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Summary 
Recently machine learning-based Intrusion Detection systems 
(IDs) have been subjected to extensive researches because they 
can detect both misuse and anomaly. Most of existing IDs use all 
features in the network packet to look for known intrusive 
patterns. In this paper a new hybrid model RSC-PGP (Rough Set 
Classification - Parallel Genetic Programming) is presented to 
address the problem of identifying important features in building 
an intrusion detection system, increase the convergence speed 
and decrease the training time of RSC. Tests are done on KDD-
99 data used for The Third International Knowledge Discovery 
and Data Mining Tools Competition. Results showed that the 
proposed model gives better and robust representation of rules as 
it was able to select features resulting in great data reduction, 
time reduction and error reduction in detecting new attacks. 
Empirical results reveal that Genetic Programming (GP) based 
techniques could play a major role in developing IDs which are 
light weight and accurate when compared to some of the 
conventional intrusion detection systems based on machine 
learning paradigms. 
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1. Introduction 

Intrusion detection is one of core technologies of computer 
security. The goal of intrusion detection is identification of 
malicious activity in a stream of monitored data which can 
be network traffic, operating system events or log entries. 
An Intrusion Detection system (IDs) is a hardware or 
software system that monitoring event streams for 
evidence of attacks. A majority of current IDs follow a 
signature-based approach in which, similar to virus 
scanners, events are detected that match specific 
predefined patterns known as “signatures". The main 
limitation of these signature-based IDs is their failure to 
identify novel attacks, and sometimes even minor 
variations of known patterns. Machine learning is a 
valuable tool for intrusion detection that offers a major 
opportunity to improve quality of IDs.  

As a broad subfield of artificial intelligence, machine 
learning is concerned with the design and development of 
algorithms and techniques that allow computers to "learn". 
At a general level, there are two types of learning: 

inductive, and deductive. Inductive machine learning 
methods extract rules and patterns out of massive datasets. 
The major focus of machine learning research is to extract 
information from data automatically, by computational and 
statistical methods. We can use supervised learning in IDS 
for automatic generation of detectors without a need to 
manually update signatures. Generally, there are two types 
of detecting an intrusion; misuse detection and anomaly 
detection.  
In misuse detection, an intrusion is detected when the 
behavior of system matches with any of the intrusion 
signatures. In the anomaly based IDs, an intrusion is 
detected when the behavior of the system deviates from the 
normal behavior. 
IDs can be treated as pattern recognition problem or rather 
classified as learning system. Thus, an appropriate 
representation space for learning by selecting relevant 
attributes to the problem domain is an important problem 
for learning systems.  
Feature selection is useful to reduce dimensionality of 
training set; it also improves the speed of data 
manipulation and improves the classification rate by 
reducing the influence of noise. The goal of feature 
selection is to find a feature subset maximizing 
performance criterion, such as accuracy of classification. 
Not only that, selecting important features from input data 
lead to a simplification of the problem, faster and more 
accurate detection rates. Thus selecting important features 
is an important problem in intrusion detection. 

Rough Set Classification (RSC) [26], a modern learning 
algorithm, is used to rank the features extracted for 
detecting intrusions and generate intrusion detection 
models. RSC creates the intrusion (decision) rules using 
the reducts as templates. After reduct generation, the 
detection rules are automatically computed subsequently. 
The rules generated have the intuitive “IF-THEN” format, 
which is explainable and very valuable for improving 
detector design. The main feature of Rough Set data 
analysis is noninvasive, and the ability to handle 
qualitative data. This fits into most real life problems 
nicely and to our problem too.  
Genetic programming (GP) is an evolutionary computation 
technique that automatically solves problems without 
requiring the user to know or specify the form or structure 
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of the solution in advance. At the most abstract level GP is 
a systematic, domain-independent method for getting 
computers to solve problems automatically starting from a 
high-level statement of what needs to be done. 
 
This paper proposes a hybrid Parallel Genetic 
Programming (PGP) [17] based on the attribute 
significance heuristic rule to find minimal reducts. 
Proposed model uses parallel computation of the optimal 
rough set decision reducts from data by adapting the island 
model for evolutionary computing. This hybrid genetic 
programming is the key subalgorithm in the RSC 
algorithm. In our reduction experiments, we used the 
dataset [13] used for The Third International Knowledge 
Discovery and Data Mining Tools Competition, which was 
held in conjunction with KDD-99 The Fifth International 
Conference on Knowledge Discovery and Data Mining. 
These data are considered a standard benchmark for 
intrusion detection evaluations.  

