
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

80

Manuscript received October 5, 2009
Manuscript revised October 20, 2009

A Multi-Party User Authentication and Key Agreement
Protocol Based on Public Key Cryptosystem

Sushma Yalamanchili

Professor & Head, Department of CSE, V.R.Siddhartha Engineering College, Vijayawada.

M.Kameswara Rao
Lecturer, P.B.Siddhartha College, P.G.Centre, Vijayawada.

Ch.Smitha
Lecturer, P.B.Siddhartha College, P.G.Centre, Vijayawada.

Abstract—In this paper, we address the problem of multi-
party user authentication and key agreement whereby a
party gains assurance of the identity of other parties
involved in a protocol for preventing impersonation and
unauthorized access. Our scheme utilizes the idea of Buttyan,
Nagy proposed multi-party challenge -response protocol.
The proposed protocol allows each participant to directly
verify all the other parties that were alive during the
protocol run. Our protocol uses minimum number of
messages required to solve the multi-party entity
authentication problem. Specifically, we construct a
multiparty secret key generation scheme which employs
simple XOR operations. The authenticity of the protocol is
assured by a digital signature scheme. Security attributes of
our protocol are presented and analyzed as well.

Keywords—authentication, public key cryptography, nonce,
key agreement.

I. INTRODUCTION
There are numerous occasions on the Internet where
authentication protocols are required to identify
participants. Several protocols have been proposed for
mutual authentication [1, 2]. Of these, the best known is
Needham-Schroeder-Lowe(NSL-public key protocol [3,
4]. The NSL protocol satisfies even the strongest forms of
authentication, and has been studied extensively [5] .The
operation of the three-message base protocol is as follows
1) A → B : EKUB [nA ,A]
2) B →A : EKUA [nA ,nB, B]
3) A → B : EKUB [nB]
Figure 1 The Needham-Schroeder-Lowe Protocol With Public Keys.
In the first step, the initiator ‘A’ of the protocol, generates
a nonce nA and encrypts this value along with his identity
using the public key (KUB) of the responder ‘B’. In the
second step the responder, after receiving the message in
step 1, generates his own nonce value nB . He encrypts
both nonce’s nA, nB along with his identity using the
public key of the initiator. In the third step, the initiator

sends back the random value nB to the responder,
encrypted by the public key of the responder. Similar
protocols, such as the Needham-Schroeder (NS for short)
private-key protocol and the Bilateral Key Exchange
protocol, have the same underlying structure as the NSL
protocols were designed for two parties who want to
authenticate each other, which is often referred to as
bilateral authentication. In Modern communication there
are three or more parties that need to authenticate each
other. In such a setting we could naively instantiate
multiple bilateral authentication protocols to mutually
authenticate all partners. For n parties, such mutual
authentication would require (n× (n−1))/2 instantiations
of the protocol, and three times as many messages. In
practice, when multi-party authentication protocols are
needed, protocol designers instead opt to design new
protocols that require fewer handshakes. Any n-party
challenge-response protocol for entity authentication, in
which each party authenticates every other party, uses at
least 2n − 1 messages[6].Our work presents novel multi-
party authentication protocols, in which a party
authenticates all the other parties during the protocol run.
For n parties, the proposed communication structure
consists of 2n − 1 messages, which turns out to be the
optimal message complexity.
Message passing structure
Before going into the details of our protocols, we describe
the message passing structure. If A authenticates every
other party B,C, . . . in the protocol, then each of these
parties, or more precisely vertices that are labeled with
their names, must be traversed by a directed path starting
from and ending in a vertex that is labeled with A as
shown in figure 2.

Figure 2 Directed Path

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

81

Similarly If B,C, . . . also authenticate every other party in
the protocol, then there is a similar path for B,C, . . . as
well .We obtain the protocol with the least number of
messages by maximally overlapping these paths[6]. The
resulting protocol graph has exactly 2n − 1 edges as
shown in figure 3

.

Figure 3 Message passing structure

II. OUR PROPOSED PROTOCOLS
Two multiparty authentication and key agreement
protocols were proposed using the public key
cryptosystem where each of the n (n ≥ 2) participating
parties proves its identity to each of the other parties and
securely exchange a shared secret key with simple XOR
operations. First we describe the three-party versions of
our protocols in detail and then extend it to the n-party
version.
Notations
na -nonce /random value generated by user ‘a’
IDa -Identity of user ‘a’
KUa -Public Key of user ‘a’
KRa -Private Key of user ‘a’
EKUa [x] -Encryption of message x by public key of

user ‘a’-KUa
EKRa [y] -Encryption of message y by private key of
 user ‘a’-KRa
Pa -Participant /Party ‘a’
Protocol 1:
Principle: Each participant generates an unpredictable
random number, called nonce. Nonce values are passed
around among the protocol participants in a circulating

message. Each participant that receives the message and
sees the challenges that the message contains includes its
identity in the message before passing it further to the
next participant. When a nonce gets back to the
participant that generated it, the message contains the list
of those participants that saw the nonce and forwarded the
message. These forwarding participants have been alive
during the protocol run.
Assumptions: We assume that each participant in the
system share their public key with other participants. We
also assume that participants trust each other for executing
the protocol honestly. In particular, each participant must
be trusted for correctly attributing a received message to
its sender and faithfully copying all the relevant fields of
the received message into the message that is passed
further.
Messages of the three-party version:

1)A → B :EKUB [EKRA [nA , IDA]]
2)B → C :EKUC [EKRB [nB , IDB , nA, IDA]]
3)C → A :EKUA [EKRC [nC,IDC,nB, IDB, nA]]
4)A → B :EKUB [EKRA [nC, IDc, nB, nA]]
5)B → C :EKUC [EkRB [nC, nB]]
Description of the three-party version :User A generates
an unpredictable nonce value nA, encrypts it along with
his identity (IDA) using his private key for authentication
and sends it to B by encrypting with B’s public key for
confidentiality in message 1. Upon reception of message 1,
B decrypts the message and authenticates A and
generates an unpredictable nonce value nB , encrypts it
along with his own identity ((IDB),user A’s nonce value
nA, and Identity ((IDA) with his private key and sends it to
C by encrypting with C’s public key in message 2.Upon
reception of message 2, C decrypts the encrypted part, and
verifies that it was indeed generated by B by checking the
identifier in the message , then C generates an
unpredictable nonce value nC , encrypts it along with its
own identifier IDc, user B’s nonce value nB, and Identity
((IDB), user A’s nonce value nA, with his private key and
sends it to A by encrypting with A’s public key. When A
receives message 3, it decrypts the encrypted part of it,
and verifies that it was indeed generated by C by checking
the identifier .Furthermore, it checks if it received back its
nonce value nA, and the identifier of B too. If these
verifications are successful, then A authenticated B and C.
After successful verification it continues encrypting its
nonce value nA, nonce value of B (nB) ,the identifier of C
and its nonce value nC , with his private key and sends
the result to B by encrypting with B ‘s public key in
message 4. When B receives message 4, it decrypts it, and
verifies that it was indeed generated by A by checking the
nonce value nA. Furthermore, it checks if it received back
its nonce value nB and if the message contains the
identifier of C too. If these verifications are successful,
then B authenticated A and C, and it continues encrypting

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

82

its own nonce value nB, nonce value of C (nC) with his
private key and sends the result of the encryption to C by
encrypting with C ‘s pubic key in message 5. Finally,
when C receives message 5, it decrypts it, and verifies that
it was indeed generated by B by checking the nonce value
nB. It also checks if it received back its nonce value nC, If
these verifications are successful, then C authenticated A
and B and the protocol terminates.
Shared Secret Key generation of three-party version
The users A,B,C share a secret key which is obtained by
XORing the nonce values of the participants in the
protocol run.
K= nAΦ nB Φ nC
Messages of the n-party version:

1) P1 → P2 :EKU2[EKR1 [n1,ID1]]

2) P2 → P3 :EKU3[EKR2 [n2,ID2,n1,ID1]]

3) P3 → P4 :EKU4[EKR3 [n3,ID3,n2,ID2,n1,ID1]]

4) P4 → P5 :EKU5[EKR4[n4,ID4,n3,ID3,n2,ID2,N1,ID1]]
 .

. .
 .
 .
 .
 .
n-1)Pn-1 →Pn :EKUn[EKRn-1[nn-1,IDn-1,nn-2,IDn-2,…..
 … n2,ID2,n1,ID1]]

 n)Pn → P1 :EKU1[EKRn [nn,IDn,nn-1,IDn-1, ……..
 …..,n2,ID2,n1]]

n+1)P1 → P2 :EKU2[EKR1[nn,IDn,nn-1,IDn-1,…….

