
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

1

Manuscript received October 5, 2009
Manuscript revised October 20, 2009

LASE: Latency Aware Simple Encryption
for Embedded Systems Security

Kerry Courtright, Mohammad Iftekhar Husain and Ramalingam Sridhar,

University at Buffalo, The State University of New York, Buffalo, NY, 14260

Summary
Security in the area of embedded systems has been drawing
enormous attention lately. Although recent advances in hardware-
based security models have shown promise for faster and more
reliable security solutions, particular characteristics of embedded
systems, such as computation and energy constraints, pose a
unique challenge for the security researchers in this domain.
Among hardware-based security models for traditional
architectures, the Execute Only Memory (XOM) has used many
different block ciphers to provide confidentiality as a part of the
security module. However, implementations of many of these
block ciphers in hardware do not meet the computation and
energy constraints of embedded systems. In this paper, we
propose to use a simple instruction encryption mechanism for
embedded systems security based on the XOM model. As FPGAs
provide reliable low-cost and high-performance implementations
of cryptographic primitives, we implement our encryption
algorithm on FPGA and compare with existing AES
implementations for XOM-based models. The comparison has
shown significant improvement on performance and power usage
with a moderate level of security and hardware resources.

Key words:
FPGA, Embedded Systems, Encryption, Security, AES,
Execute Only Memory.

1. Introduction

 The pervasiveness of embedded systems has increased
dramatically over the last decade. Embedded processors
can be found in all kinds of applications, such as smart
appliances, cell phones, GPS, navigation systems, cars,
PDAs, personal media players, hand held games, and many
more. The advancement of technology has allowed
embedded systems to accomplish difficult and interesting
tasks such as dealing with sensitive data and performing
safety-critical tasks. These factors have heightened the
need for increased security and dependability in the
embedded systems domain.
 Providing security for an embedded system is a difficult
problem because of the usage environment, and the
associated system constraints. The major factors in the
design of embedded systems are cost, computational power,

energy efficiency and real-time performance. The inclusion
of extra security hardware increases a system’s cost, as well
as its power usage, and often directly affects the
performance parameters of the system. Including security
as a design requirement increases the difficulty of
designing the system as a whole, due to an increase in
competition for scarce resources. This difficulty is
compounded by the fact that constrained environments do
not enter into the design considerations of most security
hardware and algorithms.
 There has been a significant amount of research in the
area of hardware-based security models for traditional
computer architectures. The Execute Only Memory
(XOM) model [1] and the AEGIS [2] architectures are at
the forefront of such approaches and have been studied in
depth. These secure architectures are designed to provide
high levels of security, implementing such concepts as
process separation, trusted computing, intellectual property
protection, program and data integrity, and secure
distributed computing. Implementations of these
architectures often rely on symmetric encryption such as
Advanced Encryption Standard (AES) for the encryption
and integrity checking of memory operations.
 However, existing encryption algorithms including AES
are designed for traditional computer platforms, primarily
focusing on providing the highest level of security for a
given key size and encryption throughput. Issues relating
to encryption latency, energy consumption, and real-time
performance are treated secondary to these other security
goals. In secure architectures, encryption often lies on the
critical path, making encryption latency an important
design consideration for maximizing computational and
real-time performance. For embedded systems, energy
consumption is also an important design consideration.
These factors make many traditional encryption algorithms
inappropriate for inclusion in secure architectures for the
embedded systems domain.
 In this paper we study the effect of encryption latency on
performance for secure architectures that use memory
encryption similar to the XOM model. We then propose a
hardware-based simple encryption method that considers
the constraints of embedded systems, for use with existing

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

2

secure architectures such as XOM. Our encryption method
is designed with FPGA implementation in mind, with its
main operations performed by look up tables (LUTs) like
those found in many FPGAs. We then compare our
proposed encryption with implementations of the AES with
respect to encryption latency, power usage, and
implementation size. From this data we evaluate our
algorithm as a possible replacement for AES in embedded
secure architectures. This work will give embedded system
designers insight into methods of better developing secure
systems that fit in the constrained embedded systems
domain.
 In the next section we introduce current work in the area
of secure architectures. Section 3 shows the effect of
encryption latency on the overall performance of the
architecture. It also shows the effect of cache performance
compared to encryption latency. In Section 4, we introduce
our encryption design and provide implementation details.
Then in section 5, we compare the results of our encryption
to other implementations of the AES algorithm. We then
finish with our conclusions in Section 6.

