F, using
Eq. 2, and sort in descending order.

Vi = MIN+(MAX - MIN)x(Fi - dmin) / (dmax - dmin) (2)

where

Vi is the normalised value for player i.
MIN and MAX is the lowest and highest

value for the range of the normalized
value (0.0 and 1.0 respectively).

.

.

.

.

.

.

Input Layer
Hidden Layer

Output Layer

(9 nodes)
(9 nodes)

1

bias

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 297

Fi is the fitness of player i before being
normalised.

dmin and dmax is the lowest and highest score
in the current population among all
players.

2. If (Vi = 1.0) and the strategy has never been
published,
• Publish the player i into the social pool and

assign pool score, Pj , using Eq. 3, where j is an
index of the best player in the social pool.

3. If (Vi = 1.0) and the strategy has previously been
published to the social pool,
• Do not publish the player i but update the pool

score, Pj using the Eq. 3.
4. If (Vi < 0.9) and (Vi < 1.0),

• The player i is satisfied with their current
strategy and the player stays in the population
for the next generation.

5. If (Vi < 0.9),
• There are three possibilities, one of which is

chosen randomly:
a) Case 1,

• The player chooses to replace their
current strategy with a strategy from the
social pool.

• Based on the scores assigned to each
player in the pool, Pj , roulette wheel
selection is used to select a strategy from
the pool.

b) Case 2,
• The player chooses to retain with their

current strategy for the next generation.
c) Case 3,

• The player chooses to replace their
current strategy with a new randomly
created strategy.

The pool score in the social pool for each best player, Pj , is
updated every time social learning occurs using Eq. 3,
where the value of the pool score is based on how long the
player has been in the pool and what was its individual
score, Fi when it was published into the pool.

 (3)

Where,

• j is an index of the best player in the social
pool,

• g is a generation when published into the
social pool,

• gj is a generation for player j when published
into the social pool,

• I is the normalised value of individual score,
F, between 1 and 10,

• C is a sum of times player j has been reused.
The objective of this function is to give better players,
which have recently been introduced (or updated) to the
pool, a higher probability of being selected as replacements
for poorly performing individual players. The age of the
player is controlled by , where the previous
best players will receive less points than the current best
players. However, the final calculation for calculating the
pool score is also dependent on the individual score of the
best player when publishing into the social pool and how
many times they have been reused2 since they were first
published. Table 1 shows an example of a social pool for
trial number two where social learning occurs at every
100th generation.

Based on Table 1, the player in social pool with j = 0,
receives very small value of pool score since this player has
the lowest individual score and also has already been in the
pool from generation 100. Players j = 11, 12 and 13 have the
same individual score, i.e. 30. However, since they have
been published into the social pool from different
generations, the player recently published into the social
pool receives highest pool score.

4. Results

There are two types of experiments in this work, which
have a different number of generations, i.e. 1,000 and
5,000.
The objective of running for 5,000 generations is to see
what will happen to the experiment with social learning
when we run for a longer period. All experiments were run
50 times for 1,000 generations. They were run on a
computer Intel(R) Pentium(R) 4, CPU 3.20GHz, and 2.00
GB of RAM.

Table 1: An Example Of Social Pool
Index
Player

Pool Score Individual
Score

Generation Reused

j P F g C
0 0.0362438 10 100 0
1 0.279615 13 200 0
2 3.97937 18 300 0
3 3.97937 18 300 0
4 32.0984 22 400 0
5 25.5836 21 500 0
6 25.5836 21 500 0
7 185.726 25 600 0
8 185.726 25 600 0
9 185.726 25 600 0

10 339.822 26 700 0
11 2349.49 30 800 0
12 2643.18 30 900 0
12 2936.86 30 1000 0

2 The strategy that has been published in the social pool and receives Vi

= 1 on the next social learning

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 298

4.1 Results for the Experiment with Number of
Generations= 1,000

In each trial, we kept the highest score at each generation,
y1,…, y1000. Figure 2 shows the mean of the highest score (in
percent) from the 50 trials (Eq. 4) for the experiment with
(marked WSL on the graph) and without social learning
(marked NSL on the graph). Based on the Figure 2, at the
end of the experiment without social learning, the highest
mean score is about 75%.