The rest of this paper is structured as follows.  In the 
second section, is describing KDD-99 intrusion detection 
benchmark data briefly. Rough Sets preliminaries and 
some important definitions are listed in third section. 
Fourth and fifth sections briefly describe Genetic 
Programming and Parallel Genetic Programming. Sixth 
section presents proposed RSC-PGG (Rough Set 
Classification - Parallel Genetic Programming) system 
model for rough set classification algorithm. Final section 
analyzes results and draw conclusions. 

2. KDD-99 Dataset 

One of the most important datasets for testing IDs is the 
KDD 99 intrusion detection datasets. KDD-99 [21][13] 
provides designers of IDs with a benchmark on which to 
evaluate different methodologies. This dataset is created by 
MIT Lincoln Lab’s DARPA in the framework of the 1998 
Intrusion Detection Evaluation Program [8]. 
 
In this paper, we used the subset that was preprocessed by 
the Columbia University and distributed as part of the UCI 
KDD Archive [21][13]. 
 
The dataset can be classified into five main categories 
which are Normal, Denial of Service (DoS), Remote to 
Local (R2L), User to Root (U2R) and Probing.  
 

• Denial of Service (DoS): Attacker tries to prevent 
legitimate users from using a service. 

•  Remote to Local (R2L): Attacker does not have 
an account on the victim machine, hence tries to 
gain access. 

•  User to Root (U2R): Attacker has local access to 
the victim machine and tries to gain super user 
privileges.  

• Probe: Attacker tries to gain information about 
the target host. 

 
For each TCP/IP connection record, 41 various 
quantitative and qualitative features were extracted plus 1 
class label. The labeling of data features as shown in 
(Table1) is adopted from Chebrolu [6][15]. 

3. Rough Set Theory Preliminary 

Rough sets theory was developed by Zdzislaw Pawlak in 
the early 1980’s (Pawlak, 1982) [26]. It is a mathematical 
tool for approximate reasoning for decision support and is 
particularly well suited for classification of objects. Rough 
sets can also be used for feature selection, feature 
extraction.  
The main contribution of rough set theory is the concept or 
reducts. A reduct is a minimal subset of attributes with the 
same capability of objects classification as the whole set of 
attributes. Reduct computation of rough set corresponds to 
feature ranking for IDs. Below is the derivation of how 
reducts are obtained. 
 
Definition 1 An information system is defined as a four-
tuple as follows, S=<U, Q, V, f>, where U={x1, x2, …, xn} 
is a finite set of objects (n is the number of objects); Q is a 
finite set of attributes, Q={q1, q2, …, qn}; V= and 
is a domain of attribute q; f:U×V→V is a total function 

such that f(x, q)  Vq for each q Q, x U. If the attributes 

in S can be divided into condition attribute set C and 

decision attribute set D, i.e. Q=C D and C∩D=Φ, the 

information system S is called a decision system or 
decision table. 
 
Definition 2 Let IND(P), IND(Q) be indiscernible relations 
determined by attribute sets P, Q, the P positive region of 
Q, denoted POS IND(P) (IND( Q)) is defined as follows:  

 
POS IND(P) (IND( Q))=  
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Definition 3 Let P, Q, R be an attribute set, we say R is a 
reduct of P relative to Q if and only if the following 
conditions are satisfied: 

(1) POS IND(R) (IND( Q))= POS IND(P) (IND( Q)) 

(2) r R follows that 

POS IND(R-{r}) (IND( Q)) ≠ POS IND(R) (IND( Q)) 

Definition 4 Let L= (U, A  {d}, V, f) be a decision system, 

whose discernibility matrix M(U) = [MA
d (i , j)]n×n  is 

defined as: 
 
MA

d (i , j) = 

{ ak | ak  A  ak(xi) ≠ ak(xi)}, d(xi) ≠ d(xj);  d(xi) = d(xj). 

Φ 
 
Where ak(xj) is the value of objects xj on attribute ak , d(x) 
is the value of object x on decision attribute d. Write  

 
M(U) = [MA

d (i , j)]n×n as a list {p1,…, pt}. 
 

Each pi is called a discernibility entry, and is usually 
written as pi=ai1, …, aim, where each aik corresponds to a 
condition attribute of the information system, k=q,…,m; 
i=1,…,t. 
 