2. Related Work

 The XOM model is the most widely used model for
developing secure architectures. The XOM model states
that no program, not even the operating system, can be
trusted for security [1]. When the operating system can’t
be trusted, the hardware must provide the trust for the
system. In the XOM model the hardware is responsible for
complete process separation. No process should be
allowed to read or modify any of the private data or
instructions of another process. The XOM model not only
protects against other processes reading or modifying data,
but also from hardware attacks to off-chip memory. XOM
achieves this through encryption of the programs and data
of each process. This creates a processor that greatly
reduces the amount of information that is leaked about the
programs and data that it processes.
 AEGIS [2] is another secure architecture that follows
along the same lines as XOM. AEGIS helped define the
programming model of secure systems and explored the
concept of how much trust can be put into software. XOM
puts all the trust into the hardware, while AEGIS saves
some hardware resources by having a small security kernel
provide some of the security in software. AEGIS also
exposed vulnerability in XOM’s original memory integrity
checking scheme [2]. Several other researchers [3, 4, 5]
have worked on the improvement of the performance and
quality of memory integrity checking for XOM type
architectures. Both architectures provide methods to
encrypt compiled code for a processor and to execute the

encrypted code while protecting it from reverse engineering,
tampering, and some additional attacks
 The XOM and AEGIS models assume that the processor
and all the signals and memory on it are secure from
reading and modification. However, signals leaving the
chip are vulnerable to attack. Because of this assumption,
all the data and instructions that come onto or leave the
chip boundary are encrypted. XOM originally used DES to
encrypt memory transactions while AEGIS uses AES for
memory encryption. Many XOM-type architectures now
use AES or other well-known block ciphers. In both the
XOM and AEGIS security model, data is encrypted when it
leaves the physical boundary of the chip between the cache
and the main memory. The data and instructions are
decrypted when they are fetched from main memory and
brought into the cache shows the general memory hierarchy
for XOM and AEGIS systems. The addition of encryption
to the memory hierarchy increases the latency of memory
accesses and reduces the overall performance of the
processor. AES encryption latency on the memory bus can
cause an unacceptable performance reduction of 15%-20%
or more for many programs [2].

Figure 1: AEGIS & XOM Memory hierarchy

 Zhuang et al [6] shows that information leaked on the
address bus can be used to reverse engineer the running
program. Zhuang et al [6] and Gao et al [7] address this
problem through permuting the address bus, thus reducing
the statistical correlation between memory accesses and the
running program. Suh et al [5] and Yang et al [8] reduce
the performance penalty imposed by long encryption times
by taking the high latency of AES off of the critical path of
the memory accesses. This is achieved by using a one-time
pad encryption which is XOR-ed with the data. Lazy
integrity checking was also used to reduce the performance
degradation caused by their integrity checkers. Shi et al [9]
shows that the onetime pad (OTP) encryption method

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

3

combined with lazy integrity checking can lead to the
introduction of security vulnerabilities.

3. Latency and Performance

 In [1] Lie et al shows the slowdown of a processor based
on the XOM type architecture can be calculated with. This
equation has shown to be accurate in calculating the
slowdown of XOM type architectures when compared to
experimental results. Using this formula, the effect of
encryption latency can be shown for each of the separate
parameters. .

