
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

23

Manuscript received October 5, 2009
Manuscript revised October 20, 2009

Intrusion Detection Using Rough Set Parallel Genetic
Programming Based Hybrid Model

Wa'el M. Mahmud1, Hamdy N.Agiza2, Elsayed Radwan3

1,3Faculty of Computer and Information Sciences, Mansoura University, Egypt,

2Faculty of Sciences, Mansoura University, Egypt

Summary
Recently machine learning-based Intrusion Detection systems
(IDs) have been subjected to extensive researches because they
can detect both misuse and anomaly. Most of existing IDs use all
features in the network packet to look for known intrusive
patterns. In this paper a new hybrid model RSC-PGP (Rough Set
Classification - Parallel Genetic Programming) is presented to
address the problem of identifying important features in building
an intrusion detection system, increase the convergence speed
and decrease the training time of RSC. Tests are done on KDD-
99 data used for The Third International Knowledge Discovery
and Data Mining Tools Competition. Results showed that the
proposed model gives better and robust representation of rules as
it was able to select features resulting in great data reduction,
time reduction and error reduction in detecting new attacks.
Empirical results reveal that Genetic Programming (GP) based
techniques could play a major role in developing IDs which are
light weight and accurate when compared to some of the
conventional intrusion detection systems based on machine
learning paradigms.

Key words:
Intrusion detection, Parallel genetic programming, Rough
set classification, light weight intrusion detection system.

1. Introduction

Intrusion detection is one of core technologies of computer
security. The goal of intrusion detection is identification of
malicious activity in a stream of monitored data which can
be network traffic, operating system events or log entries.
An Intrusion Detection system (IDs) is a hardware or
software system that monitoring event streams for
evidence of attacks. A majority of current IDs follow a
signature-based approach in which, similar to virus
scanners, events are detected that match specific
predefined patterns known as “signatures". The main
limitation of these signature-based IDs is their failure to
identify novel attacks, and sometimes even minor
variations of known patterns. Machine learning is a
valuable tool for intrusion detection that offers a major
opportunity to improve quality of IDs.

As a broad subfield of artificial intelligence, machine
learning is concerned with the design and development of
algorithms and techniques that allow computers to "learn".
At a general level, there are two types of learning:

inductive, and deductive. Inductive machine learning
methods extract rules and patterns out of massive datasets.
The major focus of machine learning research is to extract
information from data automatically, by computational and
statistical methods. We can use supervised learning in IDS
for automatic generation of detectors without a need to
manually update signatures. Generally, there are two types
of detecting an intrusion; misuse detection and anomaly
detection.
In misuse detection, an intrusion is detected when the
behavior of system matches with any of the intrusion
signatures. In the anomaly based IDs, an intrusion is
detected when the behavior of the system deviates from the
normal behavior.
IDs can be treated as pattern recognition problem or rather
classified as learning system. Thus, an appropriate
representation space for learning by selecting relevant
attributes to the problem domain is an important problem
for learning systems.
Feature selection is useful to reduce dimensionality of
training set; it also improves the speed of data
manipulation and improves the classification rate by
reducing the influence of noise. The goal of feature
selection is to find a feature subset maximizing
performance criterion, such as accuracy of classification.
Not only that, selecting important features from input data
lead to a simplification of the problem, faster and more
accurate detection rates. Thus selecting important features
is an important problem in intrusion detection.

Rough Set Classification (RSC) [26], a modern learning
algorithm, is used to rank the features extracted for
detecting intrusions and generate intrusion detection
models. RSC creates the intrusion (decision) rules using
the reducts as templates. After reduct generation, the
detection rules are automatically computed subsequently.
The rules generated have the intuitive “IF-THEN” format,
which is explainable and very valuable for improving
detector design. The main feature of Rough Set data
analysis is noninvasive, and the ability to handle
qualitative data. This fits into most real life problems
nicely and to our problem too.
Genetic programming (GP) is an evolutionary computation
technique that automatically solves problems without
requiring the user to know or specify the form or structure

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

24

of the solution in advance. At the most abstract level GP is
a systematic, domain-independent method for getting
computers to solve problems automatically starting from a
high-level statement of what needs to be done.

This paper proposes a hybrid Parallel Genetic
Programming (PGP) [17] based on the attribute
significance heuristic rule to find minimal reducts.
Proposed model uses parallel computation of the optimal
rough set decision reducts from data by adapting the island
model for evolutionary computing. This hybrid genetic
programming is the key subalgorithm in the RSC
algorithm. In our reduction experiments, we used the
dataset [13] used for The Third International Knowledge
Discovery and Data Mining Tools Competition, which was
held in conjunction with KDD-99 The Fifth International
Conference on Knowledge Discovery and Data Mining.
These data are considered a standard benchmark for
intrusion detection evaluations.

