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Abstract—In this paper, we address the problem of multi-
party user authentication and key agreement whereby a 
party gains assurance of the identity of other parties 
involved in a protocol for preventing impersonation and 
unauthorized access. Our scheme utilizes the idea of Buttyan, 
Nagy proposed multi-party challenge -response protocol. 
The proposed protocol allows each participant to directly 
verify all the other parties that were alive during the 
protocol run. Our protocol uses minimum number of 
messages required to solve the multi-party entity 
authentication problem. Specifically, we construct a 
multiparty secret key generation scheme which employs 
simple XOR operations. The authenticity of the protocol is 
assured by a digital signature scheme. Security attributes of 
our protocol are presented and analyzed as well.  
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I. INTRODUCTION  
There are numerous occasions on the Internet where 
authentication protocols are required to identify 
participants. Several protocols have been proposed for 
mutual authentication [1, 2]. Of these, the best known is 
Needham-Schroeder-Lowe(NSL-public key protocol [3, 
4]. The NSL protocol satisfies even the strongest forms of 
authentication, and has been studied extensively [5] .The 
operation of the three-message base protocol is as follows  
1) A → B : EKUB [nA ,A] 
2) B →A : EKUA [nA ,nB, B] 
3) A → B : EKUB [nB ] 
Figure 1 The Needham-Schroeder-Lowe Protocol With Public Keys. 
In the first step, the initiator ‘A’ of the protocol, generates 
a nonce nA and encrypts this value along with his identity 
using the public key (KUB) of the responder ‘B’. In the 
second step the responder, after receiving the message in 
step 1, generates his own nonce value nB . He encrypts 
both nonce’s nA, nB along with his identity using the 
public key of the initiator. In the third step, the initiator 

sends back the random value nB to the responder, 
encrypted by the public key of the responder. Similar 
protocols, such as the Needham-Schroeder (NS for short) 
private-key protocol and the Bilateral Key Exchange 
protocol, have the same underlying structure as the NSL 
protocols  were designed for two parties who want to 
authenticate each other, which is often referred to as 
bilateral authentication. In Modern communication there 
are three or more parties that need to authenticate each 
other. In such a setting we could naively instantiate 
multiple bilateral authentication protocols to mutually 
authenticate all partners. For n parties, such mutual 
authentication would  require (n× (n−1))/2 instantiations 
of the protocol, and three times as many messages. In 
practice, when multi-party authentication protocols are 
needed, protocol designers instead opt to design new 
protocols that require fewer handshakes. Any n-party 
challenge-response protocol for entity authentication, in 
which each party authenticates every other party, uses at 
least 2n − 1 messages[6].Our work presents  novel multi-
party authentication protocols, in which a party 
authenticates all the other parties during the protocol run. 
For n parties, the proposed communication structure 
consists of 2n − 1 messages, which turns out to be the 
optimal message complexity. 
Message passing structure  
Before going into the details of our protocols, we describe 
the message passing structure. If A authenticates every 
other party B,C, . . . in the protocol, then each of these 
parties, or more precisely vertices that are labeled with 
their names, must be traversed by a directed path starting 
from and ending in a vertex that is labeled with A as 
shown in figure 2. 
 

 
 
Figure 2 Directed Path 
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Similarly If B,C, . . . also authenticate every other party in 
the protocol, then there is a similar path for B,C, . . . as 
well .We obtain the protocol with the least number of 
messages by maximally overlapping these paths[6]. The 
resulting protocol graph has exactly 2n − 1 edges as 
shown in figure 3 

 
 
 
. 

                
Figure 3 Message passing structure 

II. OUR PROPOSED PROTOCOLS 
Two multiparty authentication and key agreement 
protocols were proposed using the public key 
cryptosystem where each of the n (n ≥ 2) participating 
parties proves its identity to each of the other parties and 
securely exchange a shared secret key with simple XOR 
operations. First we describe the three-party versions of 
our protocols in detail and then extend it to the n-party 
version.  
Notations 
na  -nonce /random value generated by user ‘a’ 
IDa  -Identity of user ‘a’ 
KUa -Public Key of user ‘a’ 
KRa -Private Key of user ‘a’ 
EKUa [x] -Encryption of message x by public key of                      

user ‘a’-KUa 
EKRa [y] -Encryption of message y by private key of       
                user ‘a’-KRa 
Pa  -Participant /Party  ‘a’ 
Protocol 1: 
Principle: Each participant generates an unpredictable 
random number, called nonce. Nonce values are passed 
around among the protocol participants in a circulating 

message. Each participant that receives the message and 
sees the challenges that the message contains includes its 
identity in the message before passing it further to the 
next participant. When a nonce gets back to the 
participant that generated it, the message contains the list 
of those participants that saw the nonce and forwarded the 
message. These forwarding participants have been alive 
during the protocol run. 
Assumptions: We assume that each participant in the 
system share their public key with other participants. We 
also assume that participants trust each other for executing 
the protocol honestly. In particular, each participant must 
be trusted for correctly attributing a received message to 
its sender and faithfully copying all the relevant fields of 
the received message into the message that is passed 
further. 
Messages of the three-party version: 
 