 ….,n3,ID3,n2,n1]]

n+2)P2 → P3 :EKU3[EKR2[nn,IDn,nn-1,IDn-1,…..
….,n4,ID4,n3,n2]]

n+3)P3 → P4:EKU4[EKR3[nn,IDn,nn-1,IDn-1,……
 …,n5,ID5,n4,n3]]
 .
 .
 .
 .
 .
2n-1)Pn-1 → Pn:EKUn [EKRn-1[nn,nn-1]]

Let us consider any of the encrypted messages of the
protocol above. For a given nonce value in the message,
the identifiers that stand before the nonce value
correspond to those parties who have already seen and
forwarded n. For instance, in message n, the identifiers
before n1 are IDn ,IDn-1, …,ID2 and indeed, all the

participants that have already seen n1 when message n is
sent. Therefore, when a party receives back its random
number in a message, it must check if all the other parties
are listed before its random number in the message.
Shared Secret Key generation of n-party version
The users P1, P2, P3, ……, Pn share a secret key
which is obtained by XORing the nonce values of all the
participants in the protocol run .
K= P1Φ P2 Φ P3 Φ ……Φ Pn

Protocol 2:
Principle: The main drawback of Protocol 1 is that it
relies on the assumption that the protocol participants trust
each other for honestly executing the protocol. In Protocol
2, we remove this assumption. The main idea of Protocol
2 is that we allow each protocol participant to directly
verify the other parties who received its nonce value.
Unlike in Protocol 1, the nonce value and the identifier of
each participant is passed around among the other
participants. A party verifies the other participant by
decrypting with the public keys of the corresponding
parties. If, after performing all the decryptions, it recovers
its original nonce value, then it is convinced that all the
other parties were alive during the protocol run.
Assumptions: We assume that each participant in the
system share his public key with the other participants.
Messages of the three-party version:
1)A → B :EKUB [EKRA [nA , IDA]]
2)B → C :EKUC [EKRB [nB , IDB] , EKRA[nA, IDA]]
3)C → A:EKUA [EKRC [nC,IDC], EKRB [nB, IDB],
 EKRA [nA,IDA]]]
4)A → B:EKUB [EKRA [nC, IDc], nB, nA]]
5)B → C:EKUC [EkRB [nC,nB]]
Description of the three-party version:
Party A generates an unpredictable nonce value nA,
encrypts it along with his identity (IDA) using his private
key and sends it to B by encrypting with B’s public key
in message 1. Upon reception of message 1, B decrypts
the message and authenticates A and generates an
unpredictable nonce value nB , encrypts it along with his
own identity ((IDB) with his private key and sends it to C
along with the message sent by user A (message 1) by
encrypting with C’s public key in message 2.Upon
reception of message 2, C decrypts the encrypted part, and
verifies that it was indeed generated by A and B by
checking the identifiers in the message, then C generates
an unpredictable nonce value nC , encrypts it along with
its own identifier IDC with his private key and sends it to
A along with the message sent by user B in message 2 by
encrypting with A’s public key. When A receives message
3, it decrypts the encrypted part of it, and verifies that it
was indeed generated by B and C by checking the
identifiers .Furthermore, it checks if it received back its
nonce value nA and identifier IDA If these verifications
are successful, then A authenticated B and C. After

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

83

successful verification it continues encrypting its nonce
value nA, nonce value of B (nB) ,the identifier of C and its
nonce value nC , with his private key and sends the result
to B by encrypting with B ‘s public key in message 4.
When B receives message 4, it decrypts it, and verifies
that it was indeed generated by A by checking the nonce
value nA. Furthermore, it checks if it received back its
nonce value nB and if the message contains the identifier
of C too. If these verifications are successful, then B
authenticated A and C, and it continues encrypting its
own nonce value nB, nonce value of C (nC) with his
private key and sends the result of the encryption to C by
encrypting with C ‘s pubic key in message 5. Finally,
when C receives message 5, it decrypts it, and verifies that
it was indeed generated by B by checking the nonce value
nB. It also checks if it received back its nonce value nC, If
these verifications are successful, then C authenticated A
and B and the protocol terminates.
Shared Secret Key generation of three-party version
The users A,B,C share a secret key which is obtained by
XORing the nonce values of the participants in the
protocol run.
K= nAΦ nB Φ nC
 Messages of the n-party version:

1) P1 → P2 :EKU2 [EKR1 [n1,ID1]]

2) P2 → P3 :EKU3 [EKR2 [n2,ID2], EKR1 [n1,ID1]]

3) P3 → P4 :EKU4 [EKR3 [n3,ID3], EKR2 [n2,ID2],

 EKR1[n1,ID1]]
4) P4 → P5 :EKU5[EKR4 [n4,ID4],EKR3[n3,ID3],

 EKR2[n2,ID2],EKR1[n1,ID1]]
 .
 .
 .
 .
n-1)Pn-1 →Pn:EKUn [EKRn-1 [nn-1,IDn-1],
 EKRn-2[nn-2,IDn-2],……..