The rest of this paper is structured as follows. In the
second section, is describing KDD-99 intrusion detection
benchmark data briefly. Rough Sets preliminaries and
some important definitions are listed in third section.
Fourth and fifth sections briefly describe Genetic
Programming and Parallel Genetic Programming. Sixth
section presents proposed RSC-PGG (Rough Set
Classification - Parallel Genetic Programming) system
model for rough set classification algorithm. Final section
analyzes results and draw conclusions.

2. KDD-99 Dataset

One of the most important datasets for testing IDs is the
KDD 99 intrusion detection datasets. KDD-99 [21][13]
provides designers of IDs with a benchmark on which to
evaluate different methodologies. This dataset is created by
MIT Lincoln Lab’s DARPA in the framework of the 1998
Intrusion Detection Evaluation Program [8].

In this paper, we used the subset that was preprocessed by
the Columbia University and distributed as part of the UCI
KDD Archive [21][13].

The dataset can be classified into five main categories
which are Normal, Denial of Service (DoS), Remote to
Local (R2L), User to Root (U2R) and Probing.

• Denial of Service (DoS): Attacker tries to prevent
legitimate users from using a service.

• Remote to Local (R2L): Attacker does not have
an account on the victim machine, hence tries to
gain access.

• User to Root (U2R): Attacker has local access to
the victim machine and tries to gain super user
privileges.

• Probe: Attacker tries to gain information about
the target host.

For each TCP/IP connection record, 41 various
quantitative and qualitative features were extracted plus 1
class label. The labeling of data features as shown in
(Table1) is adopted from Chebrolu [6][15].

3. Rough Set Theory Preliminary

Rough sets theory was developed by Zdzislaw Pawlak in
the early 1980’s (Pawlak, 1982) [26]. It is a mathematical
tool for approximate reasoning for decision support and is
particularly well suited for classification of objects. Rough
sets can also be used for feature selection, feature
extraction.
The main contribution of rough set theory is the concept or
reducts. A reduct is a minimal subset of attributes with the
same capability of objects classification as the whole set of
attributes. Reduct computation of rough set corresponds to
feature ranking for IDs. Below is the derivation of how
reducts are obtained.

Definition 1 An information system is defined as a four-
tuple as follows, S=<U, Q, V, f>, where U={x1, x2, …, xn}
is a finite set of objects (n is the number of objects); Q is a
finite set of attributes, Q={q1, q2, …, qn}; V= and
is a domain of attribute q; f:U×V→V is a total function

such that f(x, q) Vq for each q Q, x U. If the attributes

in S can be divided into condition attribute set C and

decision attribute set D, i.e. Q=C D and C∩D=Φ, the

information system S is called a decision system or
decision table.

Definition 2 Let IND(P), IND(Q) be indiscernible relations
determined by attribute sets P, Q, the P positive region of
Q, denoted POS IND(P) (IND(Q)) is defined as follows:

POS IND(P) (IND(Q))=

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

25

Definition 3 Let P, Q, R be an attribute set, we say R is a
reduct of P relative to Q if and only if the following
conditions are satisfied:

(1) POS IND(R) (IND(Q))= POS IND(P) (IND(Q))

(2) r R follows that

POS IND(R-{r}) (IND(Q)) ≠ POS IND(R) (IND(Q))

Definition 4 Let L= (U, A {d}, V, f) be a decision system,

whose discernibility matrix M(U) = [MA
d (i , j)]n×n is

defined as:

MA

d (i , j) =

{ ak | ak A ak(xi) ≠ ak(xi)}, d(xi) ≠ d(xj); d(xi) = d(xj).

Φ

Where ak(xj) is the value of objects xj on attribute ak , d(x)
is the value of object x on decision attribute d. Write

M(U) = [MA

d (i , j)]n×n as a list {p1,…, pt}.

Each pi is called a discernibility entry, and is usually
written as pi=ai1, …, aim, where each aik corresponds to a
condition attribute of the information system, k=q,…,m;
i=1,…,t.

Furthermore, the discernibility matrix can be represented
by the discernibility function f, conjunction normal form

(CNF), i.e., f=p1 … pt, where each pi=ai1 … aim is called

a clause, and each aik is called an atom. Note that the
discernibility function contains only atoms, but not
negations of atoms.
Although the discernibility matrix and discernibility
function have different styles of expression, they are
actually the same in nature.

Definition 5 let h denote any Boolean CNF function of m
Boolean variables {a1,… , am}, composed of n Boolean

sums {s1,… , sn}. Furthermore, let wij {0, 1} denote an

indicator variable that states whether ai occurs
in , h = . We can interpret h as a bag

or multiset M (h) = {Si | Si = {a A | aj occurs in si}}.

Because the discernibility function f is also a CNF Boolean
function, so it has a multiset. Let M(f) denote the multiset
of discernibility function f, M(f) =
{{a11,…,a1m},…,{ai1,…,aim},…, {at1,…,atm}}.