 (1)

Figure 2: Graph of frequency vs. encryption latency

 The Graph in shows how the latency of the encryption
algorithm used affects the hardware performance over a
range of clock frequencies. The graph assumes that the
unmodified machine is stalled 20% of the time on off-chip
memory accesses, and the memory latency is 100 clock
cycles. This implies that the cache used stays the same and
the memory speed is scaled with the processor speed. This
graph can be used to help determine how much latency in
the encryption algorithm can be tolerated while still
achieving a given performance goal. At 1MHz the speedup
for the selected encryption latencies of 10ns, 100ns, 1µs,
10µs, and 100µs are 99.80%, 99.80%, 99.60%, 97.85%,
and 82.92% respectively. At this speed all encryption
latencies of 10µs and below show excellent performance,
with 100µs showing passable performance numbers. At
100MHz the speedup for the encryption latencies are
99.80%, 98.04%, 83.33%, 33.33%, and 4.76% respectively.
The performance penalty for 100ns encryption latency or

less is excellent, with 1µs encryption latency providing
passable results. However, encryption latencies of 10µs
and above are unfit for use at the given clock speed.
 The graph in shows the effect of encryption latency on
memory-bound processes. The performance degradation
increases as the process becomes more memory-bound,
causing memory-intensive programs to suffer. The
percentage of time stalled for a memory fetch is determined
by the overall on-chip cache miss rate, and the memory
latency. The graph shows how the number of cache misses
per instruction effect the performance of a 100MHz
processor with a memory latency of 100 cycles. The miss
rate of a cache is determined by the cache design and the
memory access profile of the running program. The
performance penalty increases dramatically with cache
misses for encryption latencies that are inappropriate for a
given clock frequency.

Figure 3: Graph of performance vs. cache misses

 For a program exhibiting a 1% cache miss rate the
performance for the selected encryption latencies of 10ns,
100ns, 1µs, 10µs, and 100µs are 99.50%, 95.24%, 66.67%,
16.67%, and 1.96% respectively. The performance values
for a program with a .1% miss rate are 99.91%, 99.10%,
91.67%, 52.38%, and 9.91% respectively. For this
example, encryption latencies in the range of 1µs to 100µs
show a large performance difference depending on the
cache miss rate. This is an undesirable effect, and
encryption latencies should be chosen that reduce this
effect.
 This graph also shows that reducing the encryption
latency in most usage scenarios has more effect than
increasing cache performance. The 10ns encryption
latency shows a worst-case performance around 99.00% for
all programs. The 100ns encryption shows a worst-case
performance of around 90%. To achieve the same
performance as the 10ns encryption, the 100ns encryption
cache design would have to have a miss rate per instruction

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

4

of less than .1% for all programs. This is not a feasible
goal for many programs. Cache improvements often
require drastic increases in both chip area and power usage,
competing for already limited resources.

4. Latency Aware Simple Encryption (LASE)

 The general encryption hardware that we have designed
is based on look-up tables (LUT) similar to those found on
a Field Programmable Gate Array (FPGA). shows the
simple encryption hardware using a 128-bit message size.
The first step is to split the message into 4 equal parts, in
this case 32 bits. The 4 sub messages are then sent through
a series of rounds consisting of a mixing stage and a rotate
stage. The last round does not require a rotate stage. The
mix stage performs a bitwise mix of the four inputs using a
4x4 LUT.
 The Rotate stages rotate each of the 4 sub-messages by a
different amount based on a constant multiple for the round.
The multiple follows a pattern that is initially dependent on
the round. In the initial rounds the multiple equals 4round-1.
After log4(message_bit_length)-1 rotations, each input has
the possibility of affecting every output. If the sub-
message bit length is an odd power of 2, the last rotation
stage rotates by (4round-1)/2 bits. This is done to prevent two
of the LUT outputs becoming inputs to the same LUT in
the next round. The rotation pattern repeats if more rounds
are desired.