Furthermore, the discernibility matrix can be represented 
by the discernibility function f, conjunction normal form 

(CNF), i.e., f=p1 … pt, where each pi=ai1 … aim is called 

a clause, and each aik is called an atom. Note that the 
discernibility function contains only atoms, but not 
negations of atoms.  
Although the discernibility matrix and discernibility 
function have different styles of expression, they are 
actually the same in nature. 
 
Definition 5 let h denote any Boolean CNF function of m 
Boolean variables {a1,… , am}, composed of n Boolean 

sums {s1,… , sn}. Furthermore, let wij  {0, 1} denote an 

indicator variable that states whether ai occurs 
in , h = . We can interpret h as a bag 

or multiset M (h) = {Si | Si = {a  A | aj occurs in si}}. 

Because the discernibility function f is also a CNF Boolean 
function, so it has a multiset. Let M( f ) denote the multiset  
of discernibility function f, M(f) = 
{{a11,…,a1m},…,{ai1,…,aim},…, {at1,…,atm}}. 
 
Definition 6 Hitting set of a given multiset M of elements 

from 2A is a set B  A such that the intersection between B 

and every set in M is nonempty. The set B  HS (S) is a 

minimal hitting set of M if B ceases to be a hitting set if 
any of its elements are removed.  
 
Let HS (M) and MHS (M) denote the sets of hitting sets 
and minimal hitting sets, respectively, 
 

HS (M) = {B  A | B ∩ Si ≠ Ø for all Si in M} 

Proposition 1 For decision system L= (U, A  {d},V, f), g 

is its discernibility matrix, and B A, B RED(U, d) is 

equivalent to B MHS(M(g)). So the rough set reduct 

computation can be viewed as a minimal hitting set 
problem. 
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Table 1:  Network Data Feature Label 
Feature 

label Feature name NO# Feature 
label Feature name NO# Feature 

label Feature name NO#

A Duration 1 O Su_attempted 15 AC Same_srv_rate 29 
B Protocol_type 2 P Num_root 16 AD Diff_srv_rate 30 
C Service 3 Q Num_file_creations 17 AE Srv_diff_host_rate 31 
D Flag 4 R Num_shells 18 AF Dst_host_count 32 
E Sec_byte 5 S Num_access_files 19 AG Dst_host_srv_count 33 
F Dst_byte 6 T Num_cutbounds_cmds 20 AH Dst_host_same_srv_rate 34 
G Land 7 U Is_host_login 21 AI Dst_host_diff_srv_rate 35 
H Wrong_fragment 8 V Is_guest_login 22 AJ Dst_host_same_src_port_rate 36 
I Urgent 9 W Count 23 AK Dst_host_srv_diff_host_rate 37 
J Hot 10 X Sev_count 24 AL Dst_host_server_rate 38 
K Num_failed_login 11 Y Serror_rate 25 AM Dst_host_srv_serror_rate 39 
L Logged_in 12 Z Sev_serror_rate 26 AN Dst_host_rerror_rate 40 
M Num_comprised 13 AA Rerror_rate 27 AO Dst_host_srv_rerror_rate 41 
N Root_shell 14 BB Srv_rerror_rate 28    

 

4. Genetic Programming 

Genetic programming (GP) is an evolutionary computation 
EC technique that automatically solves problems without 
requiring the user to know or specify the form or structure 
of the solution in advance[10][11].  
 
GP is an extension of the conventional genetic algorithm in 
which each individual in the population is a computer 
program. The search space in genetic programming is the 
space of all possible computer programs composed of 
functions and terminals appropriate to the problem domain. 
 
Genetic programming (GP) works with a group of 
candidate solutions which are randomly generated at the 
beginning of the algorithm. These candidate solutions are 
computer programs. By simulating natural evolution, GP 
works as an iterative procedure which is referred to as a 
generation. Each solution is evaluated with the objective 
function to determine the quality of each solution, called 
the fitness value. The principle of the evolution is that the 
solution with the high fitness value has more chance to be 
selected and produce offspring. After the evaluation is 
performed, some individuals are selected with the 
probability depending on their fitness values. Then, a set of 
genetic operators, i.e. crossover and mutation, transforms 
the selected individuals into the new population of 
candidate solutions.  
 
The algorithm replaces the old population with the new 
population and repeats the whole process with the new 
population. This continues until the fitness value indicates 
that the goal is achieved or repetition limit is reached 
[10][11].  