1)A → B :EKUB [EKRA [nA , IDA] ] 
2)B → C :EKUC [ EKRB [nB , IDB , nA, IDA] ] 
3)C → A :EKUA [ EKRC [nC,IDC,nB, IDB, nA] ] 
4)A → B :EKUB [ EKRA [nC, IDc, nB, nA] ] 
5)B → C :EKUC [EkRB [nC, nB] ] 
Description of the three-party version :User A generates 
an unpredictable nonce value nA, encrypts it along with 
his identity (IDA ) using his private key for authentication 
and sends it to B by encrypting with  B’s public key for 
confidentiality in message 1. Upon reception of message 1, 
B decrypts the message and authenticates A and  
generates an unpredictable nonce value nB , encrypts  it 
along with his own identity ((IDB ),user A’s nonce value  
nA, and Identity ((IDA ) with his private key and sends it to 
C by encrypting with C’s  public key in message 2.Upon 
reception of message 2, C decrypts the encrypted part, and 
verifies that it was indeed generated by B by checking the 
identifier in the message , then C generates an 
unpredictable nonce value nC , encrypts it along with its 
own identifier IDc, user B’s nonce value  nB, and Identity 
((IDB ), user A’s nonce value  nA, with his private key and 
sends it to A by encrypting with A’s public key. When A 
receives message 3, it decrypts the encrypted part of it, 
and verifies that it was indeed generated by C by checking 
the identifier .Furthermore, it checks if it received back its 
nonce value nA, and the identifier of B too. If these 
verifications are successful, then A authenticated B and C. 
After successful verification it continues encrypting its 
nonce value nA, nonce value of B ( nB) ,the identifier of C 
and its nonce value  nC , with his private key and  sends 
the result to B by encrypting with B ‘s public key in 
message 4. When B receives message 4, it decrypts it, and 
verifies that it was indeed generated by A by checking the 
nonce value nA. Furthermore, it checks if it received back 
its nonce value nB and if the message contains the 
identifier of C too. If these verifications are successful, 
then B authenticated A and C, and it continues  encrypting 
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its own nonce value nB, nonce value of C ( nC)  with his 
private key and sends the result of the encryption to C by 
encrypting with C ‘s pubic key in message 5. Finally, 
when C receives message 5, it decrypts it, and verifies that 
it was indeed generated by B by checking the nonce value 
nB. It also checks if it received back its nonce value nC, If 
these verifications are successful, then C authenticated A 
and B and the protocol terminates. 
Shared Secret Key generation of  three-party version 
The users A,B,C share a secret key which is obtained by  
XORing   the nonce values of the participants in the 
protocol run. 
K= nAΦ nB Φ nC  
Messages of the n-party version: 
 
1)   P1 → P2     :EKU2[EKR1 [n1,ID1 ]]   
   
2)   P2 → P3     :EKU3[EKR2 [n2,ID2,n1,ID1]]  
   
3)   P3 → P4     :EKU4[EKR3 [ n3,ID3,n2,ID2,n1,ID1 ]] 
   
4)   P4 → P5   :EKU5[EKR4[n4,ID4,n3,ID3,n2,ID2,N1,ID1]]
 . 

.  .   
       . 
       . 
       . 
              . 
n-1)Pn-1 →Pn  :EKUn[EKRn-1[nn-1,IDn-1,nn-2,IDn-2,…..  
                                                          … n2,ID2,n1,ID1]] 
  
 n  )Pn → P1    :EKU1[EKRn [nn,IDn,nn-1,IDn-1, ……..  
                                                               …..,n2,ID2,n1]]
    
n+1)P1 → P2  :EKU2[EKR1[nn,IDn,nn-1,IDn-1,……. 