 ...EKR2[n2,ID2],EKR1[n1,ID1]]

n) Pn → P1:EKU1 [EKRn [nn,IDn],EKRn-1[nn-1,IDn-1],

 EKRn-2[nn-2,IDn-2],……….
 ……,EKR2[n2,ID2],EKR1[n1,ID1]]

n+1)P1 → P2:EKU2[EKRn[nn,IDn],EKRn-1[nn-1,IDn-1],
 ……….EKR3[n3,ID3],n2,n1]]

n+2)P2 → P3:EKU3[EKRn[nn,IDn],EKRn-1[nn-1,IDn-1],
 ..………,EKR4[n4,ID4],n3,n2]]
 .
 .
 .
2n-1)Pn-1 → Pn:EKun-1 [EKRn-1[nn-1,IDn-1]]

Unlike in protocol 1 ,the identifiers and the nonce values
encrypted by private keys value correspond to those
parties who have already seen and forwarded the message .
For instance, in message n, the identifiers and the nonce
values are IDn , nn,IDn-1, nn-1, …,ID2 , n2,ID1,n1 .It Implies
that all the participants that have already seen n1 when
message n is sent. Therefore, when a party receives back
its random number in a message, it can check if all the
other parties nonce values and identifiers are listed before
its nonce value in the message.
Shared Secret Key generation of n-party version
The users P1, P2, P3, ……, Pn share a secret key
which is obtained by XORing the nonce values of all the
participants in the protocol run.
K= P1Φ P2 Φ P3 Φ ……Φ Pn

III. SECURITY ANALYSIS AND COMPARISON

The most obvious application of a public key encryption
system is confidentiality where a message which a sender
encrypts using the recipient's public key can be decrypted
only by the recipient's paired private key .Presumably, this
will be the owner of that key and the person associated
with the public key used[9,10]. Another type of
applications in public-key cryptography are digital
signature schemes where a message signed with a sender's
private key can be verified by anyone who has access to
the sender's public key, thereby proving that the sender
had access to the private key and therefore is likely to be
the person associated with the public key used, and the
part of the message that has not been tampered with. To
verify that a message has been signed by a user and has
not been modified the receiver only needs to know the
corresponding public key.

To achieve authentication, and confidentiality,
the sender could first sign the message using his private
key, then encrypt the message and signature using the
recipient's public key[9,10]. These characteristics can be
used to construct many cryptographic protocols for multi-
party key agreement and authentication.In protocol 1 we
assumed that each participant trust one another for
executing the protocol honestly. When a party receives a
message it just verifies the authenticity of the party that
had sent the message by decrypting the message with the
corresponding party’s public key and confidentiality is
achieved as the message can only be decrypted by
receivers private key .Protocol 2 executes with an
assumption that no party trusts the other. So when a
message is received by a party it verifies the authenticity
of all the other parties who had already seen and
forwarded the message. Encrypting the message with
party’s private key thus provide authentication and further

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

84

encryption using public key of the receiver introduces
confidentiality.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we first reviewed mutual authentication
protocols and then proposed a new multi party
authentication schemes based on public key cryptosystem.
The communication structure underlying the protocols is
same as pattern for multiparty challenge-response
mechanisms mostly used today. Analysis of our protocols
showed that they can withstand the security flaws as
strong authentication and confidentiality are part of public
key cryptosystem. We extended our discussion in this
paper to even more important concept of key-distribution,
coupled with authentication. However, the work can be
further extended to multi party contract signing protocols
and multi party conferencing with key distribution.

REFERENCES
[1] J.A. Clark and J.L. Jacob. A survey of authentication

protocol literature. Technical Report 1.0, 1997.
http://citeseer.ist.psu.edu/clark97survey.html.

[2] Security protocols open repository (SPORE).
http://www.lsv.ens-cachan.fr/spore.

[3] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Proceedings of
TACAS,volume 1055, pages 147–166. Springer Verlag,
1996.

[4] R. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers.
Communications of the ACM, 21(2):120–126, February
1978.

[5] C.J.F. Cremers and S.Mauw. Generalizing Needham-
Schroeder-Lowe for multi-party authentication. CS-Report
06/04,Department of Mathematics and Computing Science,
Eindhoven University of Technology, 2006.

[6] Levente Buttyan, Attila Nagy and István Vajda,”Efficient
Multi-party challenge response protocols for entity
authnetication”, Periodica Polytechnica Ser. EL. Eng. Vol.
45, No. 1, PP. 43–64 (2001).

[7] J. Clark and J. Jacob. A survey of authentication protocol
literature. http://www-users.cs.york.ac.uk/~
jac/papers/drareview.ps.gz

[8] C. Mitchell. Limitations of challenge-response entity
authentication.IEE Electronics Letters, 25(17), 1989.

[9] PublicKey Protocols. In Advances in Cryptology –
CRYPTO’95, pp. 236–247, 1995.

[10] William Stallings,” Cryptography and Networksecurity”,
PHI, 4th edition, 2005.