5. Parallel Genetic Programming 

As the idea of GP was developed from the GA foundation, 
the model of parallel GP was also adopted from the 
development of parallel GA.  
 
Parallelism refers to many processors, with distributed 
operational load. Each GP is a good candidate for 
parallelization. Processor may independently work with 
different parts of a search space and evolve new 
generations in parallel. This helps to find out the optimum 
solution for the complex problems by searching massive 
populations and increases quality of the solutions by 
overcoming premature convergence.  
 
One of the most ingenious taxonomies is the Parallel Island 
Model (PIM) [18][19], where the population is divided into 
a few large subpopulations and these subpopulations are 
maintained by different processors. Processors are globally 
controlled by message passing within Master-Slave 
architecture. Master processor sends "START" signal to 
the slave processors to start generations and continue 
sending "MIGRATION" message to partially exchange the 
best chromosomes between the processors. So the worst 
chromosomes are replaced by the best received ones. Time 
between two consecutive MIGRATION signals is called 
the migration step; percentage of the best chromosomes is 
called migration percentage. Migrations should occur after 
a time period long enough for allowing development of 
good characteristics in each subpopulation. 
 
The migration can be implemented as synchronous and 
asynchronous. In synchronous migration, all nodes proceed 
at their own rates and synchronize when the migration 
occurs. The problem of synchronous migration is that it 
can cause uneven workloads among processors due to the 
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different rate of evolution. In asynchronous migration, the 
migration occurs without relating to the state of all 
processors. Asynchronous migration can reduce the wait 
time required for all processors. 

6. RSC-PGP System Model 

Feature extraction and detection rules generation are two 
key steps in any intrusion detection system based on 
learning algorithm. Feature extraction depends on data 
source and the category of attack be detected. For detection 
rules auto generation, our proposed model uses RSC and 
PGP for this task. It includes three phases:  

6.1 Preprocessing  

The raw data are first partitioned into three groups of 
attacks [13][15][8]:  

1. DoS attack detection dataset,  
2. Probe attack detection dataset,  
3. U2R&R2L attack detection dataset.  

 
For each dataset, a decision system is constructed. Each 
decision system is subsequently split into two parts:  

1. The training decision system, 
2. The testing decision system. 

6.2 Training decision system 

RCS-PGP classifier is trained on each training dataset of 
the three constructed decision systems of attacks. Each 
training dataset uses the corresponding input features and 
fall into two classes: normal (+1) and attack (−1). So this 
step has following steps:- 

1. Apply the discretization strategies [14] on real values 
attributes to obtain a higher quality of classification 
rules.  
Equal-Width-Interval is used. It is a generic method 
that simply divides the data into some number of 
intervals all with equal width. It divides the number 
line between Vmin and Vmax into k intervals of equal 
width. Thus the intervals have width w = (Vmax - 
Vmin) / k and the cut points are at Vmin + w; Vmin + 
2w; .......; Vmin + (k - 1) w. k is a user predefined 
parameter and is set as 10 in this model. Algorithm has 
a time complexity of where n is the number 
of in generated intervals. 
 

2. The intrusion (decision) rules are created using the 
reducts computed by the attribute reduction algorithm 
as templates. 

There are many attribute reduction algorithms. Since our 
decision systems are large, we need effective algorithm for 
reduction computation. Our model proposes a hybrid 

Asynchronous Parallel Island Model 
(APIM)[16][18][19][16]  for attribute reduction based on 
the attribute significance heuristic rule to find minimal 
reducts.  
 
We are modified APIM to run on single PC instead of 
running on many PCs connected with a network and we 
called this Singleton Parallel Island Model (SAPIM) Wa'el, 
Agiza, and Radwan [22]. New technique uses distributed 
evolutionary computing to exploit availability of 
computers with multicore processors, the robust threading 
pools provided and supported by the Operating Systems, 
and massive power of parallel computing.  In addition, it 
eliminates the required communication time over the 
network, decreases the training time and makes the 
generated classifier more effective. Following steps 
describes how to adjust this Parallel Genetic Programming 
taxonomy to fit the intrusion detection environment. 

