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Summary 
 
In this paper a novel liveness checking technique is proposed for 
multimodal biometric authentication systems based on face and 
voice biometrics. Liveness detection ensures that biometric cues 
are acquired from a live person who is actually present at the 
time of capture for authenticating the identity. The proposed 
liveness checking technique based on corellation modelling that 
involves fusion of acoustic and visual speech features which 
measure the degree of synchrony between the lips and the voice 
extracted from speaking face video sequences.  
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1. Introduction 

Most of the commercial biometric security systems 
currently deployed are based on modeling the identity of a 
person based on unimodal biometric information, i.e. face, 
voice, or fingerprint features. Also, many current 
interactive civilian human computer interaction 
applications are based on speech based voice features, 
which achieve significantly lower performance for 
operating environments with low signal-to-noise ratios 
(SNR). Use of both visual and audio information can lead 
to better robustness, as they can provide complementary 
secondary clues that can help in the analysis of the 
primary biometric signals [1]. In extreme cases, primary 
biometric (visual or acoustic) information can even be 
used on its own. For instance, it is well known that deaf 
people can learn how to lip read. The joint analysis of 
acoustic and visual speech improves the robustness of 
automatic speech recognition systems [2, 3]. 

There have been several systems proposed on use of 
joint face-voice information for improving the 
performance of identity authentication systems. However, 
most of these state-of-the-art approaches are based on 
independently processing the voice and face information 
and then fusing the scores – score fusion [4,5,6].  A   
major weakness of these systems is that they do not take 
into account fraudulent replay attack scenarios into 
consideration, leaving them vulnerable to  spoofing  by 
recording the voice of the target in advance and replaying 

it in front of the microphone, or simply placing a still 
picture of the target’s face in front of the camera. This 
problem can be addressed with liveness checking, which 
ensures that biometric cues are acquired from a live person 
who is actually present at the time of capture for 
authenticating the identity. With the diffusion of Intenet 
based authentication systems for day-to-day civilian 
scenarios at a astronomical pace [7], it is high time to 
think about the vulnerability of traditional biometric 
authentication approaches and consider inclusion of 
liveness checks. Though there is some work in finger print 
based liveness detection techniques [8,9], there is hardly 
any work in liveness checks  based on user-friendly 
biometric identifiers (face and voice), which enjoy more 
acceptability for civilian access control scenarios.  

A significant progress however, has been made in 
independent processing of face only or voice only based 
authentication approaches [1,2,3,4,5,6], without taking 
into consideration an inherent coupling that exists between 
jointly occurring some primary biometric identifiers. Some 
preliminary approaches (such as the one described in [7, 8] 
address liveness checking problem by jointly modeling the 
acoustic and visual speech features for testing liveness. 
They involve the fusion of acoustic, appearance and shape 
based lip features for jointly modeling the co-occurring 
face-voice dynamics in speaking face video sequences.  

In this paper we propose correlation models for joint 
analysis of acoustic and visual speech features for 
incorporating liveness information in the authentication 
approach. The rest of the paper is organized as follows. 
Section 2 describes the motivation for using correlation 
models, and the proposed liveness check approach is 
described in Section 3. Section 4 details the data corpora 
used and the experimental evaluation of the proposed 
correlation models and subsequent fusion approach, with 
Section 5 summarizing the conclusions drawn from this 
work and plans for further research 

2. Correlation modeling 

The motivation to use correlation models is based on 
the following two observations: The first observation is in 
relation to any video event, for example a speaking face 
video, where the content usually consists of the co-
occurring audio and the visual elements. Both the elements 
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carry their contribution to the highest level semantics, and 
the presence of one has usually a “priming” effect on the 
other: when hearing a dog barking we expect the image of 
a dog, seeing a talking face we expect the presence of her 
voice, images of a waterfall usually bring the sound of 
running water etc. A series of psychological experiments 
on the mutually dependent cross-modal influences [9, 10] 
have proved the importance of synergistic fusion of the 
multiple modalities in the human perception system. A 
typical example of this kind is the well-known McGurk 
effect [9]. Several independent studies by cognitive 
psychologists suggest that the type of multi-sensory 
interaction between acoustic and orafacial articulators 
occurring in the McGurk effect involves both the early and 
late stages of integration processing [9,10]. It is likely that 
a human brain uses a hybrid form of fusion that depends 
on the availability and quality of different sensory cues.   

