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Summary 
Security in the area of embedded systems has been drawing 
enormous attention lately.  Although recent advances in hardware-
based security models have shown promise for faster and more 
reliable security solutions, particular characteristics of embedded 
systems, such as computation and energy constraints, pose a 
unique challenge for the security researchers in this domain.  
Among hardware-based security models for traditional 
architectures, the Execute Only Memory (XOM) has used many 
different block ciphers to provide confidentiality as a part of the 
security module.  However, implementations of many of these 
block ciphers in hardware do not meet the computation and 
energy constraints of embedded systems.  In this paper, we 
propose to use a simple instruction encryption mechanism for 
embedded systems security based on the XOM model.  As FPGAs 
provide reliable low-cost and high-performance implementations 
of cryptographic primitives, we implement our encryption 
algorithm on FPGA and compare with existing AES 
implementations for XOM-based models. The comparison has 
shown significant improvement on performance and power usage 
with a moderate level of security and hardware resources. 
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1. Introduction 

 The pervasiveness of embedded systems has increased 
dramatically over the last decade.  Embedded processors 
can be found in all kinds of applications, such as smart 
appliances, cell phones, GPS, navigation systems, cars, 
PDAs, personal media players, hand held games, and many 
more.  The advancement of technology has allowed 
embedded systems to accomplish difficult and interesting 
tasks such as dealing with sensitive data and performing 
safety-critical tasks.  These factors have heightened the 
need for increased security and dependability in the 
embedded systems domain. 
 Providing security for an embedded system is a difficult 
problem because of the usage environment, and the 
associated system constraints.  The major factors in the 
design of embedded systems are cost, computational power, 

energy efficiency and real-time performance. The inclusion 
of extra security hardware increases a system’s cost, as well 
as its power usage, and often directly affects the 
performance parameters of the system.  Including security 
as a design requirement increases the difficulty of 
designing the system as a whole, due to an increase in 
competition for scarce resources.  This difficulty is 
compounded by the fact that constrained environments do 
not enter into the design considerations of most security 
hardware and algorithms.   
 There has been a significant amount of research in the 
area of hardware-based security models for traditional 
computer architectures.  The Execute Only Memory 
(XOM) model [1] and the AEGIS [2] architectures are at 
the forefront of such approaches and have been studied in 
depth.  These secure architectures are designed to provide 
high levels of security, implementing such concepts as 
process separation, trusted computing, intellectual property 
protection, program and data integrity, and secure 
distributed computing.  Implementations of these 
architectures often rely on symmetric encryption such as 
Advanced Encryption Standard (AES) for the encryption 
and integrity checking of memory operations. 
 However, existing encryption algorithms including AES 
are designed for traditional computer platforms, primarily 
focusing on providing the highest level of security for a 
given key size and encryption throughput.  Issues relating 
to encryption latency, energy consumption, and real-time 
performance are treated secondary to these other security 
goals.  In secure architectures, encryption often lies on the 
critical path, making encryption latency an important 
design consideration for maximizing computational and 
real-time performance.  For embedded systems, energy 
consumption is also an important design consideration.  
These factors make many traditional encryption algorithms 
inappropriate for inclusion in secure architectures for the 
embedded systems domain.   
 In this paper we study the effect of encryption latency on 
performance for secure architectures that use memory 
encryption similar to the XOM model.  We then propose a 
hardware-based simple encryption method that considers 
the constraints of embedded systems, for use with existing 
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secure architectures such as XOM.  Our encryption method 
is designed with FPGA implementation in mind, with its 
main operations performed by look up tables (LUTs) like 
those found in many FPGAs.  We then compare our 
proposed encryption with implementations of the AES with 
respect to encryption latency, power usage, and 
implementation size.  From this data we evaluate our 
algorithm as a possible replacement for AES in embedded 
secure architectures.  This work will give embedded system 
designers insight into methods of better developing secure 
systems that fit in the constrained embedded systems 
domain. 
 In the next section we introduce current work in the area 
of secure architectures.  Section 3 shows the effect of 
encryption latency on the overall performance of the 
architecture.  It also shows the effect of cache performance 
compared to encryption latency.  In Section 4, we introduce 
our encryption design and provide implementation details.  
Then in section 5, we compare the results of our encryption 
to other implementations of the AES algorithm.  We then 
finish with our conclusions in Section 6. 

