
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

316

Manuscript received September 5, 2009
Manuscript revised September 20, 2009

Modeling Autonomous Mobile System with an Agent Oriented
Approach

Adil Sayouti, Hicham Medromi, Fatima Qrichi Aniba, Siham Benhadou and Abderrahim Echchahad

Team Architecture of Systems, ENSEM, BP 8118, Oasis, Casablanca, Morocco

Summary
This paper focuses on the design of a control architecture, via
Internet, of a mobile system. The remote control extends the
sensorimotor capacities and the possibilities of actions of a
human being in a distant place. The Internet network (network
without Quality of Service) limits the quantity of information that
can be transmitted (bandwidth) and introduces delays which can
make the remote control difficult or impossible. The solution
proposed, through this work, to face the limitations of the
Internet, is founded on the autonomy and the intelligence, based
on multi-agents systems, granted to the mobile system in order to
interact with its environment and to collaborate with the remote
user. The need that consists in wanting to assign to the mobile
system the autonomy and intelligence brought us to examine in
the detail the choice of a control architecture. This paper will
present the modeling process of an autonomous mobile system
with an agent oriented approach.
Key words:
Control Architecture, Internet, Multi-agents System, Agent-
Oriented Programming, AUML.

1. Introduction

Agent-based systems technology has generated lots of
excitement in recent years because of its promise as a new
paradigm for conceptualizing, designing, and
implementing software systems. This promise is
particularly attractive for creating software that operates in
environments that are distributed and open, such as the
internet.
An agent is a software entity which functions continuously
and autonomously in a particular environment, often
inhabited by other agents and processes. Agent is
described as the software component exhibiting the
following characteristics:

1. Autonomy: An agent has its own internal thread
of execution, typically oriented to the
achievement of a specific task, and it decides for
itself what actions it should perform at what time.

2. Situatedness: Agents perform their actions while
situated in a particular environment. The
environment may be a computational one (e.g., a
Web site) or a physical one (e.g., a manufacturing
pipeline), and an agent can sense and effect some
portions it.

3. Proactivity: In order to accomplish its design
objectives in a dynamic and unpredictable
environment the agent may need to act to ensure
that its set goals are achieved and that new goals
are opportunistically pursued whenever
appropriate.

Fig. 1 Classical multi-agents behavior scheme

Agents can be useful as stand-alone entities that are
delegated for particular tasks. However, in the majority of
cases, agents exist in environments that contain other
agents. In these multi-agents systems, the global behavior
derives from the interaction among the constituent agents.
Agents interact (cooperate, coordinate or negotiate) with
one another, either to achieve a common objective or
because this is necessary for them to achieve their own
objectives [1].
Multi-agents systems (MAS) are based on the idea that a
cooperative working environment comprising synergistic
software components can cope with problems which are
hard to solve using the traditional centralized approach to
computation. Smaller software entities – software agents –
with special capabilities (autonomous, reactive, pro-active
and social) are used instead to interact in a flexible and
dynamic way to solve problems more efficiently. Agents
model each other’s goals and actions; they may also

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

317

interact directly (communicate). The classical multi-agents
behavior scheme is presented in Figure 1.

This paper is presented as follows: on the next section, we
describe our control architecture based on multi-agents
system to face the limitation of the Internet. In section 3,
we present the modeling process of an autonomous mobile
system task with Agent UML. In section 4, we present an
application of control of an autonomous mobile system
(The Khepera III robot) as an illustrative example. Some
conclusions are presented in section 5.

2. Control Architecture Proposed

Robot control architectures are sophisticated control
systems with the purpose of enabling robots to do usual
physical work in the real world. Figure 2 depicts a very
simplified view of robots control architectures. The robot
control system continuously perceives the environment
through sensors, updates an internal model of the world,
deliberates, and passes actuator parameters to the hardware
interface in order to pursue given goals.