Yet, in audiovisual speech and speaker verification 
systems, the analysis is usually performed separately on 
different modalities, and the results are brought together 
using different fusion methods. However, in this process 
of separation of modalities, we lose valuable cross-modal 
information about the whole event or the object we are 
trying to analyze and detect. There is an inherent 
association between the two modalities and the analysis 
should take advantage of the synchronised appearance of 
the relationship between the audio and the visual signal. 
The second observation relates to different types of fusion 
techniques used for joint processing of audiovisual speech 
signals. The late-fusion strategy, which comprises decision 
or the score fusion, is effective especially in case the 
contributing modalities are uncorrelated and thus the 
resulting partial decisions are statistically independent. 
Feature level fusion techniques, on the other hand, can be 
favoured (only) if a couple of modalities are highly 
correlated.  

However, jointly occurring face and voice dynamics 
in speaking face video sequences, is neither highly 
correlated (mutually dependent) nor loosely correlated nor 
totally independent (mutually independent). A complex 
and nonlinear spatiotemporal coupling consisting of highly 
coupled, loosely coupled and mutually independent 
components may exist between co-occurring acoustic and 
visual speech signals in speaking face video sequences [11, 
12].  The compelling and extensive findings by authors in 
[11] validate such complex relationship between external 
face movements, tongue movements, and speech acoustics 
when tested for consonant vowel (CV) syllables and 
sentences spoken by male and female talkers with 
different visual intelligibility ratings. They proved that the 
there is a higher correlation between speech and lip 
motion for C/a/ syllables than for C/i/ and C/u/ syllables. 
Further, the degree of correlation differs across different 
places of articulation, where lingual places have higher 

correlation than bilabial and glottal places. Also, mutual 
coupling can vary from talker to talker; depending on the 
gender of the talker, vowel context, place of articulation, 
voicing, and manner of articulation and the size of the face. 
Their findings also suggest that male speakers show higher 
correlations than female speakers. Further, the authors in 
[12] also validate the complex, spatiotemporal and non-
linear nature of the coupling between the vocal-tract and 
the facial articulators during speech production, governed 
by human physiology and language-specific phonetics. 
They also state that most likely connection between the 
tongue and the face is indirectly by way of the jaw. Other 
than the biomechanical coupling, another source of 
coupling is the control strategy between the tongue and 
cheeks. For example, when the vocal tract is shortened the 
tongue does not get retracted.  

Due to such a complex nonlinear spatiotemporal 
coupling between speech and lip motion, this could form a 
good candidate for detecting liveness, and modelling the 
speaking faces by capturing this information can make the 
biometric authentication systems less vulnerable to spoof 
and fraudulent replay attacks, as it would be almost 
impossible to spoof a system which can accurately 
distinguish the artificially manufactured or synthesized 
speaking face video sequences from the live video 
sequences. We propose an approach based on correlation 
models and subsequent Bayesian fusion to address this 
problem. Next section briefly describes the proposed 
approach. 

