
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

71

Manuscript received October 5, 2009
Manuscript revised October 20, 2009

Object-Oriented Design Process Model

Jamilah Din1 , Sufian Idris2

1Universiti Putra Malaysia, 43300 UPM Serdang, Selangor, Malaysia.
2Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia.

Summary
Design is a first step in the development phase for any engineered
product or system. It is defined as the process and strategies used
to manage complexity. Software design process is an iterative
process whereby the requirements are transformed into a
“blueprint” for constructing the software. A design model is
developed based on the combination of intuition and judgment, a
set of principles and heuristics, and a process of iteration that
leads to final design specifications. Without a proper design, a
software system may fail to deliver its intended service and often
will lead to some consuming maintenance activities. Therefore it
is necessary for software developers to do the design process
thoroughly before they start implementing the system. Object-
oriented design is not an easy task. It is even difficult for a novice
designer or for an experienced designer who wants to shift to
object-oriented approach. Throughout literature, there are varying
schools of thought on what constitutes object-oriented design.
What is the process involved in this phase and what are
components or structures? This paper presents four popular
object-oriented design methods, and then a process model of
object-oriented design for novice designer is proposed. The
model consists of a process and four components. The process
model is part of the model of a guidance system to assist novice
designers in designing object-oriented systems.
Key words:
Object-oriented design, process model

1. Introduction

There are three important phases in developing software:
analysis, design, and implementation. The analysis phase is
where the developer determines what the proposed
software is supposed to do; in other words, try to get
comprehensive requirements of the system. The design
phase will provide the detailed specifications of how the
software should be developed. The latter is more technical
than analysis specification, and at this point of time, the
developer needs to think about how the software can
realize the requirements into a working system. And lastly,
the implementation phase is where the programmer
develops the system based on the blueprint from the design
phase using appropriate tools and programming languages.
 Object-Oriented Design (OOD) is a process where the
designer synthesizes all the requirements gathered during
analysis phase and maps them to objects and relationships
between the objects. It is a difficult process because the

designer needs to synthesize from a variety of
requirements and constraints to create a new structure [1].
It is also not easy for a novice designer or for a designer
who wants to shift from structured approach to object-
oriented [2]. Nevertheless, all designers need to learn
strategies and techniques to improve their design simply
through applying concepts, principles and heuristics.
 OOD is benefited in terms of maintainability through
which software can be modified to correct faults or to
adapt to changed environments; reusability of the design
artifacts and productivity gains through direct mapping to
Object-oriented Programming Language (OOPL) [3].
 In this paper, we define a model as a design process
and a set of components that support the process. The term
‘design process’ refers to the activities involved in the
design phase, and ‘components’ are the elements in the
process. Designing a model is a complex task with several
issues that have to be overcome and the model requires a
good documentation to be actually reused. This paper
discusses part of our on-going research work in developing
tools for assisting novice designers build OO designs. In
this paper we present our proposed process model, OOD-
PM, which is targeted for novice designers. It will be used
as the process model for a guidance system that the authors
intend to develop to guide novice designers in designing
object-oriented systems.
 The rest of this paper is organized as follows. Section
2 reviews a few OOD process models that are still widely
used. Section 3 discusses who the object-oriented novice
designer is. Section 4 discusses OOD-PM, the proposed
process model for novice designers. Finally Section 5 will
conclude this paper.

2. Related work

This section discusses related works that form an important
background of this research. Design process is a process
whereby the design activities are performed to produce a
design model that satisfies the given requirement
specifications. Several design processes [4, 5, 6, and 7]
have been proposed during the last three decades. Those
processes claimed and have proven, in a certain case, to be
good processes to follow. Each process involves the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

72

identification of classes, responsibilities and hierarchies.
Those are the basic components in OOD. This section
focuses on the process models in OOD. These four process
models are chosen because most academicians use these
models in introducing OOD to students who are novice
designers which the proposed process model is targeted for.
These four process models become a background to the
proposed process model (OOD-PM)

2.1 The Responsibility-Driven Design

The first and foremost process model is defined by Wirfs-
Brock [4]. The Responsibility-Driven Design (RDD), as
shown in Fig.1, looks at responsibility instead of the data,
which is commonly used by designers. RDD divides OOD
into two distinct phases.