Definition 6 Hitting set of a given multiset M of elements

from 2A is a set B A such that the intersection between B

and every set in M is nonempty. The set B HS (S) is a

minimal hitting set of M if B ceases to be a hitting set if
any of its elements are removed.

Let HS (M) and MHS (M) denote the sets of hitting sets
and minimal hitting sets, respectively,

HS (M) = {B A | B ∩ Si ≠ Ø for all Si in M}

Proposition 1 For decision system L= (U, A {d},V, f), g

is its discernibility matrix, and B A, B RED(U, d) is

equivalent to B MHS(M(g)). So the rough set reduct

computation can be viewed as a minimal hitting set
problem.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

26

Table 1: Network Data Feature Label
Feature

label Feature name NO# Feature
label Feature name NO# Feature

label Feature name NO#

A Duration 1 O Su_attempted 15 AC Same_srv_rate 29
B Protocol_type 2 P Num_root 16 AD Diff_srv_rate 30
C Service 3 Q Num_file_creations 17 AE Srv_diff_host_rate 31
D Flag 4 R Num_shells 18 AF Dst_host_count 32
E Sec_byte 5 S Num_access_files 19 AG Dst_host_srv_count 33
F Dst_byte 6 T Num_cutbounds_cmds 20 AH Dst_host_same_srv_rate 34
G Land 7 U Is_host_login 21 AI Dst_host_diff_srv_rate 35
H Wrong_fragment 8 V Is_guest_login 22 AJ Dst_host_same_src_port_rate 36
I Urgent 9 W Count 23 AK Dst_host_srv_diff_host_rate 37
J Hot 10 X Sev_count 24 AL Dst_host_server_rate 38
K Num_failed_login 11 Y Serror_rate 25 AM Dst_host_srv_serror_rate 39
L Logged_in 12 Z Sev_serror_rate 26 AN Dst_host_rerror_rate 40
M Num_comprised 13 AA Rerror_rate 27 AO Dst_host_srv_rerror_rate 41
N Root_shell 14 BB Srv_rerror_rate 28

4. Genetic Programming

Genetic programming (GP) is an evolutionary computation
EC technique that automatically solves problems without
requiring the user to know or specify the form or structure
of the solution in advance[10][11].

GP is an extension of the conventional genetic algorithm in
which each individual in the population is a computer
program. The search space in genetic programming is the
space of all possible computer programs composed of
functions and terminals appropriate to the problem domain.

Genetic programming (GP) works with a group of
candidate solutions which are randomly generated at the
beginning of the algorithm. These candidate solutions are
computer programs. By simulating natural evolution, GP
works as an iterative procedure which is referred to as a
generation. Each solution is evaluated with the objective
function to determine the quality of each solution, called
the fitness value. The principle of the evolution is that the
solution with the high fitness value has more chance to be
selected and produce offspring. After the evaluation is
performed, some individuals are selected with the
probability depending on their fitness values. Then, a set of
genetic operators, i.e. crossover and mutation, transforms
the selected individuals into the new population of
candidate solutions.

The algorithm replaces the old population with the new
population and repeats the whole process with the new
population. This continues until the fitness value indicates
that the goal is achieved or repetition limit is reached
[10][11].

5. Parallel Genetic Programming

As the idea of GP was developed from the GA foundation,
the model of parallel GP was also adopted from the
development of parallel GA.

Parallelism refers to many processors, with distributed
operational load. Each GP is a good candidate for
parallelization. Processor may independently work with
different parts of a search space and evolve new
generations in parallel. This helps to find out the optimum
solution for the complex problems by searching massive
populations and increases quality of the solutions by
overcoming premature convergence.

One of the most ingenious taxonomies is the Parallel Island
Model (PIM) [18][19], where the population is divided into
a few large subpopulations and these subpopulations are
maintained by different processors. Processors are globally
controlled by message passing within Master-Slave
architecture. Master processor sends "START" signal to
the slave processors to start generations and continue
sending "MIGRATION" message to partially exchange the
best chromosomes between the processors. So the worst
chromosomes are replaced by the best received ones. Time
between two consecutive MIGRATION signals is called
the migration step; percentage of the best chromosomes is
called migration percentage. Migrations should occur after
a time period long enough for allowing development of
good characteristics in each subpopulation.

The migration can be implemented as synchronous and
asynchronous. In synchronous migration, all nodes proceed
at their own rates and synchronize when the migration
occurs. The problem of synchronous migration is that it
can cause uneven workloads among processors due to the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

27

different rate of evolution. In asynchronous migration, the
migration occurs without relating to the state of all
processors. Asynchronous migration can reduce the wait
time required for all processors.