6.3  Frame of Hybrid Genetic Algorithm  

According to the previous Definition 1, Section 2 we are 

given the data in the form of decision system L = (U, A  

{d}) by running C5 algorithm [2], the data is constructed 
into tree representation. Each tree T over the decision 
system L that produced by C5 consists of terminal nodes 
(classes of decision attribute d, non-terminal nodes 
(attribute set A), and edges (attribute value set V). The 
complete path [25] in the tree T is a sequence s= v0, d0, 
……, wm, dm, vm+1, where v0 is the root of tree, vm+1 is the 
terminal node, d0 …dm are the edges, and m={0,1,…}. If vi 
is the initial, then vi+1 is the terminal of edge di, i=0,1,…..m. 
let h(s)=m be defined as the length of path s. if PATH(T) is 
the set of all complete paths in the tree T, then h(T)= max 
{h(s):s ϵ PATH(T)} is called the depth of tree T. 

A decision rule r is associated with a complete path s over 
the tree T which is denoted by r= rule(s). The set of paths 
PATH(T) give us a set of rules R, where each rule r ϵ R is 
associated with each path s ϵ PATH(T). Sometimes rules 
derived from some paths may have a high error rate which 
is unacceptably by rough set measure or may duplicate 
rules derived from other paths, so the algorithm usually 
yields fewer rules than the number of paths in the tree. 
 
Let ST(L) be the set of all trees over a decision system L 
that are constructed by running C5 number of times. The 
set of trees ST(L) represents a population in genetic 
programming concept and each tree is an individual from 
this population. The number of trees in ST(L) is called the 
population size M. ST0(L) is the set of trees over L in 
generation 0 or initial population, and so STi(L) is the 



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009 
 

 

28 

population at generation i. The terminal nodes in each tree 
from ST(L) are assigned values from vd, so we can say that 
the classes of decision attribute give us here a set called 
terminal set in genetic programming. In the same manner 
the function set is the set of attributes A. By applying 
genetic operators, we build a new population from old one. 
 
We will define three types of genetic operators; crossover 
operator, mutation operator, and reproduction operator. 
Crossover operator is a mapping A: ST(L)2  ST(L)2 , i.e. 
A(T1,T2)=A(T1',T2'), where T1, T2 ϵ STi(L) are called 
parents and T1',T2' ϵ STi+1(L) are called offspring. It 
operates on two parental trees and creates two new two-
offspring consisting of parts of each parent. The offspring 
arc inserted into the new population at the next generation 
STi+1(L). These offspring trees are typically of different 
sized and shapes than their parents. Mutation operator is a 
mapping M: ST(L) ST(L). It generates a unique offspring 
tree T' from existing tree T, where M(T)= T' for T ϵ STi(L) 
and T' ϵ STi+1(L). It operates on one parental tree and 
creates one new offspring to be inserted into the new 
population at the next genera. Reproduction operator is a 
mapping RO: ST(L) ST(L), where it selects one 
individual T and makes a copy of the tree for inclusion in 
the next generation of the population, i.e. RO(T)=T, for Tϵ 
ST(L). After genetic operators are performed on the current 
population, the population of offspring replaces the old 
population. 

6.4 Fitness Function 

Fitness function ensures that the evolution is toward 
optimization by calculating the fitness value for each 
individual in the population. The fitness value evaluates the 
performance of each individual in the population. We use a 
fitness function used in Wei and Issa [23] that is based on 
the support-confidence framework. Support is a ratio of the 
number of records covered by the rules to the total number 
of records. Confidence factor (cf) represents the accuracy 
of rules, which is the confidence of the consequent to be 
true under the conditions. It is the ratio of the number of 
records matching both the consequent and the conditions to 
the number of records matching only the conditions. If a 
rule is represented as, if A then B, and the size of the 
training dataset is N, then  

cf = |A and B|/ |A|; support = |A and B|/N. 
 

|A| stands for the number of records that only satisfy 
condition A. |B| stands for the number of records that only 
satisfy consequent B. |A and B| stands for the number of 
records that satisfy both condition A and consequent B. A 
rule with a high confidence factor does not necessarily 
behave significantly different from the average. Thus, 
normalized confidence factor is defined to consider the 
average probability of consequent denoted prob.  

 
normalized_cf = cf × log (cf / prob);  prob = |B |/N. 

 
To avoid wasting time to evolve those rules with a low 
support value, a strategy is defined: "if support is below a 
user-defined minimum threshold (min_support), the 
confidence factor of the rule should not be considered". 
Thus, the fitness function is defined as follows: 
 
raw_fitness = 

       
         
Where the weights w1 and w2 are user-defined and used to 
control the balance between the confidence and the support 
during the searches. 
 