Fig. 1 Responsibility-Driven Design

The model is developed from requirements specification
by extracting nouns and verbs. Responsibilities are
determined before collaborations. The output of this phase
is called a preliminary design. In the second phase,
responsibilities are factored into hierarchies, collaborations
are detailed, and the protocols determined. The most
important aspect in this phase is to give full attention to
structuring abstract and concrete classes before improving
the collaborations. This process stops at the hierarchies,

which is sufficient for design activity. This process model
is easy to follow but it lacks the detailed design, which
includes the implementation details. The proposed model
(OOD-PM) used this model as a guideline.

2.2 Object-Oriented Analysis and Design

The idea in RDD is also present in Booch’s process model
[5] but Booch suggested an iterative approach, instead of
top-down. In Booch’s OOAD, design is an incremental
and iterative process. It is composed of four steps; identify
classes, identify semantics of classes, identify relationships
among the classes, and lastly specify interfaces and
implementations. Even though this process is widely used,
designers still need to find many important details of how
these complex, major activities are to be done. Moreover it
works well for simple to moderate design specifications,
and it will become costly for more complex systems.

Fig.2 Object-Oriented Analysis Design

2.3 Object-Oriented Software Engineering (OOSE)

OOSE [6] is another popular process model. This process
considers adaptations to make idealized analysis model fit
the real world environment, and then create blocks (design
abstraction that allows for the presentation of an aggregate
object) as the primary design object. The next step is to
create interaction diagrams that show how stimuli are
passed between blocks before organizing the blocks into
subsystems. The design work is then reviewed. This model
does not include the implementation part of the design. It
is easy to follow but does not have implementation details.
Fig 3 shows the process of this model.

Design

Analysis Phase

Exploratory Phase
Identify Classes

Identify
Responsibilities

Identify
Collaborators

Analyze Hierarchies

Analyze Subsystems

Create Protocol

Preliminary Design

Requirements Specification

IIddeennttiiffyy oobbjjeecctt
aanndd ccllaasssseess

IIddeennttiiffyy
sseemmaannttiiccss

IIddeennttiiffyy
rreellaattiioonnsshhiippss

SSppeecciiffyy iinntteerrffaaccee aanndd
iimmpplleemmeennttaattiioonn

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

73

Fig. 3 OOSE

2.4 Object Modeling Technique (OMT)

Another object-oriented design approach, which is also
widely used, is Object Modeling Technique (OMT),
developed by Rumbaugh [7]. OMT, as shown in Fig 4, has
a simple notation and supports the structural, behavioral,
and functional aspects of a system. Those aspects are
represented respectively by the object model, the dynamic
model, the functional model. OMT divides the design
phase into two stages: system design and object design.
During system design, the designer designs the overall
architecture of the system, followed by the adding of
details about the implementation. Many design models and
CASE tools have been developed based on this approach
[ref?]. It is also a commonly taught object-oriented
methodology in academic settings.

Fig. 4 Object Modeling Technique

Table 1 summarizes the design processes of the four
process models discussed above. These four process
models become a background to the suggested process
model of our work.

Table 1: Design Processes

Object-Oriented
Process Model

Design Process

Designing Object-
Oriented Software
Method
[4]

• construct protocols (formal
description of the messages to
which a class will respond) for
each class

• create a design specification for
each class

• create a design specification for
each subsystem

Object-Oriented
Analysis and Design
With Applications
[5]

• architectural planning
• tactical design
• release planning

Object-Oriented
Software Engineering
[6]

• consider adaptations to make
idealized analysis model

• create blocks (design abstraction)
as the primary design object

• create an interaction diagram
• organize blocks into subsystems
• review the design work

Object Modeling
Technique (OMT)
[7]