3. Correlation Models 

Correlation modelling based on Canonical Correlation 
Analysis (CCA), as first proposed by Hotelling [13], is a 
method of determining a linear space where the 
correlations between two sets of variables are maximized. 
This approach has been successfully applied to sets of 
variables that are manifestations of a set of hidden 
variables, examples of this are fMRI and image 
retrieval[14]. There is an obviously similarity with audio-
visual speaking face modelling since the motions of 
articulators and the speech produced are fundamentally 
linked. However, CCA is derived as a linear process and 
this limitation becomes apparent in the cases where the 
underlying relationship is non-linear [15], such as the 
complex nonlinear spatiotemporal correlations between 
the speech and lip-motion in speaking face video 
sequences. To circumvent this linearity constriction, we 
have used a  “kernel trick”, which allows replacing an 
inner product by a projection of the data into a higher 
dimensional space, and performing CCA in this realized 
dual representation [15]. 
We perform a kernel Canonical Correlation Analysis 
(kCCA) on Mel Frequency Cepstral Coefficients (MFCC) 
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voice features and the lip motion features extracted from a 
biological inspired optical flow algorithm called Multi 
Channel Gradient Model (MCGM).  
The MCGM is a neurophysiological and psychophysical 
inspired unified motion algorithm [15].  In MGCM 
approach,  the behaviour of V1/V2 cells is modelled by 
MGCM functions and the ratio of temporal and spatial 
gradients is computed to establish local velocity estimates. 
From one sequence of lip region images it is possible to 
derive two sets of visual information from MCGM, 
initially a sequential series of frames are anlaysed by 
MCGM algorithm, calculating the relative motions 
between successive frames. Additionally, a current frame 
of data is processed against a fixed open mouth frame, 
calculating the absolute motions of the mouth. MCGM 
processing results in a matrices of equal size to the input 
frames, each containing speed and angular information for 
a given pixel. Applying (linear) Principal Component 
Analysis (PCA) produces a linear space onto which the 
motions can be mapped, reducing the dimensionality of 
the visual features. 
Mel-Frequency Cepstral Coefficients (MFCC) are 
classical acoustic speech features used in automatic speech 
processing [16]. They are state-of-the-art features in many 
applications, including automatic speech recognition and 
speaker verification systems. For obtaining a MFFC 
feature vector, the voice signal is transformed into the 
frequency domain via windowed Fast Fourier Transform 
and then mapped on to the Mel scale, a human perceptual 
scale of frequency [16]. A (logarithmically spaced) filter 
bank is constructed over this Mel frequency spectrum, and 
from this the logarithm of the power spectrum is 
determined. A discrete time cosine transform is performed 
over the power spectrum and the MFCCs are calculated. 
Most of the information about human voice from speech 
can be captured by retaining 10-12 most significant MFCC 
features, the  first-order time-derivatives(delta features), 
the pitch and the signal energy.  
To account for the lack of synchronization between speech 
features and lip motion features, rate interpolation can be 
done by up sampling the MCGM features to obtain the 
synchronized MCGM-MFCC features. Once the acoustic 
MFCC features and MCGM lip motion features are 
obtained, kCCA is implemented by first mapping them 
onto the kernel space using polynomial kernels and then 
performing CCA. Since, the kCCA involves, 
implementing CCA in a higher dimensional nonlinear 
space, it has the capability to capture and track the 
nonlinear correlations between different features. 
Parameter tuning for kCCA can be performed offline on 
an independent data set. 
For extracting the mutually independent components of 
the audio and visual signals, another powerful statistical 
technique called independent component analysis (ICA) is 

performed, which treats the observed variables as a 
mixture of independent sources. Two different approaches 
can be used for Independent Component Analysis, ICA1 
and ICA2 [17, 18]. In ICA1, the basis images are 
independent, whereas in ICA2 the mixing coefficients are 
independent. We utilize the ICA2 approach, where each 
pixel for lip images are considered as a mixture of 
independent coefficients. If X is a data matrix 
incorporating the measured variables, then it can be split 
as: X = AS where A is the mixing matrix and S contains 
the independent coefficients. The columns of A form a 
basis for the database and the columns of S provide ICA-
features for the corresponding lip images residing in the 
columns of the data matrix X. 
For each pixel, all x and  y coordinates of a lip image are 
concatenated to a single vector. Its dimensionality is then 
reduced by applying PCA to the training set of x-y co-
ordinate vectors. Each face is then represented by the first 
K PCA coefficients. The columns of the data matrix X for 
the ICA analysis are constituted of PCA coefficient 
vectors. Then, the Fast ICA algorithm described by [17, 
18] is applied to obtain the basis A and the independent 
coefficients S. Next section describes the subsequent 
fusion technique used to combine various features. 