Fig. 2 Simplified Robot Control Architecture

The designer has to choose the way he will give autonomy
to his robot. He has mainly two orientations: “reactive”
capacities or “deliberative” capacities [2]. These two
capacities are complementary to let a robot perform a task
autonomously (Figure 3). The designer must built a
coherent assembly of various functions achieving these
capacities.
One of the first author who expressed the need for a
control architecture was R.A. Brooks [3]. In 1986, he
presented an architecture for autonomous robots called
“subsumption architecture”. Then other various

architectures were developed based on different
approaches, generally conditioned by the specific robot
application that the architecture had to control, we can
mention: The architecture 4-D/RCS developed by the
Army Research Laboratory [4], CLARAty Architecture [5],
LAAS Architecture (Laas Architecture for Autonomous
System) [6], AuRA Architecture (Autonomous Robot
Architecture) [7], DGA Architecture [8], The DAMN
architecture (Distributed Architecture for Mobile
Navigation) [9], etc.

Fig. 3 Control architecture design approach
From the study of the different control architectures, we
propose a hybrid control architecture, called EAAS for
EAS Architecture for Autonomous system, including a
deliberative part (Actions Selection Agent) and a reactive
part.
Hybrid deliberative/reactive architectures emerged as a
result of the recognition that there is an appropriate use of
symbolic knowledge in the formulation of robot behaviors.
Such systems take advantage of a priori knowledge of the
environment to formulate correct behavioral sets that can
be used during run-time. Representations are used during
plan formulation but not during plan execution. This
creates greater exibility for a reactive robot by allowing a
high-level deliberative planner to configure the robot's
behaviors in accordance with the task at hand, known or
anticipated environmental conditions, and available
robotic resources.
Our control architecture [10] is made up of two parts
(Figure 4). The deliberative part which contains a path
planner, a navigator and a pilot. The reactive part is based
on direct link between the sensors (Perception Agent) and
the effectors (Action Agent). The hardware link agent is an
interface between the software architecture and real robot.
Changing the real robot require the use of a specific agent
but no change in the overall architecture.
Fundamental capacities of our architecture encompass
autonomy, intelligence, modularity, encapsulation,
scability and parallel execution. To fulfil these
requirements, we decided to use a multi-agents formalism

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

318

that fits naturally our needs. The communication between
agents is realized by messages. Object oriented language is
therefore absolutely suited for programming agents (we
chose java). We use threads to obtain parallelism (each
agent is represented by a thread in the overall process).

Fig. 4 EAAS Architecture proposed

3. Modeling the Navigation Task of a
Autonomous Mobile System with AUML

3.1 Agent UML

UML [11] is certainly the best known and most widely
used modeling languages. Agent UML is the most famous
graphic modeling language to describe multi-agent
systems.

The modeling language Agent UML [12] [13] inherits
from UML and integrates the differences between agents
and objects [14]. Agent UML is an extension of UML to
take into account the concepts officer that he did not.
Because Agent UML is an extension, it inherits the
representations proposed by UML. Here is the list:
Sequence diagrams, Collaboration diagrams, Activity
diagrams, Statechart, Use case diagrams, Class diagrams,
Object diagrams, Packages, Component diagrams and
Deployment diagrams. The first five correspond to

representations of dynamic charts, while the last four
correspond to static diagrams.
The sequence diagrams have been modified since they
bear the name of protocol diagrams and correspond to the
representation of interaction protocols. The protocol
diagrams describe the interaction protocols used by agents.
They exploit the wealth of communications between
agents. The collaboration diagrams include both the class
diagrams and protocol diagrams. These diagrams allow to
group the structure of the system with class diagrams of
the system behavior through the exchange of messages
with protocol diagrams. The activity diagrams and
interaction diagrams have similarities because they both
deal of system activity. The activity diagrams describe the
interaction between the activities while the interaction
diagrams are among the objects. The statecharts similar to
activity diagrams except that it is not to model activities,
but states of the system. The statecharts are used to
represent the behavior of the system. The use case
diagrams are used to define use cases of the system and an
analysis of the system. The class diagrams have also been
modified. We must not forget that an agent differs from an
object, therefore, the class diagram that can represent the
classes of the system will be modified. The class diagrams
describe the structure and relationships between the
various classes of the system. The object diagrams are
instantiated versions of class diagrams. These are
generally the objects represent a specific moment of the
execution of the system to know the values of attributes.
The packages are a mechanism for organizing elements
into groups. The component diagrams describe the
components needed for implementing the system. A
component is a physical element of the system that
provides services through interfaces. The deployment
diagrams are physically organizing the physical system.
In the next section of this paper, one using our control
architecture, we will present the modeling process of an
autonomous mobile system task with AUML. The
modeling process starts with a Business Process Model.
Then we will present the agents class diagram that
describe the solution proposed.