• perform system design
• conduct object design
• implement control mechanisms

defined in system design
• adjust class structure to

strengthen inheritance
• design messaging
• package classes and associations

3. Novice Designers

There are a few studies which describe novice designers as
undergraduate students or new object-oriented designers
who have no industrial experience [8, 9]. However, in the
field of object-oriented design, it is not yet clear how
experts and novices differ in terms of cognition, despite
the fact that expert and novice behavior can be observed in
terms of actual outcomes. In order to understand how to
support the designer, in particular novice designer, a study
into how novice designers approach their design task was
reviewed by Suppapitnarm & Ahmed [10]. Their study
showed that novice designers take considerable effort and
time to pick up tacit knowledge in the design development
process. From the literature study discussed above, this
study refers novice designers as new designers or
experienced non-object-oriented designers who are
shifting to object-oriented approach. This is because
novices need to be guided in order to produce better
designs and the best practices from the experts can be used

Adapt analysis model

Create abstraction

Create interaction diagram

Organize into subsystem

ddeessccrriibbee
rreellaattiioonnsshhiippss

oorrggaanniizzee
uussiinngg

iinnhheerriittaannccee

ddeeffiinnee tthhee
bbeehhaavviioorr

iiddeennttiiffyy
oobbjjeecctt aanndd

ccllaasssseess

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

74

in guiding them. The next section provides a discussion on
the common problems in designing object-oriented
systems among novice designers.

3.1 Problems in Designing Object-Oriented Systems

among Novice Designers

This section surveys the current study on the problems of
designing object-oriented software among novice
designers. The focus of this study is on novice designers.
The definition of the novice designer and the literatures
that support it has been discussed in the previous
subsection. Several empirical studies have looked at the
understanding and misconception in object-oriented
approach among novices. However, many of the works are
based on student programming [11, 12, 13, 14], and only a
few study have been done on students designing simple
object-oriented programs [15. 16].
 Ryan [9] has done an empirical study on designer
behavior. The study wanted to show the difference in
cognitive activities and design strategies between both
novice and expert object-oriented designer. The object-
oriented expert designers were designers with more than
seven years of experience in developing object-oriented
systems. The novices were designers with no object-
oriented experience, though they might have experience in
procedural approach. Even though the study showed that
there is no difference between these two groups in terms of
generalization, object-oriented design is still considered
difficult especially to novices [2, 17, 18, 19].
 Blaha et al [20] have done a “scaffolding” experiment
in a multi-national, multi-institutional study that looked at
several aspects of software design. The study involved 21
post-secondary institutions in the US, UK, Sweden, and
New Zealand. The subjects in this study were divided into
three groups: competent students, graduating seniors and
educators. They were needed to perform two tasks:
software decomposition and design criteria prioritization.
For the design task, they were given a brief description of
a “super alarm clock” system. The study reported that there
was a significant trend in the group in increasing use of
standard graphical representation and increased in
recognition of ambiguity. This study raised important
questions for educators about how they can help the
student in recognizing ambiguities in specification.
 The study by Or-Bach & Lavy [15] reveals that
students have difficulties in the concepts of abstraction,
inheritance and polymorphism. This report shares the same
finding as other studies [21]. Sim & Wright [21] reported
the difficulties of students in learning object-oriented
concepts of object-oriented analysis and design. The study
has shown that students have difficulties in understanding
and modeling the behavioral aspect of object-oriented

analysis and design, especially concerning messages and
operations.
 The recent study by Eckerdal et al [13] has proven that,
object-oriented design is still a difficult task to novice
designers. The study has been done on near-graduating
senior students by examining the design artifacts produced
by these students. The result showed that about 60% of
Computer Science graduates fail to design simple software
systems.
 Gibbon [22] in his thesis has listed common design
mistakes made by the novice designers, which are:
• Large number of attributes
• Large number of methods
• Poor encapsulation
• Behavior rich or God Class – centralized design

architecture (collaborate with numerous system
classes to fulfill their responsibility)

• Behavior poor (inert class) – defines only get and set
methods.
Based on the literature study elaborated above,

problems in designing object-oriented system can be
categorized into two groups:
1. basic concepts of object-oriented design :

• problem in designing class – with large number of
attributes and methods

• God Class – classes with many responsibility
2. advanced concepts of object-oriented design

• abstraction
• encapsulation
• inheritance

 This study focuses on these two categories in order to
guide the novices in designing object-oriented system.