2. Related Work 

 The XOM model is the most widely used model for 
developing secure architectures.  The XOM model states 
that no program, not even the operating system, can be 
trusted for security [1].  When the operating system can’t 
be trusted, the hardware must provide the trust for the 
system.  In the XOM model the hardware is responsible for 
complete process separation.  No process should be 
allowed to read or modify any of the private data or 
instructions of another process.  The XOM model not only 
protects against other processes reading or modifying data, 
but also from hardware attacks to off-chip memory.  XOM 
achieves this through encryption of the programs and data 
of each process.  This creates a processor that greatly 
reduces the amount of information that is leaked about the 
programs and data that it processes. 
 AEGIS [2] is another secure architecture that follows 
along the same lines as XOM.  AEGIS helped define the 
programming model of secure systems and explored the 
concept of how much trust can be put into software.  XOM 
puts all the trust into the hardware, while AEGIS saves 
some hardware resources by having a small security kernel 
provide some of the security in software.  AEGIS also 
exposed vulnerability in XOM’s original memory integrity 
checking scheme [2].  Several other researchers [3, 4, 5] 
have worked on the improvement of the performance and 
quality of memory integrity checking for XOM type 
architectures.  Both architectures provide methods to 
encrypt compiled code for a processor and to execute the 

encrypted code while protecting it from reverse engineering, 
tampering, and some additional attacks  
 The XOM and AEGIS models assume that the processor 
and all the signals and memory on it are secure from 
reading and modification.  However, signals leaving the 
chip are vulnerable to attack.  Because of this assumption, 
all the data and instructions that come onto or leave the 
chip boundary are encrypted.  XOM originally used DES to 
encrypt memory transactions while AEGIS uses AES for 
memory encryption.  Many XOM-type architectures now 
use AES or other well-known block ciphers.  In both the 
XOM and AEGIS security model, data is encrypted when it 
leaves the physical boundary of the chip between the cache 
and the main memory.  The data and instructions are 
decrypted when they are fetched from main memory and 
brought into the cache shows the general memory hierarchy 
for XOM and AEGIS systems.  The addition of encryption 
to the memory hierarchy increases the latency of memory 
accesses and reduces the overall performance of the 
processor.  AES encryption latency on the memory bus can 
cause an unacceptable performance reduction of 15%-20% 
or more for many programs [2]. 

Figure 1: AEGIS & XOM Memory hierarchy 

 Zhuang et al [6] shows that information leaked on the 
address bus can be used to reverse engineer the running 
program.  Zhuang et al [6] and Gao et al [7] address this 
problem through permuting the address bus, thus reducing 
the statistical correlation between memory accesses and the 
running program.  Suh et al [5] and Yang et al [8] reduce 
the performance penalty imposed by long encryption times 
by taking the high latency of AES off of the critical path of 
the memory accesses.  This is achieved by using a one-time 
pad encryption which is XOR-ed with the data.  Lazy 
integrity checking was also used to reduce the performance 
degradation caused by their integrity checkers.  Shi et al [9] 
shows that the onetime pad (OTP) encryption method 
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combined with lazy integrity checking can lead to the 
introduction of security vulnerabilities. 

3. Latency and Performance 

 In [1] Lie et al shows the slowdown of a processor based 
on the XOM type architecture can be calculated with. This 
equation has shown to be accurate in calculating the 
slowdown of XOM type architectures when compared to 
experimental results.  Using this formula, the effect of 
encryption latency can be shown for each of the separate 
parameters.  . 