Figure 4: Example design of 128-bit LASE

4.1 Implementation of LASE

 The encryption design was implemented and simulated
using Xilinx design tools to determine its encryption latency,
and power usage. A circuit was also designed to determine
the number of gates it would require to implement the
encryption algorithm on custom hardware. For the 128-bit
block size, the encryption latency found when designing
for a Spartan 3e FPGA using a 90nm process is less than
7ns. Varying the percentage of bit flips per cycle, the
power was estimated to be between 50-150mW. The total
area cost is 512 4-bit LUTs. The circuit that was also
designed based on LUTs required 19,456 gates to
implement. The encryption algorithm also requiring a total
of 8192 bits of data to program the LUTs it uses.
 A 32-bit block size was also simulated and found to have
an encryption latency of approximately 5ns, power between
10-30mW, and a total of ninety six 4-bit LUTs. The 32-bit
version consists of 3 mix rounds with four 8-bit sub-
messages, and requires twenty four 4x4 LUTs. This
requires 1536 bits of data to implement, and a hardware
implementation of this 32-bit version would require 3,648
gates.

5. Comparison and Performance Evaluation

 The major factors considered in designing embedded
systems are cost, computational power, energy efficiency,
and real time performance. The choice of encryption
algorithm used by a XOM-type architecture directly affects
all of these design constraints. The latency of the
encryption directly affects the computational power and
real time performance of the system. Its energy usage adds
directly into the energy efficiency of the embedded system,
and the encryption algorithms implementation size and
complexity directly relates to its cost. In this section, we
compare our encryption algorithm with published
implementations of the AES algorithm, with respect to the
silicon area used by the implementation, the latency, and
the power usage.
 Most AES implementations [10, 11, 12] focus on
throughput and the implementation size of the hardware
design over latency. Often, the latency can be calculated
from the information given in the paper. To give an
estimate of the power usage, we break the power into two
categories: static power and dynamic power. The static
power is estimated by the total number of gates used to
implement the design. Given the same engineering process,
the number of gates can be a good estimate of the relative
static power usage between two designs. To estimate the
total dynamic power per encryption operation, we calculate
the total number of active gates per encryption. We

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

5

estimate that the number of active gates for each encryption
cycle is 12.5% of the total gates. This was multiplied by
the total number of cycles needed for each encryption.
Table 1 summarizes the results.
 The different implementations in the table use different
feature sizes. The only parameter we compare that will
change with scaling technology is that of latency. The
comparison of our 90nm FPGA implementation should
show comparable latency to that of a .11µm
implementation, due to the reduced routing delays in a
custom implementation over a FPGA. The other
technologies in question will have lower latencies if scaled
down to a .11µm process. However, the clock speed
increase should not reduce the latency to a value close to
our implementation.

Table 1: Comparison of AES and LASE
 Max Estimated
clock Area Freq. Throughput latency active gates
cycles (gates) (MHz) (Mbps) (ns) /Encryption

0.11μm [10]
54 5,398 131.24 311.09 412 36,437
54 10,338 222.22 526.74 243 69,782
44 6,292 137.55 400.15 320 34,606
44 10,990 219.30 637.96 201 60,445
32 7,998 137.17 548.68 234 31,992
32 14,777 218.82 875.28 187 59,108
22 8,836 137.17 798.08 161 24,299
22 17,016 217.86 1,267.55 101 46,794
11 12,454 145.35 1,691.35 76 17,124
11 21,337 224.22 2,609.11 50 29,338

0.35μm [11]

1
612,83

4 15.23 1,950.03 66 76,604
0.6μm [12]

92 8,541 50.00 70.00 1840 98,222
65 11,205 50.00 98.00 1300 91,041
35 15,850 50.00 183.00 700 69,344

90nm FPGA
1 19,456 142.86 18,285.71 7 2,432

1* 38,912 142.86 18,285.71 7 4,864

 When comparing LASE to the implementations of AES
the biggest difference is in the latency and the active power
requirement. The best implementation of AES has a
latency of 7X more than LASE, and about 6X more active
gates per encryption. With our encryption algorithm, both
encryption and decryption can be done in parallel and still
have less than 1/3 the number of active gates compared
with any other implementation. The number of gates for
our algorithm is large compared to the listed
implementations of AES. This is not as big a problem
because the design of the algorithm reduces the complexity
of the circuit layout. The design also lends itself well to
static-power-reducing hardware designs. In the worst case
it is less than 8X the number of gates of any AES
implementation, and compared to the fastest AES
implementation it is less than 2X the number of gates.