4. OOD Process Model

The Object-Oriented Design process model considers the
common design faults among novice designers as has been
discussed previously. Considering those common faults
and what other guidance system that support the design
phase have done and also combining the other
methodologies available from literature, the OOD-PM
process model is proposed. Before discussing OOD-PM in
detail, the following section presents its elements which
are based on the concepts and definitions defined in the
model.

4.1 Elements in the OOD-PM

The process model has many elements that can be viewed
as static elements. This section defines those elements
which will explain the terminology used in the discussion
about OOD-PM in the next section. The elements are
discussed according to their categories.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

75

Class: A class is an abstraction of similar objects. A class
is a set of objects that share a common structure, common
behavior, and common semantics [23]. During the analysis
stage, individual object instances are identified and then
grouped into general classes. A class is defined by defining
the attributes and methods of its objects.
 Attributes refer to data belonging to a class.
Collectively, the attributes of an object represent its state.
There are three types of attributes: single-valued,
multiplicity or multivalued attribute. There are also
attributes that refer to other objects or instance connections.
 Instances of a class exhibit behavior when they
execute their methods. A method contains logic operations
of the class.

Class Collaboration: Class collaboration refers to the
cooperation between a class and other classes in
implementing its responsibilities. Responsibilities are
implemented in terms of methods. For each method, a class
can perform the method on its own, or it needs to
collaborate and communicate with other classes.

Responsibility is a function that a class needs to fulfill.
A class should not have too many responsibilities. This is
the principle of cohesion [24]. Cohesion reflects the single
purpose of a class. Highly cohesive components can reflect
lower coupling between classes because only minimal
information needs to be passed between them. The concept
of class cohesion means that all the class’s methods and
attributes to be used by internal methods and derived
classes’ methods.
 Interaction means the relation of a class and other
class. Classes communicate through messaging. Message
is a request service that an object sends to another object
and communication is the collaboration between classes in
order to perform a responsibility.

Class Relationship: Abstraction is a process of identifying
the similarities between classes. Abstraction is defined as
“the essential characteristics of an object that distinguish it
from all other kinds of objects and thus provide crisply
defined conceptual boundaries, relative to the perspective
of the viewer” [25]. During the abstraction process, the
similarities of the classes are identified and this helps in
the process of dividing the classes into hierarchies. The
allowable behavior, which is the outside view of the object,
is determined for the abstraction.
 There are three relationships that are common among
classes [26]. The paragraphs below discuss those
relationships.
• Association is a general dependency relationship

between classes. For example, a class depends on
another class if it manipulates objects of the other

class. The UML notation for this relationship is just a
plain line between the classes, as shown in Fig 5.

Fig 5 Association Relationship

• Aggregation is the association of a class with other

component classes. It is also sometimes known as
whole-part relationships or composition. In the UML
notation, the line representing the relationship has a
filled diamond at the “whole” end. An example of
aggregation relationship is depicted in Fig. 6.

Fig 6 Aggregation Relationship

• Inheritance is the relationship that exists when a class

inherits attributes and behavior from another class.
The most general class will become the super class
and other class is the sub-class. The sub-class inherits
all the data and behavior of its parent, besides having
its own data and methods. In the UML notation, the
super-sub class relationship is represented as a line
with a hollow triangle at the “super class” end. Fig 7
illustrates an example of inheritance.