 (1) 

Figure 2: Graph of frequency vs. encryption latency 

 The Graph in shows how the latency of the encryption 
algorithm used affects the hardware performance over a 
range of clock frequencies.  The graph assumes that the 
unmodified machine is stalled 20% of the time on off-chip 
memory accesses, and the memory latency is 100 clock 
cycles.  This implies that the cache used stays the same and 
the memory speed is scaled with the processor speed.  This 
graph can be used to help determine how much latency in 
the encryption algorithm can be tolerated while still 
achieving a given performance goal.  At 1MHz the speedup 
for the selected encryption latencies of 10ns, 100ns, 1µs, 
10µs, and 100µs are 99.80%, 99.80%, 99.60%, 97.85%, 
and 82.92% respectively.  At this speed all encryption 
latencies of 10µs and below show excellent performance, 
with 100µs showing passable performance numbers.  At 
100MHz the speedup for the encryption latencies are 
99.80%, 98.04%, 83.33%, 33.33%, and 4.76% respectively.  
The performance penalty for 100ns encryption latency or 

less is excellent, with 1µs encryption latency providing 
passable results.  However, encryption latencies of 10µs 
and above are unfit for use at the given clock speed. 
 The graph in shows the effect of encryption latency on 
memory-bound processes.  The performance degradation 
increases as the process becomes more memory-bound, 
causing memory-intensive programs to suffer.  The 
percentage of time stalled for a memory fetch is determined 
by the overall on-chip cache miss rate, and the memory 
latency.  The graph shows how the number of cache misses 
per instruction effect the performance of a 100MHz 
processor with a memory latency of 100 cycles.  The miss 
rate of a cache is determined by the cache design and the 
memory access profile of the running program.  The 
performance penalty increases dramatically with cache 
misses for encryption latencies that are inappropriate for a 
given clock frequency. 

Figure 3: Graph of performance vs. cache misses 

 For a program exhibiting a 1% cache miss rate the 
performance for the selected encryption latencies of 10ns, 
100ns, 1µs, 10µs, and 100µs are 99.50%, 95.24%, 66.67%, 
16.67%, and 1.96% respectively.  The performance values 
for a program with a .1% miss rate are 99.91%, 99.10%, 
91.67%, 52.38%, and 9.91% respectively.  For this 
example, encryption latencies in the range of 1µs to 100µs 
show a large performance difference depending on the 
cache miss rate.  This is an undesirable effect, and 
encryption latencies should be chosen that reduce this 
effect. 
 This graph also shows that reducing the encryption 
latency in most usage scenarios has more effect than 
increasing cache performance.  The 10ns encryption 
latency shows a worst-case performance around 99.00% for 
all programs.  The 100ns encryption shows a worst-case 
performance of around 90%.  To achieve the same 
performance as the 10ns encryption, the 100ns encryption 
cache design would have to have a miss rate per instruction 
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of less than .1% for all programs.  This is not a feasible 
goal for many programs.  Cache improvements often 
require drastic increases in both chip area and power usage, 
competing for already limited resources. 

4. Latency Aware Simple Encryption (LASE) 

 The general encryption hardware that we have designed 
is based on look-up tables (LUT) similar to those found on 
a Field Programmable Gate Array (FPGA). shows the 
simple encryption hardware using a 128-bit message size.  
The first step is to split the message into 4 equal parts, in 
this case 32 bits.  The 4 sub messages are then sent through 
a series of rounds consisting of a mixing stage and a rotate 
stage.  The last round does not require a rotate stage.  The 
mix stage performs a bitwise mix of the four inputs using a 
4x4 LUT.   
 The Rotate stages rotate each of the 4 sub-messages by a 
different amount based on a constant multiple for the round.  
The multiple follows a pattern that is initially dependent on 
the round.  In the initial rounds the multiple equals 4round-1.  
After log4(message_bit_length)-1 rotations, each input has 
the possibility of affecting every output.  If the sub-
message bit length is an odd power of 2, the last rotation 
stage rotates by (4round-1)/2 bits.  This is done to prevent two 
of the LUT outputs becoming inputs to the same LUT in 
the next round.  The rotation pattern repeats if more rounds 
are desired. 