 (4)
Where,

• n is a generation, n = 1,...,1000,
• yn is a highest score at the generation n,
• Yn is an average highest score at the generation n,

In the experiment with social learning, at every 50th
generation and 100th generation, the minor and major social
learning occur respectively. The experiments (with and
without social learning) took about 7 hours to complete
1,000 generations. Fig. 2 shows the mean of the highest
score (in percentage) from 50 trials (Eq. 4) on the extended
experiment with social learning versus the experiment
without social learning. Based on Fig. 2, the experiment
with social learning is constantly better than the experiment
without social learning from the beginning until the end,
where at the end of this experiment, the score for the
experiment with social learning is about 80% and 74% for
the experiment without social learning.

Looking at Fig. 2, the hypothesis that the experiment
with minor and major social learning is shown.

-10
0

10
20
30
40
50
60
70
80
90

0 68 13
6

20
4

27
2

34
0

40
8

47
6

54
4

61
2

68
0

74
8

81
6

88
4

95
2

M
ea

n
of

 H
ig

he
st

 S
co

re

Generation

WSL
NSL

Fig. 2: An experiment with social learning vs. experiment without

social learning where number of generations=1,000

4.2 Results for the Experiment with the Number of
Generations = 5,000

Fig. 3 shows the mean of a highest score (in percent) from
30 trials (the same formula as Eq. 4 was used but for only 30
trials) for the individual player at each generation for the
experiment with and without social learning (marked as

WSL and NSL respectively). The objective is to investigate
whether social learning still can give better performance
than without social learning.

-10

0

10

20

30

40

50

60

70

80

90

100

1
27

4
54

7
82

0
10

93
13

66
16

39
19

12
21

85
24

58
27

31
30

04
32

77
35

50
38

23
40

96
43

69
46

42
49

15

M
ea

n
of

 B
es

t S
co

re

Generation

WSL
NSL

Fig. 3: The mean of best score for 50 trials at each generation

(generations = 5000)

Based on Fig. 3, the experiment with social learning
produces statistically different and better results when
compared to the experiment without social learning, with
95% confidence level.
Table 2 shows the details of social pool at generation 100
for the trial number three of the experiment run 5,000
generations. In this experiment, minor social learning
occurs at the first generation and also at every 50th
generation. There are two players that have the same score
at the first generation and three players at the 50th and
100th generations. These show that the social pool have
eight different strategies at the first time major social
learning occurs. Therefore, at this level, the number of
strategy that can be copied from the social pool is about 32
strategies. However, because of two players have negative
values, there are only a maximum of 24 strategies that be
copied.

Table 2: An Example Of Social Pool At Generation 100 Of The

Experiment Running For 5,000 Generations
Index
Player

Pool Score Individual
Score

Generation Reused

j P F g C
0 -0.018 -3 1 0
1 -0.018 -3 1 0
2 1522.86 15 50 0
3 1522.86 15 50 0
4 1522.86 15 50 0
5 4873.11 16 100 0
6 4873.11 16 100 0
7 4873.11 16 100 0

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 299

Table 3 shows the distribution activities that been chosen by
the poor strategies at generation 100. There are 14 strategies
(or about 28%) that have been chosen for the next
generation, from the social pool. With reference to Table 3,
the number of poor strategies reflects the number of
individual players that have Vi < 0.9; number of copies is
number of individual players that copy a strategy from the
pool; number of new random is number of individual
players that replace the current strategy with random
strategy; number of stays is number of individual players
that choose to retain their current strategy.

Table 3 : Distribution Activities Of Poor Strategies For Trial
Number Three Of The Experiment Running For

5,000 Generations
Generation #100
Number of poor strategies: 43
Number of copies: 14
Number of new random: 14
Number of stays: 15
Generation #200
Number of poor strategies: 49
Number of copies: 17
Number of new random: 19
Number of stays: 13
Generation #300
Number of poor strategies: 47
Number of copies: 14
Number of new random: 15
Number of stays: 14

Based on the above results, we manage to increase the
variety of strategies in the social pool and also increased the
number of better strategies in the population. Even though,
the end scores for the experiment with social learning are
not significantly better than the experiment without social
learning, but the experiment with social learning are
consistently better than without social learning.
Based on Table 1 and Table 2, we found that minor social
learning did help the population to have more superior
strategies in the population.

5. Conclusions

In this work, we have run several experiments to investigate
the effect of an integration of individual and social learning
in the learning process to play the game of Tic-Tac-Toe. We
also run an experiment without social learning for
comparison. Learning has occurred in all experiments, with
the inclusion of social learning producing superior
strategies.