3.2 Business Process Model of a Mobile System
Navigation Task

We choose the navigation task to be agent-oriented
modeled. In this task, the mobile system has a goal, which
is a place where it has to go. The problem consists in self-
localization through all the way in relation to the goal. The
information that is provided to the system is the direction
and the distance of the goal to the mobile system. Thus the
mobile system must cope with errors in the movements
through the readings of its sensors.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

319

Figure 5 shows the business process model diagram
representing how the mobile system navigation task must
work. The actions selection agent of our control
architecture was developed according to the hierarchical
paradigm, i.e. the mobile system acts only after planning
through processing the sensor readings. This control
architecture enables the mobile system to do a navigation
task with continuous sensing in a static environment where
there is no obstacle moving. While the task is being
accomplished the mobile system does a cyclic process that
start with new information of its sensors and finishes with
a movement produced by the effectors.

Fig. 5 Business process model diagram of a mobile system

navigation task

When the navigation task starts, the first process
(processes are indicated in the diagram as boxes) executed
is the Perception that updates the resource Sensor Data
(resources are represented by cylinders) according the
information retrieved by range sensors in the mobile
system. Sensor Data is a list of spatial coordinates. These
coordinates are the ending points of the vectors starting in
the mobile system and ending in the detected obstacles.
After Perception another process named SLAM is
executed. SLAM (Simultaneous Localization And
Mapping) is a statistical framework for simultaneously
solving the mapping problem and the induced problem of
localizing the mobile system relative to a growing map. As

the mobile system is navigating toward its goal, it needs to
use information of its sensor for self-localization. This
allows the mobile system to correct its trajectory and to
use an estimative of its localization to incorporate a local
map in the global one. Basically the SLAM algorithm is an
estimator that can integrate information of several sensor
sources to obtain a better estimative of the mobile system
localization in space. In the diagram, the SLAM process
accesses the resource Localization and updates it based on
the new Sensor Data.
With Localization and Sensor Data updated, the
Occupancy Grid process is called. The Occupancy Grid
transforms that list of coordinates (Sensor Data) in a
tessellated map of probability of obstacles occupying a
specific cell. It accesses the resource Local Map and
updated it. This map can be represented as a matrix where
the value of each element, or cell, represents the
probability of occupation in an area of the space. After the
Occupancy Grid provides an updated Local Map, the
process Update Map incorporates the Local Map in the
Global Map.
Then the process Actions Selection Agent is called and
provided with the updated Global Map, with the resource
Goal of the navigation task and with the actual localization
of the mobile system. The Actions Selection Agent
produces a resource named Trajectory that is the whole
trajectory to be followed by the mobile system in order to
achieve the goal position. The trajectory can be
represented as a sequence of coordinates interpolated by
straight lines. Each line is a trajectory segment of the
whole trajectory.
Besides the whole trajectory, the Actions Selection Agent
also provides and updates the resource Trajectory Segment.
This resource gives the current line segment to be followed
by the mobile system. Finally, the process Action Agent
uses the Trajectory Segment resource to send commands
to act the mobile system. While the mobile system does
not reach the resource Goal provided externally by a user,
a new cycle begins.
The business process model allows us to describe a general
solution for the problem. In this step, the main processes
and information used in the solution are specified. In the
next section, we will present the agents class diagram
which is a static representation of the system showing the
class and their relationship.

3.3 Agents class diagram

Considering the business process model of Fig. 5, an
agents class diagram was designed and it is showed in
Fig.6. Below it is a description of the designed agents
classes [15].