4. Bayesian Audio-Visual Fusion 

First, we derive the algorithm for performing the Bayesian 
fusion for liveness checks using multiple features 
described in the previous Section. Let us denoted the 
projection of audio and lip features in each of the closely 
coupled (kCCA), and mutually independent (ICA) 
subspaces as kCCAf  and ICAf . We also include the 
projection of visual information in the PCA subspace as 
Eigenlip features PCAf   as the static spatial information in 
face images contains identity specific information. In 
Bayesian framework, the most generic way of performing 
the fusion is to compute the joint scores expressed as a 
weighted summation [19, 20]: 
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problem reduces to a problem of finding the optimal 
weight coefficients for the nonlinear highly correlated 
components, loosely coupled PCAf  components and 

mutually independent  ICAf  components. Though an 
adaptive fusion weight calculation would be ideally 
required, we selected the weights empirically and fused 
them using RWS (Reliability Weighted Summation) rule 
[19]. Since the statistical and the numerical range of these 
likelihood scores can vary from one modality to another, 
the likelihood scores were normalised within the (0, 1) 
interval before the RWS fusion process using a sigmoid 
and variance normalization as described in [20].  

4. Experimental Results 

Preliminary experimental results with an audio-visual 
speaking face video corpora VidTIMIT [21] and DaFEx 
[22,23] showed a significant improvement in  liveness 
checking performance due to the detailed modelling of 
speaker liveness based on multiple correlation features. 
Figure 1 shows some images from the two corpora. The 
details of the two corpora are given in [21] , [22] and [23]. 

In this section, different experiments conducted to 
evaluate the performance of the proposed correlation 
features, and the Bayesian fusion of the MFCC, lip 
features in different subspaces PCA, kCCA and ICA for 
liveness checking are described. The testing stage for the 
liveness checking scenario is different from the tradition 
biometric identity verification scenarios, where the replay 
attack test data emulating fraudulent attacks needs to be 
artificially synthesised. Two different types of replay 
attacks were tested, one static replay attacks used in and 
other dynamic replay attacks, where artificial speaking 
face sequences are synthesised from still photo, few key 
frames from the video sequences, lip-synched with pre-
recorded speech signals. 
 
Liveness checking experiments involved two phases, the 
training phase and testing phase. In the training phase a 
10-mixture Gaussian mixture model λ of a client’s 
audiovisual feature vectors was built, reflecting the 
probability densities for the combined phonemes and 
visemes (lip shapes) in the audiovisual feature space. In 
the testing phase, the clients’ live test recordings were first 
evaluated against the client’s model λ by determining the 
log likelihoods log p(X|λ) of the time sequences X of 
audiovisual feature vectors under the usual assumption of 
statistical independence of successive feature vectors. 

 
(a) VidTIMIT corpus images 

 

 
 