As mentioned earlier, one of the issues from our early
studies was how to maintain variety of better player in the
population pool. We have proposed two phases of social
learning (minor and major social learning). The objective is

to increase the variety of strategies in the social pool from
the very start of the evolution, giving more strategies for the
individual players to copy from. Table 2 has shown that the
proposed technique has increased the number of strategies
at the beginning of the experiment and Fig. 2 and Fig. 3
have shown that the experiment with social learning is
consistently better than the experiment without social
learning.
In conclusion, two phases of social learning has improved
the evolution of game playing strategies. From observation,
we must have as many best players in the social pool as
possible before the social activities take place. In future
work, our focus will be on increasing the number of
superior strategies in the social pool, in the hope that it will
improve the performance even further. We also plan to use
more complex game to ascertain of this evolutionary
process is able to scale up.

References

[1] A.M. Turing. Digital computers applied to games.

Pages 286–310. Pittman, London, UK, 1953.
[2] C.E. Shannon. Programming a computer for playing

chess. Philosophical Magazine, March 1950.
[3] A.L. Samuel. Some studies in machine learning using

the game of checkers. IBM Journal of Research and
Development, 3(3):210–229, 1959.

[4] M. Campbell, A.J. Hoane, and F.-H. Hsu. Deep blue.
Artificial Intelligence, 134:57–83, 2002.

[5] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu,
and D. Szafron. A world championship caliber
checkers program. Artificial Intelligence,
53(2-3):273–290, 1992.

[6] J. Schaeffer, R. Lake, and P. Lu. Chinook: The world
man-machine checkers champion. AI Magazine,
17(1):21–30, 1996.

[7] J. Schaeffer. The Games Computers (and People) Play,
pages 189–266. Academic Press, 2000.

[8] M. Buro. The othello match of the year: Takeshi
murakami vs. logistello. International Chess Computer
Association Journal, 20(3):189–193, 1997.

[9] G. Tesauro. Temporal difference learning and
TD-gammon. Communications of the ACM,
38(3):58–68, 1995.

[10] D.B. Fogel. Blondie24: Playing at the Edge of AI.
Morgan Kaufmann, San Florida, California, 2002.

[11] D.B. Fogel. Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence. IEEE Press,
Piscataway, New Jersey, 1995.

[12] G. Kendall and Y. Su. The co-evolution of trading
strategies in a multi-agent based simulated stock
market through the integration of individual and social
learning. In Proceedings of IEEE 2003 Congress on
Evolutionary Computation, pp. 2298-2305, 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 300

[13] G. Kendall. Y. Su. Imperfect evolutionary systems.
IEEE Transactions on Evolutionary Computation,
11(3):294-307, 2007.

[14] Lucas S.M. and Kendall G. Evolutionary Computation
and Games (invited review). IEEE Computational
Intelligence Magazine (IEEECIM), 1(1):10-18, 2006.

[15] N. Vriend. An illustration of the essential difference
between individual and social learning, and its
consequences for computational analysis. Technical
report, Queen Mary and Westfield College, University
of London, 1998.

[16] C.D. Rosin and R.K. Belew. New methods for
competitive coevolution. Evolutionary Computation,
5(1):1–29, 1997.

[17] C. Spieth, F. Streichert, N. Speer, and A. Zell. Utilizing
an island model for EA to preserve solution diversity
for infering gene regulatory networks. In Congress on
Evolutionary Computation, volume 1, pages 146–151,
June 2004.

[18] D.B. Fogel. General problem solving: Experiments
with tic-tac-toe. In Evolutionary Computation: Toward
a New Philosophy of Machine Intelligence, pages
228–248. IEEE Press, 1995.

Razali Yaakob obtained his PhD from
University of Nottingham in 2008.
Currently, he is a senior lecturer at the
Faculty of Computer Science and IT,
Universiti Putra Malaysia. His research
areas include artificial neural network,
pattern recognition, and evolutionary
computation in game playing.

Graham Kendall is a member of the
Automated Scheduling, Optimisation and
Planning Research Group at the University
of Nottingham. He is a member of the UK
Engineering and Physical Sciences
Research Council (EPSRC) Peer Review
College and is an associate editor of eight
international journals. He also chairs the
steering committee of the Multidisciplinary

International Conference on Scheduling: Theory and Applications
(MISTA). Prof Kendall has been a member of the Programme (or
refereeing) committees of over 100 international conferences over
the last few years. During his career he has edited/authored 10
books and has published over 100 refereed papers. His research
interests include: hyper and meta heuristics, evolutionary
computation, adaptive learning (with an emphasis on game
playing), heuristic development, optimisation, scheduling and
artificial intelligence.