Fig 7 Inheritance Relationship

Another concept related to class relationship is
visibility. “Visibility is the ability of one object to “see” or
have a reference to another object” [27]. The protocol is
the interface of the class operation and its visibility. One
class need to be visible to another class in order to
collaborate. The protocol can be either the member is
public, private or protected. A class can be visible (has
public protocol) to other classes or it can be hidden (has
private protocol) from other classes. The visibility is
depends on the type of relationship.

Class Encapsulation: Encapsulation is one of the most
important principles in object-orientation. It means that the
object includes both data and operations on the data
(methods). It is also known as information hiding. This is

Company Person

employs

Hand Finger

Vehicle

Car Bus Truck

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

76

important not only in programming, but also in analysis
and design. Most traditional methodologies separate the
data and functional components of the system.
Encapsulation is intended to reduce coupling among
modules. The less the other object knows about the
implementation of the module, the looser the coupling
between the module and its client can be. Even though
coupling is a concept in structured approach, it is a good
design concept that is embedded in the object-oriented
approach. Other object can only ask an object for services,
but cannot directly access the object’s state data.

Polymorphism means the ability to take more than one
form. Through polymorphism, it is possible to hide
implementation behind the same interface. Thus, an object
can send a message to another object without necessarily
knowing the precise class to which the object belongs. For
example, the message “move” might be sent to a vehicle
object, without knowing whether the object is a car, a
motorcycle, or an airplane. Each of these different types of
vehicles knows how to interpret and carry out the “move”
message. It is a capability of a single variable to refer to
different objects that fulfill certain message protocol
responsibilities (roles). By using polymorphism, the
designer can build reusable classes that contribute to
reusable object-oriented design.

4.2 The Model - OOD-PM

The proposed model, OOD-PM,is mainly derived and
concluded from Wirfs-Brock [4], Booch [5], Jacobson [6]
and Rumbaugh [7]. This model shows the process and
components involved in the process.

Fig. 8 shows the OOD-PM model for novice designers.
The object-oriented design process starts with the
identification of classes, which are abstractions of similar
objects. Objects are determined during the analysis phase.
Those common objects are grouped into classes during the
design phase. A class has attributes (data) and methods
(behavior) and also identity. Even though the attributes
and methods have been discovered during the analysis
phase, they should be refined in the design phase to get
more comprehensive attributes and methods for the classes.
 After defining the classes, the designer can then start
identifying class collaborations. It involves identifying
class relationships and responsibilities. Discovering a
responsibility means identifying a class (and only one
class) that owns that responsibility. The purpose is to
produce a highly cohesive design model. For each method,
either the class can perform on its own, or it needs to
collaborate and communicate with other classes. In order
for a class to communicate, its instances need to
send/receive messages to instances of other classes.
Messaging and communication are closely-related
concepts. When there is a message passing between class

instances, communication exists between the
corresponding classes.
 The next step is to determine relationships between
classes. A class relationship is how the class interacts with
other classes. The first activity is to do abstraction, before
categorizing the classes into hierarchies; whether
dependency, aggregation or inheritance. The abstraction
identifies similarities between classes and this helps in the
process of dividing the classes into hierarchies. The
allowable behavior, which is the outside view of the object,
is determined for the abstraction. At this point, the
designer might decide to introduce new classes, so the
process goes back to the first activity. As with most object-
oriented design models, the proposed model is also an
iterative process. From the abstraction, three common
relationships can be identified. Dependency is the
relationship when a class manipulates objects of the other
class. Aggregation is the relationship when a class is part
of the other class, and inheritance is when a class shares
the structure or behavior defined in the other class. To
complete this activity, the protocols of the classes need to
be determined. Protocols show the specific signature of
each responsibility.
 The abstraction of the class should precede the
decision about its implementation. The implementation is
treated as a secret of the abstraction. It is a detailed design.
Abstraction and encapsulation are closely-related concepts
[25]. Abstraction focuses on the outside view of a class
and encapsulation helps manage the complexity by hiding
the inside view of the abstraction. Liskov [28] suggests,
“for abstraction to work, implementations must be
encapsulated”. Information hiding can be used to
implement encapsulation. It means the object includes both
data and operations on the data. The concept of
encapsulation is intended to reduce coupling among
modules. The less the object knows about the
implementation of the module, the looser the coupling
between the module and its client to be. Coupling is a good
design concept that is embedded in the object-oriented
approach. Another activity is to apply polymorphism in
the design.. Polymorphism enables a message to refer to
different methods depending on the actual type of the
receiver object. Applying polymorphism can improve the
flexibility and extendibility of a design.
 The output of OOD-PM is a complete design for an
object-oriented system. OOD-PM is the process model
which will be incorporated in our OOD guidance system
for novice designers. The model has been discussed with
experts in order to ascertain the feasibility and reliability of
the model to novice designers. A number of experts and
academicians who have taught the object-oriented
approach have given feedback on the model. In addition,
the model has also been presented in a software
engineering conference. Based on discussions and