6. RSC-PGP System Model

Feature extraction and detection rules generation are two
key steps in any intrusion detection system based on
learning algorithm. Feature extraction depends on data
source and the category of attack be detected. For detection
rules auto generation, our proposed model uses RSC and
PGP for this task. It includes three phases:

6.1 Preprocessing

The raw data are first partitioned into three groups of
attacks [13][15][8]:

1. DoS attack detection dataset,
2. Probe attack detection dataset,
3. U2R&R2L attack detection dataset.

For each dataset, a decision system is constructed. Each
decision system is subsequently split into two parts:

1. The training decision system,
2. The testing decision system.

6.2 Training decision system

RCS-PGP classifier is trained on each training dataset of
the three constructed decision systems of attacks. Each
training dataset uses the corresponding input features and
fall into two classes: normal (+1) and attack (−1). So this
step has following steps:-

1. Apply the discretization strategies [14] on real values
attributes to obtain a higher quality of classification
rules.
Equal-Width-Interval is used. It is a generic method
that simply divides the data into some number of
intervals all with equal width. It divides the number
line between Vmin and Vmax into k intervals of equal
width. Thus the intervals have width w = (Vmax -
Vmin) / k and the cut points are at Vmin + w; Vmin +
2w;; Vmin + (k - 1) w. k is a user predefined
parameter and is set as 10 in this model. Algorithm has
a time complexity of where n is the number
of in generated intervals.

2. The intrusion (decision) rules are created using the
reducts computed by the attribute reduction algorithm
as templates.

There are many attribute reduction algorithms. Since our
decision systems are large, we need effective algorithm for
reduction computation. Our model proposes a hybrid

Asynchronous Parallel Island Model
(APIM)[16][18][19][16] for attribute reduction based on
the attribute significance heuristic rule to find minimal
reducts.

We are modified APIM to run on single PC instead of
running on many PCs connected with a network and we
called this Singleton Parallel Island Model (SAPIM) Wa'el,
Agiza, and Radwan [22]. New technique uses distributed
evolutionary computing to exploit availability of
computers with multicore processors, the robust threading
pools provided and supported by the Operating Systems,
and massive power of parallel computing. In addition, it
eliminates the required communication time over the
network, decreases the training time and makes the
generated classifier more effective. Following steps
describes how to adjust this Parallel Genetic Programming
taxonomy to fit the intrusion detection environment.

6.3 Frame of Hybrid Genetic Algorithm

According to the previous Definition 1, Section 2 we are

given the data in the form of decision system L = (U, A

{d}) by running C5 algorithm [2], the data is constructed
into tree representation. Each tree T over the decision
system L that produced by C5 consists of terminal nodes
(classes of decision attribute d, non-terminal nodes
(attribute set A), and edges (attribute value set V). The
complete path [25] in the tree T is a sequence s= v0, d0,
……, wm, dm, vm+1, where v0 is the root of tree, vm+1 is the
terminal node, d0 …dm are the edges, and m={0,1,…}. If vi
is the initial, then vi+1 is the terminal of edge di, i=0,1,…..m.
let h(s)=m be defined as the length of path s. if PATH(T) is
the set of all complete paths in the tree T, then h(T)= max
{h(s):s ϵ PATH(T)} is called the depth of tree T.

A decision rule r is associated with a complete path s over
the tree T which is denoted by r= rule(s). The set of paths
PATH(T) give us a set of rules R, where each rule r ϵ R is
associated with each path s ϵ PATH(T). Sometimes rules
derived from some paths may have a high error rate which
is unacceptably by rough set measure or may duplicate
rules derived from other paths, so the algorithm usually
yields fewer rules than the number of paths in the tree.

Let ST(L) be the set of all trees over a decision system L
that are constructed by running C5 number of times. The
set of trees ST(L) represents a population in genetic
programming concept and each tree is an individual from
this population. The number of trees in ST(L) is called the
population size M. ST0(L) is the set of trees over L in
generation 0 or initial population, and so STi(L) is the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

28

population at generation i. The terminal nodes in each tree
from ST(L) are assigned values from vd, so we can say that
the classes of decision attribute give us here a set called
terminal set in genetic programming. In the same manner
the function set is the set of attributes A. By applying
genetic operators, we build a new population from old one.

We will define three types of genetic operators; crossover
operator, mutation operator, and reproduction operator.
Crossover operator is a mapping A: ST(L)2 ST(L)2 , i.e.
A(T1,T2)=A(T1',T2'), where T1, T2 ϵ STi(L) are called
parents and T1',T2' ϵ STi+1(L) are called offspring. It
operates on two parental trees and creates two new two-
offspring consisting of parts of each parent. The offspring
arc inserted into the new population at the next generation
STi+1(L). These offspring trees are typically of different
sized and shapes than their parents. Mutation operator is a
mapping M: ST(L) ST(L). It generates a unique offspring
tree T' from existing tree T, where M(T)= T' for T ϵ STi(L)
and T' ϵ STi+1(L). It operates on one parental tree and
creates one new offspring to be inserted into the new
population at the next genera. Reproduction operator is a
mapping RO: ST(L) ST(L), where it selects one
individual T and makes a copy of the tree for inclusion in
the next generation of the population, i.e. RO(T)=T, for Tϵ
ST(L). After genetic operators are performed on the current
population, the population of offspring replaces the old
population.