                               ….,n3,ID3,n2,n1]] 
  

n+2)P2 → P3 :EKU3[EKR2[nn,IDn,nn-1,IDn-1,….. 
….,n4,ID4,n3,n2]]   

 
n+3)P3 → P4:EKU4[EKR3[nn,IDn,nn-1,IDn-1,…… 
                                                           …,n5,ID5,n4,n3]]   
     . 
     . 
     . 
     . 
     . 
2n-1)Pn-1 → Pn:EKUn [EKRn-1[nn,nn-1] ]  
      
Let us consider any of the encrypted messages of the 
protocol above. For a given nonce value in the message, 
the identifiers that stand before the nonce value 
correspond to those parties who have already seen and 
forwarded n. For instance, in message n, the identifiers 
before n1  are IDn ,IDn-1, …,ID2  and indeed,  all the 

participants that have already seen  n1 when message n is 
sent. Therefore, when a party receives back its random 
number in a message, it must check if all the other parties 
are listed before its random number in the message. 
Shared Secret Key generation of n-party version 
The users P1, P2, P3, ……, Pn  share a secret key 
which is obtained by  XORing   the nonce values of all the 
participants in the protocol run . 
K= P1Φ P2  Φ P3 Φ  ……Φ Pn  
 
Protocol 2: 
Principle: The main drawback of Protocol 1 is that it 
relies on the assumption that the protocol participants trust 
each other for honestly executing the protocol. In Protocol 
2, we remove this assumption. The main idea of Protocol 
2 is that we allow each protocol participant to directly 
verify the other parties who received its nonce value. 
Unlike in Protocol 1, the nonce value and the identifier of 
each participant is passed around among the other 
participants. A party verifies the other participant by 
decrypting with the public keys of the corresponding 
parties. If, after performing all the decryptions, it recovers 
its original nonce value, then it is convinced that all the 
other parties were alive during the protocol run. 
Assumptions: We assume that each participant in the 
system share his public key with the other participants. 
Messages of the three-party version: 
1)A → B :EKUB [EKRA [nA , IDA] ] 
2)B → C :EKUC [ EKRB [nB , IDB] , EKRA[nA, IDA] ] 
3)C → A:EKUA [ EKRC [nC,IDC], EKRB [nB, IDB],  
                            EKRA [nA,IDA]]] 
4)A  → B:EKUB [ EKRA [nC, IDc], nB, nA] ] 
5)B → C:EKUC [EkRB [nC,nB] ] 
Description of the three-party version:  
Party A generates an unpredictable nonce value nA, 
encrypts it along with his identity (IDA ) using his private 
key  and sends it to B by encrypting with  B’s public key  
in message 1. Upon reception of message 1, B decrypts 
the message and authenticates A and  generates  an 
unpredictable nonce value nB , encrypts  it along with his 
own identity ((IDB ) with his private key and  sends it to C 
along with the message sent by user A (message 1) by 
encrypting with C’s  public key in message 2.Upon 
reception of message 2, C decrypts the encrypted part, and 
verifies that it was indeed generated by A and B by 
checking the identifiers in the message, then C generates 
an unpredictable nonce value nC , encrypts it along with 
its own identifier IDC  with his private key and sends it to 
A along with the message sent by user B in message 2 by 
encrypting with A’s public key. When A receives message 
3, it decrypts the encrypted part of it, and verifies that it 
was indeed generated by B and C by checking the 
identifiers .Furthermore, it checks if it received back its 
nonce value nA and identifier IDA  If these verifications 
are successful, then A authenticated B and C. After 
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successful verification it continues encrypting its nonce 
value nA, nonce value of B ( nB) ,the identifier of C and its 
nonce value  nC , with his private key and  sends the result 
to B by encrypting with B ‘s public key in message 4. 
When B receives message 4, it decrypts it, and verifies 
that it was indeed generated by A by checking the nonce 
value nA. Furthermore, it checks if it received back its 
nonce value nB and if the message contains the identifier 
of C too. If these verifications are successful, then B 
authenticated A and C, and it continues  encrypting its 
own  nonce value nB, nonce value of C ( nC)  with his 
private key and sends the result of the encryption to C by 
encrypting with C ‘s pubic key in message 5. Finally, 
when C receives message 5, it decrypts it, and verifies that 
it was indeed generated by B by checking the nonce value 
nB. It also checks if it received back its nonce value nC, If 
these verifications are successful, then C authenticated A 
and B and the protocol terminates. 
Shared Secret Key generation of  three-party version 
The users A,B,C share a secret key which is obtained by  
XORing   the nonce values of the participants in the 
protocol run. 
K= nAΦ nB Φ nC  
 Messages of the n-party version: 
 