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

77

comments, the model has been further refined and
enhanced.

A comparison of OOD-PM with the four process
models discussed in section 2 is shown in Table 2.

Table 2: comparison of elements in the OOD process model

5. Conclusion

In software engineering, design plays an important role.
The design phase has contributed to highest rate of
software failure. A proper process model in designing a
system is required to assist novices in producing better
designs. In this context, we proposed a process model
called object-oriented design process model (OOD-PM).
This process model is suitable for novice designers
because it is systematic and covers most object-oriented
design components. This model is incorporated in the
model of a guidance system to assist novice designers in
designing object-oriented systems.

References
[1] Biddle, R., “A Lightweight CASE Tool for Learning OO

Design”, Proceedings of Oopsla 2000 Educators
Symposium, pp. 78-83, 2000.

[2] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design
Patterns: Element of Reusable Object-oriented Software,
Addison-Wesley, 1994.

[3] Lewis, T.L., Perez-Quinones, M.A. and Rosson, M.B., “A
Comprehensive Analysis of Object-Oriented Design:
Towards A Measure of Assessing Design Ability”,
Proceedings of 34th ASEE/IEEE Frontiers in Education
Conference, 2004.

[4] Wirfs-Brock, R.J., Surveying Current Research In Object-
Oriented Design. Communication of the ACM, 33(9), pp.
104-124, 1990.

[5] Booch, G., Object-Oriented Analysis and Design with
Applications, The Benjamin/Cummings Publishing
Company, Inc, 1994.

[6] Jacobson, I., Object-oriented Software Engineering, ACM
Press, NY, 1991.

[7] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W, Object- Oriented Modeling and Design,
Prentice Hall, New Jersey, 1991.

[8] Muraki, T. and Saeki, M., “Metrics for Applying GOF
Design Patterns in Refactoring Processes”, Proceedings of
4th International Workshop on Principles of Software
Evolution (IWPSE 2001), pp. 27-36, 2001.

[9] Ryan C., A Methodology for the Empirical Study of
Object-Oriented Designers. PhD Dissertation. RMIT
University, Melbourne, Australia, 2002.

[10] Suppapitnarm, A. & Ahmed, S. e-Learning from
Knowledge and Experience Capture in Design. Proceeding
of the The First National Conference on Electronic
Business (NCEB2002). 2002.

[11] Garner, S., Haden, P. & Robins, A. My Program is Correct
But it Doesn’t Run: A Preliminary Investigation of Novice
Programmers’ Problems. Proceeding of 7th Australasian
Conference on Computing Education, pp 173 – 180, 2005.

[12] Robins, A., Haden, P. & Garner, S. Problem Distributions
in a CS1 Course. Proceeding of the Eighth Australasian
Computing Education Conference (ACE2006), pp 165-173,
2006.

[13] Eckerdal, A., McCartney, R., Mostr¨om, J. E., Ratcliffe,
M. & Zander, C. Can Graduating Students Design Software
Systems? Proceeding of the Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science
Education, pp 403 - 407. 2006.