6.4 Fitness Function

Fitness function ensures that the evolution is toward
optimization by calculating the fitness value for each
individual in the population. The fitness value evaluates the
performance of each individual in the population. We use a
fitness function used in Wei and Issa [23] that is based on
the support-confidence framework. Support is a ratio of the
number of records covered by the rules to the total number
of records. Confidence factor (cf) represents the accuracy
of rules, which is the confidence of the consequent to be
true under the conditions. It is the ratio of the number of
records matching both the consequent and the conditions to
the number of records matching only the conditions. If a
rule is represented as, if A then B, and the size of the
training dataset is N, then

cf = |A and B|/ |A|; support = |A and B|/N.

|A| stands for the number of records that only satisfy
condition A. |B| stands for the number of records that only
satisfy consequent B. |A and B| stands for the number of
records that satisfy both condition A and consequent B. A
rule with a high confidence factor does not necessarily
behave significantly different from the average. Thus,
normalized confidence factor is defined to consider the
average probability of consequent denoted prob.

normalized_cf = cf × log (cf / prob); prob = |B |/N.

To avoid wasting time to evolve those rules with a low
support value, a strategy is defined: "if support is below a
user-defined minimum threshold (min_support), the
confidence factor of the rule should not be considered".
Thus, the fitness function is defined as follows:

raw_fitness =

Where the weights w1 and w2 are user-defined and used to
control the balance between the confidence and the support
during the searches.

Token competition is used to increase the diversity of
solutions Wei and Issa [23]. The idea is as follows: "In the
natural environment, once an individual finds a good place
to live, and then he will try to protect this environment and
prevent newcomers from using it, unless the newcomers
are stronger than this individual. Other weaker individuals
are hence forced to search for their own place".

In this way, the diversity of the population is increased.
A token is allocated to each record in the training dataset.
If a rule matches a record, its token will be seized by the
rule. The priority of receiving the token is determined by
the strength of the rules. Thus, a rule with high raw fitness
score can acquire as many tokens as possible. The
modified fitness is defined as follows:

modified_ fitness = raw_fitness × count / ideal,

where count is the number of tokens that the rule has
actually seized, ideal is the total number of tokens that it
can seize, which is equal to the number of records that the
rule matches.

6.5 Crossover, Mutation and Inversion

We use classical, subtree crossover. Given two
parents, subtree crossover randomly (and independently)
selects a crossover point (a node) in each parent tree. Then,
it creates the offspring by replacing the subtree rooted at
the crossover point in a copy of the first parent with a copy
of the subtree rooted at the crossover point in the second
parent.

In the mutation process, we use subtree mutation which
randomly selects a mutation point in a tree and substitutes
the subtree rooted there with a randomly generated subtree.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

29

Koza and Onho [9] defined gene duplication to enable
genetic programming to concurrently evolve both the
architecture and work performing steps of a computer
program. Koza and Onho [9] defined six new architecture-
altering genetic operations defined by which provide a way
of evolving the architecture of a multi-part program during
a run of genetic programming. Koza and Onho [9]
concludes that "gene duplication emerges as the major
force of evolution". We are using branch creation
operation which creates a new automatically defined
function within an overall program by picking a point in
the body of one of the function-defining branches or result-
producing branches of the selected program. This picked
point becomes the top-most point of the body of the
branch-to-be-created. Against of branch creation we are
using branch deletion that deletes one of the automatically
defined functions. We are using branch deletion because
operation of branch creation creates larger programs, so
operation of branch deletion can create smaller programs
and thereby balance the persistent growth in biomass that
would otherwise occur. We are using what is called branch
deletion with random regeneration which randomly
generates new subtrees composed of the available
functions and terminals in position of deleted branch [9].

6.6 Selection and Recombination Method

SAPIM is used at this point. The selection and
recombination operator occurs are implemented with two
steps:-

Step 1: Master thread start the operation

Fig 1: Master thread operations

Step 2: Each thread operation

Fig 2: Thread operations

In Step 1 in the algorithm (Fig. 1):
• Generate number of trees = M (the population size)

using C5. By running C5 M times, and in each run of
C5, change the probability of pruning for tree to get
different tees. At the end of running C5 method, we
store all trees as initial population.

• Divide generates trees over islands and start each
island operation.