Figure 4: Example design of 128-bit LASE 

4.1 Implementation of LASE 

 The encryption design was implemented and simulated 
using Xilinx design tools to determine its encryption latency, 
and power usage.  A circuit was also designed to determine 
the number of gates it would require to implement the 
encryption algorithm on custom hardware.  For the 128-bit 
block size, the encryption latency found when designing 
for a Spartan 3e FPGA using a 90nm process is less than 
7ns.  Varying the percentage of bit flips per cycle, the 
power was estimated to be between 50-150mW.  The total 
area cost is 512 4-bit LUTs. The circuit that was also 
designed based on LUTs required 19,456 gates to 
implement.  The encryption algorithm also requiring a total 
of 8192 bits of data to program the LUTs it uses. 
 A 32-bit block size was also simulated and found to have 
an encryption latency of approximately 5ns, power between 
10-30mW, and a total of ninety six 4-bit LUTs. The 32-bit 
version consists of 3 mix rounds with four 8-bit sub-
messages, and requires twenty four 4x4 LUTs.  This 
requires 1536 bits of data to implement, and a hardware 
implementation of this 32-bit version would require 3,648 
gates. 

5. Comparison and Performance Evaluation 

 The major factors considered in designing embedded 
systems are cost, computational power, energy efficiency, 
and real time performance.  The choice of encryption 
algorithm used by a XOM-type architecture directly affects 
all of these design constraints.  The latency of the 
encryption directly affects the computational power and 
real time performance of the system.  Its energy usage adds 
directly into the energy efficiency of the embedded system, 
and the encryption algorithms implementation size and 
complexity directly relates to its cost.  In this section, we 
compare our encryption algorithm with published 
implementations of the AES algorithm, with respect to the 
silicon area used by the implementation, the latency, and 
the power usage.   
 Most AES implementations [10, 11, 12] focus on 
throughput and the implementation size of the hardware 
design over latency.  Often, the latency can be calculated 
from the information given in the paper.  To give an 
estimate of the power usage, we break the power into two 
categories: static power and dynamic power.  The static 
power is estimated by the total number of gates used to 
implement the design.  Given the same engineering process, 
the number of gates can be a good estimate of the relative 
static power usage between two designs.  To estimate the 
total dynamic power per encryption operation, we calculate 
the total number of active gates per encryption.  We 
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estimate that the number of active gates for each encryption 
cycle is 12.5% of the total gates.  This was multiplied by 
the total number of cycles needed for each encryption.  
Table 1 summarizes the results.   
 The different implementations in the table use different 
feature sizes.  The only parameter we compare that will 
change with scaling technology is that of latency.  The 
comparison of our 90nm FPGA implementation should 
show comparable latency to that of a .11µm 
implementation, due to the reduced routing delays in a 
custom implementation over a FPGA.  The other 
technologies in question will have lower latencies if scaled 
down to a .11µm process.  However, the clock speed 
increase should not reduce the latency to a value close to 
our implementation. 

Table 1: Comparison of AES and LASE 
  Max     Estimated 
clock Area Freq. Throughput latency active gates
cycles  (gates) (MHz) (Mbps) (ns) /Encryption

0.11μm [10] 
54 5,398 131.24 311.09 412 36,437 
54 10,338 222.22 526.74 243 69,782 
44 6,292 137.55 400.15 320 34,606 
44 10,990 219.30 637.96 201 60,445 
32 7,998 137.17 548.68 234 31,992 
32 14,777 218.82 875.28 187 59,108 
22 8,836 137.17 798.08 161 24,299 
22 17,016 217.86 1,267.55 101 46,794 
11 12,454 145.35 1,691.35 76 17,124 
11 21,337 224.22 2,609.11 50 29,338 

0.35μm [11] 

1 
612,83

4 15.23 1,950.03 66 76,604 
0.6μm [12] 