1)   P1 → P2 :EKU2 [ EKR1 [n1,ID1 ] ]   
 
2)   P2 → P3 :EKU3 [ EKR2 [n2,ID2], EKR1 [n1,ID1] ] 
  
3)   P3 → P4 :EKU4 [ EKR3 [ n3,ID3], EKR2 [n2,ID2],  

            EKR1[n1,ID1 ] ] 
4)   P4 → P5 :EKU5[EKR4 [n4,ID4],EKR3[n3,ID3], 

          EKR2[n2,ID2],EKR1[n1,ID1]]  
      . 
      . 
      . 
      . 
n-1)Pn-1 →Pn:EKUn [EKRn-1 [nn-1,IDn-1],  
                                EKRn-2[nn-2,IDn-2],…….. 

    ...EKR2[n2,ID2],EKR1[n1,ID1] ]  
 
n  ) Pn → P1:EKU1 [ EKRn [nn,IDn],EKRn-1[nn-1,IDn-1],  

   EKRn-2[nn-2,IDn-2],………. 
   ……,EKR2[n2,ID2],EKR1[n1,ID1] ]  

 
n+1)P1 → P2:EKU2[ EKRn[nn,IDn],EKRn-1[nn-1,IDn-1], 
                               ……….EKR3[n3,ID3],n2,n1]]  
 
n+2)P2 → P3:EKU3[ EKRn[nn,IDn],EKRn-1[nn-1,IDn-1], 
                               ..………,EKR4[n4,ID4],n3,n2] ]  
     . 
     . 
     . 
2n-1)Pn-1 → Pn:EKun-1 [ EKRn-1[nn-1,IDn-1] ]   
 

Unlike in protocol 1 ,the identifiers and the nonce values 
encrypted by private keys  value correspond to those 
parties who have already seen and forwarded the message . 
For instance, in message n, the identifiers and the nonce 
values are IDn , nn,IDn-1, nn-1, …,ID2  , n2,ID1,n1 .It Implies 
that all  the participants that have already seen  n1 when 
message n is sent. Therefore, when a party receives back 
its random number in a message, it can check if all the 
other parties  nonce values and identifiers are listed before 
its nonce value  in the message. 
Shared Secret Key generation of n-party version 
The users P1, P2, P3, ……, Pn  share a secret key 
which is obtained by  XORing   the nonce values of all the 
participants in the protocol run. 
K= P1Φ P2  Φ P3 Φ  ……Φ Pn  
 

III. SECURITY ANALYSIS AND COMPARISON 

The most obvious application of a public key encryption 
system is confidentiality where a message which a sender 
encrypts using the recipient's public key can be decrypted 
only by the recipient's paired private key .Presumably, this 
will be the owner of that key and the person associated 
with the public key used[9,10]. Another type of 
applications in public-key cryptography are digital 
signature schemes where a message signed with a sender's 
private key can be verified by anyone who has access to 
the sender's public key, thereby proving that the sender 
had access to the private key and therefore is likely to be 
the person associated with the public key used, and the 
part of the message that has not been tampered with. To 
verify that a message has been signed by a user and has 
not been modified the receiver only needs to know the 
corresponding public key.  

To achieve authentication, and confidentiality, 
the sender could first sign the message using his private 
key, then encrypt the message and signature using the 
recipient's public key[9,10]. These characteristics can be 
used to construct many cryptographic protocols for multi-
party key agreement and authentication.In protocol 1 we 
assumed that each participant trust one another for 
executing the protocol honestly. When a party receives a 
message it just verifies the authenticity of the party that 
had sent the message by decrypting the message with the 
corresponding party’s public key and confidentiality is 
achieved as the message can only be decrypted by 
receivers private  key .Protocol 2 executes with an 
assumption that no party trusts the other. So when a 
message is received by a party it verifies the authenticity 
of all the other parties who had already seen and 
forwarded the message. Encrypting the message with 
party’s private key thus provide authentication and further 
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encryption using public key of the receiver introduces 
confidentiality. 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we first reviewed mutual authentication 
protocols and then proposed a new multi party 
authentication schemes based on public key cryptosystem. 
The communication structure underlying the protocols is 
same as pattern for multiparty challenge-response 
mechanisms mostly used today. Analysis of our protocols 
showed that they can withstand the security flaws as 
strong authentication and confidentiality are part of public 
key cryptosystem. We extended our discussion in this 
paper to even more important concept of key-distribution, 
coupled with authentication. However, the work can be 
further extended to multi party contract signing protocols 
and multi party conferencing with key distribution. 
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