• Use heuristic rule to make PGP converge faster [12].
This rule operator operates on the whole population.

o Let R be the attribute set represented by
current chromosome. If R is not a hitting set

(It is judged in the fitness function
computation), Then find an attribute a in C−R
which has the maximal value SGF(a, R,
D)=p(a).

o If there are several aj, (j=1,2,…,m;) with the
same maximal value, stochastically choose
one attribute from them.

o Set the bit corresponding with aj as “1”.

• Then according to the fitness for each chromosome;
we use stochastic sampling method to select;

In Step 2 in the algorithm (Fig. 2):
• Convert the tree into a set of rules (each rule is

associated with a complete path in the tree) [4].

• Remove the duplicated rules from the set of rules.

• Compute the fitness value for each set of rules.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

30

• Choose best offspring using following three steps:-

o minsingle(Offspring) be the worst individual
in the new population, minfit(Offspring) be
the corresponding fitness;

o Let maxsingle(Parent) be the best individual
in the old population, maxfit(Parent) be the
corresponding fitness.

o If minfit(Offspring) < maxfit(Parent), we
replace minsingel(Offspring) with
maxsingle(Parent).

• Create a new population by applying Crossover,
Mutation and Inversion described before.

• The best-so-far individual is designated as the result of
run (i.e. the set of rules).

6.7 Testing Decision System

In this step model measure the performance of generated
rules on testing data. So this step has following steps:-

1. Discretization method is first used to discretizing the
new object dataset.

2. Generated rules are used to match testing objects to

compute the strength of the selected rule sets for any
decision class.

3. The new object will be assigned to the decision class

with maximal strength of the selected rule set.

7. Parameters Settings

The various parameter settings for RSC-PGP are depicted
in (Table 2). We made use of +, - , *, /, sin, cos, sqrt, ln, lg,
log2, min, max, and abs as function’s set.

Table 2: Parameters used by RSC-PGP

Parameter Value
 Normal Probe DoS U2R R2L

Population size 100 200 250 100 100
Number of generations 30 200 800 20 800

Chromosome length 30 40 40 30 40
Crossover frequency

(%) 90 90 80 90 90

No. of mutations per
chromosome 3 4 5 3 4

Branch creation and
deletion (%) 5 5 5 5 5

8. Experiment Setup And Results

In order to compare RSC-PGA algorithm with other
techniques we constructed our intrusion detection system
(RSC-PGP) and tested its performance on the KDD-99
intrusion detection contest dataset.
As described previously, we are using dataset subset that
was preprocessed by the Columbia University and
distributed as part of the UCI KDD Archive[21][15]. For
each TCP/IP connection, 41 various quantitative and
qualitative features were extracted plus 1 class label .The
labeling of data features as shown in (Table1) is adopted
from Chebrolu [6][15].
The dataset can be classified into five main categories
which are Normal, Denial of Service (DoS), Remote to
Local (R2L), User to Root (U2R) and Probing. The
original data contained 744 MB data with 4,940,000
records. In the International Knowledge Discovery and
Data Mining Tools Competition, only “10% KDD-99”
dataset is employed for the purpose of training. So, all
other experiments performed their analysis on the “10%
KDD-99” dataset. In our experiments, we will use this
“10% KDD-99” to compare it with other approaches used
these data.

First of all, in Zainal and Zhang [12] RSC reducts obtained
using standard Genetic Algorithms were 26 and they were :
C, D, E, F, G, J, M, N, P, W, X, Y, AA, AB, AC, AD, AE,
AF, AG, AH, AI, AJ, AK, AL, AM and AN. They had
ranked the six most significant features using Rough Set
Concept as: C, D, E, X, AF and AO. In addition, there are
three different techniques namely Support Vector Decision
Function (SVDF), Linear Genetic Programming (LGP) and
Multivariate Adaptive Regression Splines (MARS) used by
Sung and Mukkamala [7] and one robust model namely
Rough Set Classification Parallel Genetic Algorithm (RSC-
PGA) used by Wa'el, Agiza, and Radwan [22] were used to
filter out redundant, superfluous information exist in these
features, and hence significantly reduce a number of
computer resources, both memory and CPU time, required
to detect an attack. SVDF’s proposed features were; B, D,
E, W, X and AG. Meanwhile LGP yielded features C, E, L,
AA, AE and AI. MARS suggested features E, X, AA, AG,
AH and AI. RSC-PGA model has 22 reduct features, and
has ranked five most significant features as C, D, E, X, and
AO as the core of these reduct features.
Our RSC-PGP model has 20 reduct features, and has
ranked four most significant features as C, D, E, X as the
core of these reduct features. This result is compatible with
other approaches results and at the same time contains the
"E" reduct feature which has been chosen by other
approaches as the most important reduct feature.
To compare classification accuracy of our RSC-PGP model
with other robust models, we analyzes the True Positive
Rate (TPR) and False Positive Rates (FPR) for our model

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

31

with Multi Expression Programming (MEP) and Gene
Expression Programming (GEP) models proposed by
Abraham, Grosan, and Carlos [1] in order to determine the
efficiency of our developed ID model. The TPR value is
given by:

The FPR is given by:

As evident from (Table 3), when compared to RSC-PGP
obtained the best values for TPR and FPR for Normal, DoS
and U2R, and good performance for the other classes.
According to column "G" in (Table 3) which shows the
required number of generations generated to achieve these
result we can see that RSC-PGP also required smallest
number of generations for the Probe, DoS, U2R, and R2L
types respectively.