[14] Hanks, B. Problems Encountered by Novice Pair
Programmers. Journal on Educational Resources in
Computing (JERIC) 7(4), 2008.

[15] Or-Bach, R. & Lavy, I., Cognitive activities of abstraction
in object orientation: an empirical study. ACM SIGCSE
Bulletin 2: 82 – 86, 2004.

[16] Thomasson, B., Ratcliffe, M. & Thomas, L. Identifying
Novice Difficulties in Object Oriented Design. Proceeding
of the Proceedings of the 11th annual SIGCSE conference
on Innovation and technology in computer science
education, pp 28 – 32, 2006.

[17] Opdyke, W. F. & Johnson, R. E. Creating Abstract
Superclass by Refactoring. Proceeding of the ACM
Confference on Computer Science, pp 66-73, 1993.

[18] Marinescu, R. Measurement and Quality in Object-Oriented
Design. Thesis Doctor of Philosophy in Computer
Science. ”Politehnica” University of Timi¸soara. 2002.

[19] Moynihan, G. P., Suki, A. & Fonseca, D. J. An expert
system for the selection of software design patterns. Expert
Systems 23(1): 39-52, 2006.

[20] Blaha, K., Monge, A., Sanders, D., Simon, B. &
VanDeGrift, T. Do Students Recognize Ambiguity in
Software Design? A Multi-national, Multi-institutional
Report. Proceeding of the 27th International Conference on

Elements RDD Booch’s OOSE OMT OOD-

PM

Class x x x x x

Attribute x x x x x

Method x x x x x

Collaboration x x x x

Abstraction x x x x

Relationship x x x x x

Visibility x x x

interface x

subsystem x

Information

hiding

 x x

Polymorphism x x

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

78

Software Engineering, 2005 (ICSE 2005), pp 615-616,
2005.

[21] Sim, E. R. & Wright, G. The Difficulties of Learning
Object-Oriented Analysis and Design: An Exploratory.
Journal of Computer Information Systems Winter 2001-
2002): 95-100, 2002.

[22] Gibbon, C. A. Heuristics for Object-Oriented Design.
Thesis Doctor of Philosophy. University of Nottingham,
1997.

[23] Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J.,
Conallen, J. & Houston, K. A. Object-Oriented Analysis
and Design with Application. Addison-Wesley. 2007.

[24] Braude, E. J. Software Design: From Programming to
Architecture. Wiley. 2003.

[25] Booch, G. Rules of Thumb. Report on Object Analysis and
Design (ROAD) 2(4): 2-3. 1995.

[26] Bahrami, A. Object-Oriented System Development.
Irwin/McGraw-Hill. 1999.

[27] Larman, C. Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design and Iterative
Development. Prentice Hall. 2005.

[28] Liskov, B. Data Abstraction and Hierarchy. Proceeding of
the Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ‘87), pp 17-34.
1988.

Jamilah Din received the B.S. in Computing
Science from University of Evansville,
Indiana in 1987 and MSc in Computer
Science from Putra University of Malaysia
(UPM) in 2002. She is now a lecturer at
Faculty of Computer Science and
Information Technology, UPM and also
pursuing her PhD in Software Engineering at
National University of Malaysia (UKM).

Sufian Idris is a faculty member in the
Computer Science Department of the
Faculty of Information Science and
Technology at National University of
Malaysia (NUM). He holds an MSc in
Computer Science from the University of
Manchester, UK and a PhD in Computer
Science from the University of Manchester
Institute of Science and Technology, UK.

He has been a faculty member in NUM since 1988. His teaching
interests are in the areas of Programming, and Object-Oriented
Analysis and Design. His research interests and work are in the
areas of Teaching of Programming, Programming Tools, Object-
Oriented Development and Mobile Computing.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

79

Fig 8 OOD-PM

Class

Attribute
identification

Behavior
identification

Class Collaboration

Class Relationship

Class Encapsulation

message
passing

abstraction

communication

aggregationdependency inheritance

polymorphism

Information
hiding

visibility
specification

responsibility
discovery

interaction
identification