Token competition is used to increase the diversity of 
solutions Wei and Issa [23]. The idea is as follows: "In the 
natural environment, once an individual finds a good place 
to live, and then he will try to protect this environment and 
prevent newcomers from using it, unless the newcomers 
are stronger than this individual. Other weaker individuals 
are hence forced to search for their own place". 
 
In this way, the diversity of the population is increased. 
A token is allocated to each record in the training dataset. 
If a rule matches a record, its token will be seized by the 
rule. The priority of receiving the token is determined by 
the strength of the rules. Thus, a rule with high raw fitness 
score can acquire as many tokens as possible. The 
modified fitness is defined as follows: 
 
modified_ fitness = raw_fitness × count / ideal,  
 
where count is the number of tokens that the rule has 
actually seized, ideal is the total number of tokens that it 
can seize, which is equal to the number of records that the 
rule matches. 

6.5  Crossover, Mutation and Inversion 

We use classical, subtree crossover. Given two 
parents, subtree crossover randomly (and independently) 
selects a crossover point (a node) in each parent tree. Then, 
it creates the offspring by replacing the subtree rooted at 
the crossover point in a copy of the first parent with a copy 
of the subtree rooted at the crossover point in the second 
parent. 

In the mutation process, we use subtree mutation which 
randomly selects a mutation point in a tree and substitutes 
the subtree rooted there with a randomly generated subtree. 
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Koza and Onho [9] defined gene duplication to enable 
genetic programming to concurrently evolve both the 
architecture and work performing steps of a computer 
program. Koza and Onho [9] defined six new architecture-
altering genetic operations defined by which provide a way 
of evolving the architecture of a multi-part program during 
a run of genetic programming. Koza and Onho [9] 
concludes that "gene duplication emerges as the major 
force of evolution". We are using branch creation 
operation which creates a new automatically defined 
function within an overall program by picking a point in 
the body of one of the function-defining branches or result-
producing branches of the selected program. This picked 
point becomes the top-most point of the body of the 
branch-to-be-created. Against of branch creation we are 
using branch deletion that deletes one of the automatically 
defined functions. We are using branch deletion because 
operation of branch creation creates larger programs, so 
operation of branch deletion can create smaller programs 
and thereby balance the persistent growth in biomass that 
would otherwise occur. We are using what is called branch 
deletion with random regeneration which randomly 
generates new subtrees composed of the available 
functions and terminals in position of deleted branch [9]. 

6.6   Selection and Recombination Method 

SAPIM is used at this point. The selection and 
recombination operator occurs are implemented with two 
steps:- 

 
Step 1: Master thread start the operation 

 
Fig 1: Master thread operations 

Step 2: Each thread operation 

 
Fig 2: Thread operations 

 
In Step 1 in the algorithm (Fig. 1):  
• Generate number of trees = M (the population size) 

using C5. By running C5 M times, and in each run of 
C5, change the probability of pruning for tree to get 
different tees. At the end of running C5 method, we 
store all trees as initial population. 

• Divide generates trees over islands and start each 
island operation.  

• Use heuristic rule to make PGP converge faster [12]. 
This rule operator operates on the whole population.  

o Let R be the attribute set represented by 
current chromosome. If R is not a hitting set  

(It is judged in the fitness function 
computation), Then find an attribute a in C−R 
which has the maximal value SGF(a, R, 
D)=p(a).  

o If there are several aj, (j=1,2,…,m;) with the 
same maximal value, stochastically choose 
one attribute from them.  

o Set the bit corresponding with aj as “1”.  

• Then according to the fitness for each chromosome; 
we use stochastic sampling method to select; 

In Step 2 in the algorithm (Fig. 2):  
• Convert the tree into a set of rules (each rule is 

associated with a complete path in the tree) [4]. 

• Remove the duplicated rules from the set of rules. 

• Compute the fitness value for each set of rules. 
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• Choose best offspring using following three steps:- 

o  minsingle(Offspring) be the worst individual 
in the new population, minfit(Offspring) be 
the corresponding fitness;  

o Let maxsingle(Parent) be the best individual 
in the old population, maxfit(Parent) be the 
corresponding fitness.  

o If minfit(Offspring) < maxfit(Parent), we 
replace minsingel(Offspring) with 
maxsingle(Parent). 