Table 3: Comparison of false alarm rates

Attack
Type MEP GEP RSC-PGP

 TPR FPR G TPR FPR G TPR FPR G

Normal 0.996 0.999 30 0.996 0.999 35 0.998 0.996 34

Probe 0.947 0.982 60 0.999 0.9748 80 0.997 0.9645 55

Dos 0.987 0.999 200 0.918 0.943 240 0.989 0.990 170

U2R 0.400 0.999 20 0.437 0.995 25 0.443 0.992 18

R2L 0.973 1 90 0.989 0.984 80 0.988 0.989 64

In (Table 4) the variable combinations evolved by RSC-
PGP is presented. In (Table 4), var represents Variable
number (Column 1 in Table 1). It is to be noted that only
these few variables are required to detect a particular type
of attack. This leads to a very light intrusion detection
system when compared to a fuzzy expert system (which
requires so many rules) or an artificial neural network with
so many hidden neurons [1].

Table 4: Functions evolved by RSC-PGP

Attack type Evolved Function

Normal var12 * log2(var10 + var3)

Probe
(fabs(var30 + var35)) < (var26 +
var27)?(fabs(var30 + var35)) : (var26 +
var27);

DOS

var38 − (Ln(var41 * var6) + sin(Lg(var30))) −
(Lg(var30) − (var41 * var6))) > (0.3415 +
var24 + var41 * var6)?(var38 − (Ln(var41 *
var26) + sin(Lg(var30))) − (Lg(var30) −
(var41 * var6))) : (0.3415 + var24 + var41 *
var6) + var8

U2R sin(var14) − var33

R2L

fabs((fabs(var8 > (var1 + (var6 >
(Ln(var6))?var6 : (Ln(var6))) * var3)?var10 :
(var1 + (var26 > (Ln(var6))?var6 : (Ln(var6)))
*var3))) * (var12 + var26)) + var11

To make an adequate comparison between the serial GP
algorithm and our parallel algorithm to show RSC-PGP
speedup, we will run our RSC-PGP model over single
thread which will mimic sequential GP algorithm. The
parallel speedup is defined as the ratio of the serial
execution time to the parallel execution time.

Fig 3: RSC-PGP Speedup

Fig.3 illustrates the speedup observed on the two
implementations as a function of the number of threads
used. The graph shows a substantial increase of the
speedup as a function of the number of threads used. The
speedup is greater than the number of threads used. The
reason is that the total amount of work in the parallel
algorithm is less than the serial algorithm. The reduction of
work is caused by the divided populations and the smaller
number of environments in each node.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

32

9. Conclusion

This paper illustrated the importance of GP techniques for
developing intrusion detection systems.
We are modified Parallel Island Model (PIM) to run on
single PC instead of running on many PCs connected with
a network and we called this Singleton Asynchronous
Parallel Island Model (SAPIM). New technique uses
distributed evolutionary computing to exploit availability
of computers with multicore processors, the robust
threading pools provided and supported by the Operating
Systems, and massive power of parallel computing. SPIM
Algorithm based on heuristic function increases
performance of calculations, and its migration technique
increases quality along with performance. In addition, it
decreases the training time and makes the generated
classifier more effective.

Experiments are showing that proposed RSC-PGP model
for decision rules generation is increasing the classification
quality of unseen objects and allow reducing the number of
decision rules without decreasing the classification quality
of unseen objects.

Also the speedup using 10 processors increases to 32. This
means that the parallel algorithm is 32 times faster than the
serial algorithm by using 10 threads, so the superlinear
speedup has been achieved. This is meaning that the
speedup is greater than the number of threads used.

Perhaps the greatest advantage of genetic programming
comes from the ability to develop IDP’s for which there
are no human experts. Although human expertise should be
used when it is available, it often proves less than adequate
for automating problem-solving routines.

References

[1] Ajith Abraham, Crina Grosan, and Carlos Martin-Vide,
"Evolutionary Design of Intrusion Detection Programs",
International Journal of Network Security, Vol.4, No.3, PP.328–
339, Mar. 2007.

[2] Dariu, Arunas, Alvydas, Valeriju, "Application of Data Mining

Technique for Diagnosis of Posterior Uveal Melanoma".
INFORMATICA, 2002, Vol. 13, No. 4, 455–464.