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

320

Fig. 6 Agents class diagram developed

Task is the class responsible for specifying the task to be
performed by the mobile system. As we are interested in a
navigation task using a single mobile system and a
hierarchic approach for the deliberative part, the Task class
will make use of one agent of the Mobile System class and
one agent of the Actions Selection class. The main
attribute of the Task class is the goal. Mobile System is the
class responsible for describing the mobile system that will
be used in the task. The Mobile System class is made of a
composition of at least one Action and at least one
Perception. Action is the base class responsible for
interfacing with the effectors of the mobile system.
Perception is a base class from which many perception
classes can be derived. Some of the possible perception
classes are represented in the agents class diagram and
they are Tactile, Proximity, Tracker, Range, Localization,
Velocity and Accelerator. Localization, Velocity and
Accelerator classes are responsible for giving internal
information about the actual state of the mobile system.
The Localization class can be based on the readings of
odometers to estimate the mobile system localization.
Range class represents a range sensor in the mobile system.
It provides an estimative of the direction and distance
between the mobile system and the obstacles. Proximity is
the class that represents the proximity sensor of the mobile
system. A proximity sensor can detect when an object is
close to the mobile system. Tracker is the class responsible
to describe a visual tracking sensor. Through this sensor is
possible to track an object in an image and to retrieve
some information about the visual changes suffered by this
object. Stereo Vision is one of the classes that can be used
by the Range sensor class. Stereo Vision is responsible to
acquire and process one pair of images and to provide

distance estimation from obstacles. The two images
required must be taken from two different viewpoints.
Image is a class to support methods for image processing
and image manipulation. Actions Selection is the class
responsible for the trajectory planning algorithms used in
the navigation task. The Actions Selection class uses the
Map class to take decisions about the trajectory that the
mobile system should follow. The main attribute of the
Actions Selection class is the Goal position set by the Task.
Map is the class responsible for storing and manipulating
the maps. There are two classes derived from it that
represent the two different types of map: Local Map and
Global Map. Both local and global maps can represent the
map using occupancy grids [16], and the current robot
localization is indicated on the maps. The Local Map has a
method called Slam that uses SLAM algorithm that allows
correcting the mobile system localization. The Global Map
class has a method called Update that allows the local map
to be fused on the global map.

4. Application

During the project development, different configurations
were tested in different environments. The aim is to
develop a more reliable system framework that can be
used in the real world.

Fig. 7 Khepera in its environment

The main advantages of the robot Khepera III are the small
size and the very long power autonomy of 8 hours. As
shown in Figure 7, our Khepera mobile robot was
controlled to explore its environment while avoiding
several static obstacles in order to reach its goal.

5. Conclusion

The first part of this paper presented our control
architecture, based on multi-agents system, to assign to the
mobile system the autonomy and the intelligence in order
to interact with its environment. The second part showed

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009

321

an application on mobile system navigation modeled using
agent-oriented concepts. In this navigational task the
localization of the mobile system is corrected through
SLAM and the planning of actions is done using maps
based on occupancy grids. There are still many open
problems to solve, until exploration of unknown or very
complex environments through the Web becomes reality.

References
[1] Ferber, Jacques, Multi-Agent Systems: An Introduction to

Distributed Artificial Intelligence, Addison Wesley
Longman, Harlow, UK, 1999.

[2] Cyril Novales, Gilles Mourioux, Gerard Poisson, A multi-
level architecture controlling robots from autonomy to
teleoperation. First National Workshop on Control
Architectures of Robots. Montpellier. April 6,7 2006.

[3] R.A. Brooks, A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, vol. 2, n°.
1, pp. 14–23, 1986.

[4] J. S. Albus, 4D/RCS A Reference Model Architecture for
Intelligent Unmanned Ground Vehicules, Proceedings of the
SPIE 16th Annual International Symposium on
Aerospace/Defense Sensing, Simulation and Controls,
Orlando, FL, April 1 – 5, 2002.

[5] R. Volpe and al. CLARAty: Coupled Layer Architecture for
Robotic Autonomy.” JPL Technical Report D-19975, Dec
2000.