• Create a new population by applying Crossover, 
Mutation and Inversion described before. 

• The best-so-far individual is designated as the result of 
run (i.e. the set of rules). 

6.7 Testing Decision System 

In this step model measure the performance of generated 
rules on testing data.  So this step has following steps:- 

1. Discretization method is first used to discretizing the 
new object dataset. 

 
2. Generated rules are used to match testing objects to 

compute the strength of the selected rule sets for any 
decision class. 

 
3. The new object will be assigned to the decision class 

with maximal strength of the selected rule set. 

7. Parameters Settings 

The various parameter settings for RSC-PGP are depicted 
in (Table 2). We made use of +, - , *, /, sin, cos, sqrt, ln, lg, 
log2, min, max, and abs as function’s set.  
 

Table 2: Parameters used by RSC-PGP 

Parameter Value 
 Normal Probe DoS U2R R2L

Population size 100 200 250 100 100
Number of generations 30 200 800 20 800

Chromosome length 30 40 40 30 40 
Crossover frequency 

(%) 90 90 80 90 90 

No. of mutations per 
chromosome 3 4 5 3 4 

Branch creation and 
deletion (%) 5 5 5 5 5 

8. Experiment Setup And Results 

In order to compare RSC-PGA algorithm with other 
techniques we constructed our intrusion detection system 
(RSC-PGP) and tested its performance on the KDD-99 
intrusion detection contest dataset. 
As described previously, we are using dataset subset that 
was preprocessed by the Columbia University and 
distributed as part of the UCI KDD Archive[21][15]. For 
each TCP/IP connection, 41 various quantitative and 
qualitative features were extracted plus 1 class label .The 
labeling of data features as shown in (Table1) is adopted 
from Chebrolu [6][15]. 
The dataset can be classified into five main categories 
which are Normal, Denial of Service (DoS), Remote to 
Local (R2L), User to Root (U2R) and Probing. The 
original data contained 744 MB data with 4,940,000 
records. In the International Knowledge Discovery and 
Data Mining Tools Competition, only “10% KDD-99” 
dataset is employed for the purpose of training. So, all 
other experiments performed their analysis on the “10% 
KDD-99” dataset. In our experiments, we will use this 
“10% KDD-99” to compare it with other approaches used 
these data. 
 
First of all, in Zainal and Zhang [12] RSC reducts obtained 
using standard Genetic Algorithms were 26 and they were : 
C, D, E, F, G, J, M, N, P, W, X, Y, AA, AB, AC, AD, AE, 
AF, AG, AH, AI, AJ, AK, AL, AM and AN. They had 
ranked the six most significant features using Rough Set 
Concept as: C, D, E, X, AF and AO. In addition, there are 
three different techniques namely Support Vector Decision 
Function (SVDF), Linear Genetic Programming (LGP) and 
Multivariate Adaptive Regression Splines (MARS) used by 
Sung and Mukkamala [7] and one robust model namely 
Rough Set Classification Parallel Genetic Algorithm (RSC-
PGA) used by Wa'el, Agiza, and Radwan [22] were used to 
filter out redundant, superfluous information exist in these 
features, and hence significantly reduce a number of 
computer resources, both memory and CPU time, required 
to detect an attack. SVDF’s proposed features were; B, D, 
E, W, X and AG. Meanwhile LGP yielded features C, E, L, 
AA, AE and AI. MARS suggested features E, X, AA, AG, 
AH and AI. RSC-PGA model has 22 reduct features, and 
has ranked five most significant features as C, D, E, X, and 
AO as the core of these reduct features.  
Our RSC-PGP model has 20 reduct features, and has 
ranked four most significant features as C, D, E, X as the 
core of these reduct features. This result is compatible with 
other approaches results and at the same time contains the 
"E" reduct feature which has been chosen by other 
approaches as the most important reduct feature.  
To compare classification accuracy of our RSC-PGP model 
with other robust models, we analyzes the True Positive 
Rate (TPR) and False Positive Rates (FPR) for our model 
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with Multi Expression Programming (MEP) and Gene 
Expression Programming (GEP) models proposed by 
Abraham, Grosan, and Carlos [1] in order to determine the 
efficiency of our developed ID model. The TPR value is 
given by: 

 
 
The FPR is given by: 
 

 
 
As evident from (Table 3), when compared to RSC-PGP 
obtained the best values for TPR and FPR for Normal, DoS 
and U2R, and good performance for the other classes. 
According to column "G" in (Table 3) which shows the 
required number of generations generated to achieve these 
result we can see that RSC-PGP also required smallest 
number of generations for the Probe, DoS, U2R, and R2L 
types respectively. 
 