[3] David H. Foster, W. James Bishop, Scott A. King, Jack Park ,
"Knowledge Discovery using Genetic Programming with Rough
Set Evaluation". AAAI, 1993.

[4] Elsayed Radwan, Eiichiro Tazakiy, "Template Learning Of
Cellular Neural Network Using Genetic Programming"
International Journal of Neural Systems, Vol. 14, No. 4 (2004) 1-
10.

[5] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano" An
Evolutionary Ensemble Approach for Distributed Intrusion
Detection", 7th International Conference on Artificial Evolution,
Lille, France, October 2005.

[6] H. Güneş Kayacık, A. Nur Zincir-Heywood, Malcolm I. Heywood,
"Selecting features for intrusion detection: a feature relevance
analysis on KDD 99 intrusion detection datasets." Third Annual
Conference on Privacy, Security and Trust, October 2005.

[7] H. Sung, and S. Mukkamala, “The feature selection and intrusion
detection problems“. Springer Verlag Lecture Notes Computer
Science 3321. 2004, Page(s): 468-482

[8] Intrusion Detection Evaluation Program (http://www.ll.mit.edu/
mission/communications/ist/corpora/ideval/index.html).
September 2009.

[9] John R. Koza, " Gene Duplication to Enable Genetic
Programming to Concurrently Evolve Both the Architecture and
Work-Performing Steps of a Computer Program", IJCAI-95
Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, 1995.

[10] John R. Koza, "Genetic Programming: a paradigm for genetically
breeding populations of computer programs to solve problems",
Stanford University, Computer Science Department, June 1990.

[11] John R. Koza, "Survey of genetic algorithms and genetic
programming", IEEE, 1995.

[12] L. Zhang, G. Zhang, L. Yu, J. Zhang, and Y. Bai, “Intrusion
detection using rough set classification.” Journal of Zheijiang
University Science. 2004 5(9), pp. 1076-1086.

[13] Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba,
"The 1999 DARPA off-line intrusion detection evaluation" The
International Journal of Computer and Telecommunications
Networking ,Volume 34, Issue 4 (October 2000) Page(s): 579 –
595.

[14] Lixiang Shen, Francis E. H., "A discretization method for rough
sets theory", Intelligent Data Analysis, Volume 5, Issue 5,
October 2001, Pages: 431 – 438.

[15] Matthew V. Mahoney and Philip K. Chan, "An analysis of the
1999 DARPA/Lincoln laboratory evaluation data for network
anomaly detection." 6th International Symposium on Recent
Advances in Intrusion Detection (September 2003).

[16] Mohammad M. Rahman1, Dominik Slezak, and Jakub
Wroblewski, "Parallel island model for attribute reduction."
Lecture Notes in Computer Science. 2005.

[17] Riccardo Poli, William B. Langdon, Nicholas F. McPhee "A Field
Guide to Genetic Programming". University of Essex – UK
March 2008.

[18] Shisanu Tongchim, Prabhas Chongstitvatana, "Comparison
between Synchronous and Asynchronous Implementation of
Parallel Genetic Programming". Journal of Artificial Life and
Robotics, Volume 5, Number, May 2002.

[19] Shisanu Tongchim, Prabhas Chongstitvatana, "Nearest Neighbor
Migration in Parallel Genetic Programming for Automatic Robot
Programming", 5th International Symposium on Artificial Life
and Robotics, May 2002.

[20] Srinivas Mukkamala, Andrew H. Sung, Ajith Abrham" Modeling
Intrusion Detection Systems Using Linear Genetic Programming
Approach " Department of Computer Science, New Mexico Tech,
Socorro, NM 87801 Department of Computer Science, Oklahoma
State University, Tulsa, OK 74106. Journal Of Network And
Computer Applications
Volume 30, Issue 1, January 2007, Pages 1-3.

[21] UCI KDD Archive (http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html). September 2009.

[22] Wa'el M. Mahmud, Hamdy N.Agiza, Elsayed Radwan "Intrusion
Detection Using Rough Sets based Parallel Genetic Algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

33

Hybrid Model". World Congress on Engineering and Computer
Science 2009 (WCECS 2009). October 2009.

[23] WEI LU, ISSA TRAORE, "Detecting New Forms Of Network
Intrusion Using Genetic Programming", international Journal of
Computational Intelligence, Volume 20, Number 3, 2004.

[24] William B. Langdon, Adil Qureshi, "Genetic Programming
Computers using Natural Selection to generate programs".
London Centre for Nanotechnology, 1995.

[25] Yasser Hassan, Eiichiro Tazaki, "Combination method of rough
set and genetic programming". International Kybernetes journal,
2004, Vol. 33.

[26] Z. Pawlak, “Rough sets: theoretical aspects of reasoning about
data.” Kluwer Academic Publishers, Netherlands. 1999.