 The last thing that needs to be compared is security.
AES has a long history of study, and as of yet for the 128-
bit key size there have been no significant security breaks.
This provides a lot of confidence in the AES algorithm.
The encryption algorithm we describe has not gone through
the rigorous scrutiny that the AES algorithm has endured.
The 8192 bits of data used to program the LUTs can
produce O(16!128) = O(26144) unique permutations. The
extremely large number of permutations our algorithm
produces does have the advantage that even an attack that
reduces the search space 16 orders of magnitude from its
theoretical maximum still is more computationally
intensive than breaking the AES algorithm.

6. LASE Design Discussion

 The LASE design described in this paper give a general
framework for the development of Low latency encryption
hardware. LASE is a general substitution permutation
network that is designed to be extensible and able to be
tailored to the specific needs of the real-time embedded
system. The block size and the number of rounds are not
fixed for LASE. This allows system designers to tailor
LASE to their specific requirements by exploiting trade-
offs in power, size, latency, and security. Guidelines for
increasing the effectiveness of LASE should be established
(e.g. number_of_rounds > log4(message_bit_length)).
 The substitution permutation network used for LASE is
incomplete without a key schedule for converting a secret
key into the data needed to program the LUTs. Key
schedules also can be developed to tailor the encryption to
the specific needs of the system. Key schedules can be
developed to address many specific issues including the
following; tailor key length to security requirement, reduce
the time of Key updates, reduce the difficulty and increase
performance of software implementations, and reduce the
possibility of weak keys.
 The LASE hardware is designed to reveal the minimal
amount of information about the key schedule used to
program its LUTs as possible. Simple extensions to the
general LASE hardware can be created that trades of some
of LASEs general design to further customize the hardware
to a given environment. Modification to the hardware to
reduce the effective key size while maintaining as much of
LASEs general nature and large permutation space is a
work in progress. Extensions that allow encryption and
decryption to be performed on the same hardware, as well
as designs to reduce the number of LUTs used in designs
with a large number of rounds are also being explored.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

6

7. Conclusion

 In this work we have shown the direct effect of
encryption latency on performance for XOM-type
architectures. We have also shown that increasing cache
sizes to combat the added encryption latency is less
practical a solution than reducing encryption latency. The
encryption algorithm we have developed shows a very low
latency compared to AES while occupying about the same
silicon area as higher performing AES implementations.
The lack of power usage data for low latency AES
encryption algorithms has made it difficult to compare, so
we estimate the power usage for both AES and our method.
Our estimates, based on active gates per encryption, show
our method has a large advantage in dynamic power usage.
Detailed security analysis of our encryption design is still a
work in progress. The development of key schedules for
reducing weak keys and providing tighter bounds on
security measures is also left for future research.

References
[1] Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell,

J., and Horowitz, M. Architectural Support for Copy and Tamper
Resistant Software. SIGPLAN No. 35, 11 (Nov. 2000), 168-177.

[2] Suh, G. E., Clarke, D., Gassend, B., van Dijk, M., and Devadas, S.
2003. AEGIS: Architecture for Tamper-evident and Tamper-resistant
Processing. In Proceedings of the 17th Annual international
Conference on Supercomputing (San Francisco, CA, USA, June 23 -
26, 2003). ICS '03. ACM, New York, NY, 160-171.

[3] Yan, C.; Englender; D., Prvulovic, M.; Rogers, B.; Solihin, Y.
"Improving Cost, Performance, and Security of Memory Encryption
and Authentication," 33rd International Symposium on Computer
Architecture, pp. 179-190, 2006

[4] Lu, C., Zhang, T., Shi, W., and Lee, H. S. 2006. M-TREE: A High
Efficiency Security Architecture for Protecting Integrity and Privacy
of Software. Journal of Parallel and Distributed Computing 66, vol
66, Issue 9 (Sep. 2006), 1116-1128.