Table 3: Comparison of false alarm rates 

Attack 
Type MEP GEP RSC-PGP 

 TPR FPR G TPR FPR G TPR FPR G 

Normal 0.996 0.999 30 0.996 0.999 35 0.998 0.996 34 

Probe 0.947 0.982 60 0.999 0.9748 80 0.997 0.9645 55 

Dos 0.987 0.999 200 0.918 0.943 240 0.989 0.990 170

U2R 0.400 0.999 20 0.437 0.995 25 0.443 0.992 18 

R2L 0.973 1 90 0.989 0.984 80 0.988 0.989 64 

 
In (Table 4) the variable combinations evolved by RSC-
PGP is presented. In (Table 4), var represents Variable 
number (Column 1 in Table 1). It is to be noted that only 
these few variables are required to detect a particular type 
of attack. This leads to a very light intrusion detection 
system when compared to a fuzzy expert system (which 
requires so many rules) or an artificial neural network with 
so many hidden neurons [1]. 
 

Table 4: Functions evolved by RSC-PGP 

Attack type Evolved Function 

Normal var12 * log2(var10 + var3) 

Probe 
(fabs(var30 + var35)) < (var26 + 
var27)?(fabs(var30  +  var35))  :  (var26  + 
var27); 

DOS 

var38 − (Ln(var41 * var6) + sin(Lg(var30))) − 
(Lg(var30) − (var41 * var6))) > (0.3415 + 
var24  +  var41  *  var6)?(var38  −  (Ln(var41  * 
var26)  +  sin(Lg(var30)))  −  (Lg(var30)  − 
(var41  *  var6)))  :  (0.3415  +  var24  +  var41  * 
var6) + var8 

U2R sin(var14) − var33 

R2L 

fabs((fabs(var8 > (var1 + (var6 > 
(Ln(var6))?var6 : (Ln(var6))) * var3)?var10 : 
(var1 + (var26 > (Ln(var6))?var6 : (Ln(var6))) 
*var3))) * (var12 + var26)) + var11 

  
To make an adequate comparison between the serial GP 
algorithm and our parallel algorithm to show RSC-PGP 
speedup, we will run our RSC-PGP model over single 
thread which will mimic sequential GP algorithm. The 
parallel speedup is defined as the ratio of the serial 
execution time to the parallel execution time. 
 

 
 

 
Fig 3: RSC-PGP Speedup 

Fig.3 illustrates the speedup observed on the two 
implementations as a function of the number of threads 
used. The graph shows a substantial increase of the 
speedup as a function of the number of threads used. The 
speedup is greater than the number of threads used. The 
reason is that the total amount of work in the parallel 
algorithm is less than the serial algorithm. The reduction of 
work is caused by the divided populations and the smaller 
number of environments in each node. 
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9. Conclusion 

This paper illustrated the importance of GP techniques for 
developing intrusion detection systems.  
We are modified Parallel Island Model (PIM) to run on 
single PC instead of running on many PCs connected with 
a network and we called this Singleton Asynchronous 
Parallel Island Model (SAPIM). New technique uses 
distributed evolutionary computing to exploit availability 
of computers with multicore processors, the robust 
threading pools provided and supported by the Operating 
Systems, and massive power of parallel computing. SPIM 
Algorithm based on heuristic function increases 
performance of calculations, and its migration technique 
increases quality along with performance.  In addition, it 
decreases the training time and makes the generated 
classifier more effective.  
 
Experiments are showing that proposed RSC-PGP model 
for decision rules generation is increasing the classification 
quality of unseen objects and allow reducing the number of 
decision rules without decreasing the classification quality 
of unseen objects. 
 
Also the speedup using 10 processors increases to 32. This 
means that the parallel algorithm is 32 times faster than the 
serial algorithm by using 10 threads, so the superlinear 
speedup has been achieved. This is meaning that the 
speedup is greater than the number of threads used. 
 
Perhaps the greatest advantage of genetic programming 
comes from the ability to develop IDP’s for which there 
are no human experts. Although human expertise should be 
used when it is available, it often proves less than adequate 
for automating problem-solving routines. 
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