[6] R. Alami, R. Chatila, S.Fleury , M.Ghallab and F.Ingrand:
An architecture for autonomy. The International Journal of
Robotics Research, Special Issue on Integrated
Architectures for Robot Control and Programming, vol. 17,
no 4, pp. 315-337, 1998.

[7] R.C. Arkin, Behavior-based Robotics. MIT Press, 1998
[8] A. Dalgalarrondo, Intégration de la fonction perception dans

une architecture de contrôle de robot mobile autonome.
Thèse de doctorat, Université Paris-Sud, Orsay, 2001.

[9] J. Rosenblatt, DAMN: A Distributed Architecture for
Mobile Navigation. In proceedings of the 1995 AAAI
Spring Symposium on Lessons Learned from Implemented
Software Architectures for Physical Agents, AAAI Press,
Menlo Park, CA, 1995.

[10] A. Sayouti, F. Qrichi Aniba, H. Medromi. “Remote Control
Architecture over Internet Based on Multi agents Systems”.
International Review on Computers and Software
(I.RE.CO.S), Vol 3, N. 6, pp. 666 – 671, November 2008.

[11] G. BOOCH, J. RUMBAUGH, I. JACOBSON, The Unified
Modeling Language User Guide, Addison-Wesley, Reading,
Massachusetts, USA, 1999.

[12] B. BAUER, J.P MULLER, J. ODELL, «An extension of
UML by protocols for multiagent interaction», International
Conference on MultiAgent Systems (ICMAS’00), Boston,
Massachussetts, july, 10-12 2000.

[13] J. Odell, V. D. Parunak and B. Bauer, « Extending UML for
Agents », Proc of the AOIS at the 17th National conference
on Artificial Intelligence, Austin, Texas, july, 30 2000.

[14] N. R. JENNINGS, M. WOOLDRIDGE, «Agent-Oriented
Software Engineering», BRADSHAW J., Ed., Handbook in
Agent Technology, MIT Press, 2000.

[15] A. SAYOUTI, “Conception et Réalisation d’une
Architecture de Contrôle à Distance Via Internet à Base des

Systèmes Multi-Agents”, Phd. Thesis, ENSEM, Hassan II
University 2009.

[16] A. Elfes, “Occupancy Grids: A probabilistic framework for
robot perception and navigation”, Ph.D. Thesis, Carnegie-
Mellon University, 1989.

Adil Sayouti received the PhD in
computer science from the ENSEM,
Hassan II University in July 2009,
Casablanca, Morocco. In 2003 he obtained
the Microsoft Certified Systems Engineer
(MCSE). In 2005 he joined the system
architecture team of the ENSEM,
Casablanca, Morocco. His actual main
research interests concern Remote Control
over Internet Based on Multi agents

Systems.

Hicham Medromi received the PhD in
engineering science from the Sophia
Antipolis University in 1996, Nice, France.
He is responsible of the system
architecture team of the ENSEM Hassan II
University, Casablanca, Morocco. His
actual main research interest concern
Control Architecture of Mobile Systems
Based on Multi Agents Systems. Since
2003 he is a full professor for automatic

productic and computer sciences at the ENSEM, Hassan II
University, Casablanca.

Fatima Qrichi Aniba received an
electrical Engineer’s degree from the
ENSAM in 2003 Meknes, Morocco. In
2005 she got her Degree in High Education
Deepened in automatic productic from the
ENSEM, Hassan II University, Casablanca,
Morocco. In 2005 she rejoined the system
architecture team of the ENSEM. Her main
research is mainly about Real Time

Architecture Based on Multi Agents Systems.

Siham Benhadou received her Degree in
High Education Deepened in computer
science in 2004 from the HASSAN II
University, Casablanca, Morocco. In 2006
she joined the system architecture team of
the ENSEM, Casablanca, Morocco. Her
actual main research interests concern
Intrusion Detection System Based on Multi
agents Systems.

Abderrahim Echchahad received his
master in system architecture from the
ENSEM in 2009, HASSAN II University,
Casablanca, Morocco. In the same year he
joined the system architecture team of the
ENSEM, Casablanca, Morocco. His actual
main research interests concern Control of
Robotic Systems Based on Multi agents
Systems.