92 8,541 50.00 70.00 1840 98,222 
65 11,205 50.00 98.00 1300 91,041 
35 15,850 50.00 183.00 700 69,344 

90nm FPGA 
1 19,456 142.86 18,285.71 7 2,432 

1* 38,912 142.86 18,285.71 7 4,864 
 
 When comparing LASE to the implementations of AES 
the biggest difference is in the latency and the active power 
requirement.  The best implementation of AES has a 
latency of 7X more than LASE, and about 6X more active 
gates per encryption.  With our encryption algorithm, both 
encryption and decryption can be done in parallel and still 
have less than 1/3 the number of active gates compared 
with any other implementation.  The number of gates for 
our algorithm is large compared to the listed 
implementations of AES.  This is not as big a problem 
because the design of the algorithm reduces the complexity 
of the circuit layout.  The design also lends itself well to 
static-power-reducing hardware designs.  In the worst case 
it is less than 8X the number of gates of any AES 
implementation, and compared to the fastest AES 
implementation it is less than 2X the number of gates. 

 The last thing that needs to be compared is security.  
AES has a long history of study, and as of yet for the 128-
bit key size there have been no significant security breaks.  
This provides a lot of confidence in the AES algorithm.  
The encryption algorithm we describe has not gone through 
the rigorous scrutiny that the AES algorithm has endured.  
The 8192 bits of data used to program the LUTs can 
produce O(16!128) = O(26144) unique permutations.  The 
extremely large number of permutations our algorithm 
produces does have the advantage that even an attack that 
reduces the search space 16 orders of magnitude from its 
theoretical maximum still is more computationally 
intensive than breaking the AES algorithm. 

6. LASE Design Discussion 

 The LASE design described in this paper give a general 
framework for the development of Low latency encryption 
hardware.  LASE is a general substitution permutation 
network that is designed to be extensible and able to be 
tailored to the specific needs of the real-time embedded 
system.  The block size and the number of rounds are not 
fixed for LASE.  This allows system designers to tailor 
LASE to their specific requirements by exploiting trade-
offs in power, size, latency, and security.  Guidelines for 
increasing the effectiveness of LASE should be established 
(e.g. number_of_rounds > log4(message_bit_length)). 
 The substitution permutation network used for LASE is 
incomplete without a key schedule for converting a secret 
key into the data needed to program the LUTs.  Key 
schedules also can be developed to tailor the encryption to 
the specific needs of the system.  Key schedules can be 
developed to address many specific issues including the 
following; tailor key length to security requirement, reduce 
the time of Key updates, reduce the difficulty and increase 
performance of software implementations, and reduce the 
possibility of weak keys. 
 The LASE hardware is designed to reveal the minimal 
amount of information about the key schedule used to 
program its LUTs as possible.  Simple extensions to the 
general LASE hardware can be created that trades of some 
of LASEs general design to further customize the hardware 
to a given environment.  Modification to the hardware to 
reduce the effective key size while maintaining as much of 
LASEs general nature and large permutation space is a 
work in progress.  Extensions that allow encryption and 
decryption to be performed on the same hardware, as well 
as designs to reduce the number of LUTs used in designs 
with a large number of rounds are also being explored.   
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7. Conclusion 

 In this work we have shown the direct effect of 
encryption latency on performance for XOM-type 
architectures.  We have also shown that increasing cache 
sizes to combat the added encryption latency is less 
practical a solution than reducing encryption latency.  The 
encryption algorithm we have developed shows a very low 
latency compared to AES while occupying about the same 
silicon area as higher performing AES implementations.  
The lack of power usage data for low latency AES 
encryption algorithms has made it difficult to compare, so 
we estimate the power usage for both AES and our method.  
Our estimates, based on active gates per encryption, show 
our method has a large advantage in dynamic power usage.  
Detailed security analysis of our encryption design is still a 
work in progress.  The development of key schedules for 
reducing weak keys and providing tighter bounds on 
security measures is also left for future research. 
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