[5] Suh, G. E., Clarke, D., Gassend, B., van Dijk, M, and Devadas, S.
Efficient Memory Integrity Verification and Encryption for Secure
Processors. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture (December 03 - 05,
2003). IEEE Computer Society, Washington, DC, 339.

[6] Zhuang, X., Zhang, T., and Pande, S. HIDE: An Infrastructure for
Efficiently Protecting Information Leakage on the Address Bus.
Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating systems, Boston,
MA, 2004 pp. 72-84.

[7] Gao, L., Yang, J., Chrobak, M., Zhang, Y., Nguyen, S., and Lee, H. S.
A Low-cost Memory Remapping Scheme for Address Bus Protection.
In Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques (Seattle, Washington,
USA, September 16 - 20, 2006). PACT '06. ACM, New York, NY,
74-83.

[8] Yang, J., Zhang, Y., and Gao, L. Fast Secure Processor for Inhibiting
Software Piracy and Tampering. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture
(December 03 - 05, 2003). IEEE Computer Society, Washington, DC,
351.

[9] Shi, W., Lee, H. S., Lu, C., and Zhang, T. Attacks and Risk Analysis
for Hardware supported Software Copy Protection Systems. In
Proceedings of the 4th ACM Workshop on Digital Rights
Management (Washington DC, USA, October 25 - 25, 2004). J.

Feigenbaum, T. Sander, and M. Yung, Eds. DRM '04. ACM, New
York, NY, pp. 54-62.

[10] Satoh, A., Morioka, S., Takano, K. and Seiji Munetoh. A Compact
Rijndael Hardware Architecture with S-Box Optimization. In
Proceedings of the 7th International Conference on the Theory and
Application of Cryptology and Information Security: Advances in
Cryptology, pp. 239-254

[11] Ichikawa, T., Kasuya, T., and Matsui, M. Hardware Evaluation of the
AES Finalists. In Proceedings Third Advanced Encryption Standard
Candidate Conference, pp. 279–285. NIST, April 2000.

[12] Dobbertin, H., Rijmen, V., Sowa A. (Eds.) Efficient AES
Implementations on ASICs and FPGAs. AES 2004, LNCS 3373, pp.
98–112, 2005. Springer-Verlag Berlin Heidelberg 2005

Kerry Courtright is a Ph.D. candidate in
Computer Science and Engineering at the
University at Buffalo. He graduated with
a BS and MS in Computer Science and
Engineering from the same University in
2002. His research interests are in Secure
Architectures, Embedded Systems,High-
Performance Architectures, Pervasive
Computing, and Programming languages.

Mohammad Iftekhar Husain is currently
in the University at Buffalo, The State
University of New York Computer
Science and Engineering doctoral program
(Ph.D. expected 2011). He graduated with
an MS in Computer Science and
Engineering from the same school in 2008
and a BS in Computer Science from

Yamagata University in Japan in 2006. His broad research
interests are in the field of Wireless Network and Cloud
Computing Security.

Ramalingam Sridhar received a B.E.
(Honors) degree in Electrical and
Electronics Engineering from Guindy
Engineering College, University of
Madras in 1980, MS and PhD in Electrical
and Computer Engineering from
Washington State University in 1983 and
1987 respectively. He is currently an
Associate Professor in the Department of
Computer Science and Engineering at
University at Buffalo, The State

University of New York. His research interests are in Wireless
and sensor network security, pervasive and RFID systems, secure
architectures, embedded technologies, deep submicron VLSI
systems, Clocking and Synchronization, and memory circuits &
architecture. He was an IEEE CAS Distinguished Lecturer. He
has served as Program Chair and General Chair of ASIC/SoC
Conference and has served in the editorial boards of many
journals and technical committee of numerous conferences in
wireless and embedded systems, security and VLSI.