(b) DaFeX corpus images 
 

Figure 1: Face Images from VidTIMIT and DaFex Corpus 
 
For testing static replay attacks, a number of “fake” or 
synthetic recordings were constructed by combining the 
sequence of audio feature vectors from each test utterance 
with ONE visual feature vector chosen from the sequence 
of visual feature vectors and keeping that visual feature 
vector constant throughout the utterance. Such a synthetic 
sequence represents an attack on the authentication system, 
carried out by replaying an audio recording of a client’s 
utterance while presenting a still photograph to the camera. 
Four such fake audiovisual sequences were constructed 
from different still frames of each client test recording. 
Log-likelihoods log p(X’|λ) were computed for the fake 
sequences X’ of audiovisual feature vectors against the 
client model λ. In order to obtain suitable thresholds to 
distinguish live recordings from fake recordings, detection 
error trade-off (DET) curves and equal error rates (EER) 
were determined. For testing dynamic replay attacks 
artificially synthesized speaking face video sequences 
were used instead of actually recorded video sequences in 
the data corpora.  
Since the liveness checking is a two-class decision task, 
the system can make two types of errors.  The first type of 
error is a False Acceptance Error (FA), where an impostor 
(fraudulent replay attacker) is accepted. The second error 
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is a False Rejection (FR), where a true claimant (genuine 
client) is rejected. Thus, the performance is measured in 
terms of False Acceptance Rate (FAR ) and False Reject 
Rate (FRR ), as defined as (Eqn. 2) : 
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where IA is the number of impostors classified as true 
claimants, IT is the total number of impostor classification 
tests, CR  is the number of true claimants classified as 
impostors, and CT is the total number of true claimant 
classification tests. The implications of this is minimizing 
the FAR increases the FRR and vice versa, since the errors 
are related. The trade-off between FAR and FRR is 
adjusted using the threshold θ, an experimentally 
determined speaker-independent global threshold from the 
training/enrolment data. The trade-off between FAR and 
FRR can be graphically represented by a Receiver 
Operating Characteristics (ROC) plot or a Detection Error 
Trade-off (DET) plot. The ROC plot is on a linear scale, 
while the DET plot is on a normal-deviate logarithmic 
scale. For DET plot, the FRR is plotted as a function of 
FAR. To quantify the performance into a single number, 
the Equal Error Rate (EER) is often used. Here the system 
is configured with a threshold, set to an operating point 
when FAR % = FRR %.  
It must be noted that the threshold θ can also be adjusted 
to obtain a desired performance on test data (data unseen 
by the system up to this point). Such a threshold is known 
as the aposteriori threshold. However, if the threshold is 
fixed before finding the performance, the threshold is 
known as the apriori threshold. The apriori threshold can 
be found via experimental means using training/enrolment 
or evaluation data, data which has also been unseen by the 
system up to this point, but is separate from test data.  
 
Practically, the a priori threshold is more realistic. 
However, it is often difficult to find a reliable apriori 
threshold. The test section of a database is often divided 
into two sets: evaluation data and test data. If the 
evaluation data is not representative of the test data, then 
the apriori threshold will achieve significantly different 
results on evaluation and test data. Moreover, such a 
database division reduces the number of verification tests, 
thus decreasing the statistical significance of the results. 
For these reasons, many researchers prefer to use the 
aposteriori and interpret the performance obtained as the 
expected performance.  
Different sets of experiments were conducted to evaluate 
the performance of the audio-visual correlation features 
based on proposed mutual dependency models (kCCA, 

PCA and ICA), and their  fusion, The performance 
evaluation in terms of DET curves and equal error rates 
(EER)  for different features based on mutual dependency 
models in terms of DET curves and EERs is shown n 
Table 1 and Figure 2. 
 

Table 1: EERs for audio visual features based on mutual 
dependency models 

 

As can be seen from Table 1 and Figure 2 the results are 
quite promising for correlation features in kCCA space 
and their fusion with features in ICA and PCA space.  The 
single mode MFCC features and PCA or Eigen lip features 
results in worse EERS. Further, the MGCM features on 
their own do not result in a good EER performance. 
However, when they are fused with the kCCA projected 
features, they result in improved performance. Further, use 
of correlation features in different subspaces, PCA, ICA 
and kCCA result in best EERs as complete mutual 
dependency components (closely coupled, loosely coupled 
and uncoupled components are included in the modelling). 
Further work involves, developing an automatic fusion 
computation technique based on reliability scores.  
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Figure 2: DET curves for audio visual features based on 

mutual dependency models for (a): VidTIMIT data set, (b): 
DaFeX dataset 

5. Conclusions  
In this paper we proposed a novel method of extracting 
audio visual features based on correlation models for 
checking in biometric identity authentication systems. 
Performance evaluation in terms of DET curves and EERs 
on VidTIMIT and DaFeX corpora, showed a significant 
improvement in performance of proposed features as 
compared to traditional single mode face or voice features. 
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