
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

105

Manuscript received October 5, 2009
Manuscript revised October 20, 2009

Design of Simple ANN (SANN) model for Data
Classification and its performance Comparison with

FLANN (Functional Link ANN)

Gunanidhi Pradhan, Bhubanananda Orissa School of Engineering, Cuttack

Vishal Korimilli, Student Member IEEE, Final Yr CSE,ANITS

Suresh Chandra Satapathy, MIEEE, Anil Neerukonda Institute of Technology & Sciences (ANITS), Vishakapatnam Dist

Dr. Sabyasachi Pattnaik,,FM University, Balasore

Dr Bhabatosh Mitra,FM University, Balasore

Abstract- Data Classification is a prime task in Data
mining. Accurate and simple data classification task
can help the clustering of large dataset appropriately.
In this paper we have experimented and suggested a
simple ANN based classification models called as
Simple ANN (SANN) for different classification
problems. The GA is used for optimally finding out
the number of neurons in the single hidden layered
model. Further, the model is trained with Back
Propagation (BP) algorithm and GA (Genetic
Algorithm) and classification accuracies are compared.
The designed models are also compared with the
Functional Link ANN (FLANN) for Data classification
accuracies. It is revealed from the simulation that our
suggested model is performing better compared to
FLANN model and it can be a very good candidate for
many real time domain applications as these are
simple with good performances.

Key words: ANN, Genetic Algorithm, Data
classification, FLANN
I. Introduction

Data classification is a classical problem extensively
studied by statisticians and machine learning researchers.
It is an important problem in variety of engineering and
scientific disciplines such as biology, psychology,
medicines, marketing, computer vision, and artificial
intelligence [1]. The goal of the data classification is to
classify objects into a number of categories or classes.
Given a dataset, its classification may fall into two tasks

i) supervised classification in which given data
object is identified as a member of
predefined class

ii) Unsupervised classification (or also known
as Clustering) in which the data object is
assigned to an unknown class.

Supervised classification (here onwards to be referred as
classification) algorithms have been widely applied to
speech, vision, robotics, diseases, and artificial
intelligence applications etc where real time response
with complex real world data is necessity. There have
been wide ranges of machine learning and statistical
methods for solving classification problems. Different
parametric and non-parametric classification algorithms
have been studied [2-9]. Some of the algorithms are
well suited for linearly separable problems. Non-linear
separable problems have been solved by neural
networks [10], support vector machines [11] etc.
However, in many cases it is desired to find a simple
classifier with simple architecture. There has been wide
spectrum of work on developing ANN based
classification models consisting of many hidden layers
and large number of neurons in the hidden layers. It is
obviously understood from the literature of ANN that
more number of hidden layers and large number of
neurons may sometimes present a good solution for the
problem but at the cost of computational cost. There hve
been also some attempts made to use FLANN [13] for
classification purpose. In this paper SANN (Simple
Artificial Neural Network) model is suggested in which
we have proposed a ANN model having m-n-p as the
model parameters wherein m is the number of inputs
(based on the dataset under investigation) , n is the
number of neurons in hidden layer (only one hidden
layer is used to minimize the computational complexity)
and p is the number of output neurons (based on the
dataset under investigation). The optimal numbers of
neurons in the hidden layer are chosen by Genetic
Algorithm (GA) [12]. The weights of the SANN are
tuned by BP algorithm and GA for different datasets
and results are compared. Our results are also compared
with FLANN based models. It is revealed that the
models suggested by us are less in complexity and
better in performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

106

The rest of the paper comprises of as follows. In section II,
Back Propagation (BP) algorithm is briefly described,
which is used to train the SANN. Section III describes the
GA approach for optimally finding the values for the
number of neurons in the hidden layer. FLANN basics are
described in section IV. In section V the datasets are
described. Section VI discusses the simulation and results.
Conclusion and future research are given in Section VII.

II. Back Propagation Training of SANN

An MLP(Multi Layer Perceptron) network with 2-3-3
neurons (2, 3 and 3 denote the number of neurons in the
input layer, the hidden layer and the output layer
respectively) with the back-propagation (BP) learning
algorithm, is depicted in Fig.1.

Fig1: MLP network

Initialize the weights

In BP algorithm, initially the weights are
initialized to very small random numbers. Each unit has a
bias associated with it. The biases are similarly initialized
to small random numbers.

Propagate the inputs forward:

First, the training tuple is fed into the input layer
of the network. The inputs pass through the input units,
unchanged. Next, the net input and output of each unit in
the hidden and output layers are computed. The net input
to a unit in the hidden or output layers is computed as a
linear combination of its inputs. To compute the net input
to the unit, each input connected to the unit is multiplied
by its corresponding weight, and is summed. Given a unit
in a hidden layer or output layer, the net input, I j, to unit j
is

ji
i

ijj θOWI +=∑

Where ijW is the weight of the connection from the unit
I in the previous layer to unit j
 iO output of unit I from the previous layer

 jθ is the bias of the unit

The bias acts as a threshold in that it serves to vary the
activity of the unit.

Each unit in the hidden and output layers takes
its net input and then applies an activation function. The
function symbolizes the activation of neuron
represented by the unit. The logistic or sigmoid function
is used and the output of unit j, is computed as

This function is also referred to as squashing function,
because it maps a large input domain onto the smaller
range of 0 to 1.

Back propagate the error:

The error is back propagated backward by
updating the weights and biases to reflect the networks
prediction. For a unit j in the output layer, the error is
computed by

Where is the actual output of unit j, and

 jT is the known target value of the given

training tuple.

To compute the error of a hidden layer unit j, the
weighted sum of the errors of the units connected to unit
j in the next layer is considered. The error of a hidden
layer unit j is,

jIj
e

O −+
=

1
1

))(1(jjjjj OTOOErr −−=

jO

jk
k

kjjj wErrOOErr ∑−=)1(

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

107

Where jkW is the weight of the connection from unit j

to a unit k in the next higher layer, and kErr
is the error of unit k.

The weights and biases are updated to reflect the
propagated errors. Weights are updated by following
equation,

The variable l is the learning rate, a constant having a
value betwen 0 to 1. Back propagation learns using a
method of gradient descent to search for a set of weights
that fits the training data so as to minimize the mean
squared error. The learning rate helps avoid getting stuck
at a local minimum and encourages finding global
minimum.
Biases are updated by following equation,

Terminating condition:
 Training stops when

• All weights in the previous epoch were so small
as to below some specific threshold

• The percentage of tuples misclassified in the
previous epoch is below some threshold

• A prespecified number of epochs has expired

A classifier which gives a higher accuracy value is
considered as a good classifier.

Algorithm:

1. Initialize weights and biases in the network.

2. Propagates inputs forward in the usual way, i.e.

 All outputs are computed using
sigmoid threshold of the inner
product of the corresponding
weight and input vectors.

 All outputs at stage n are
connected to all the inputs at
stage n+1

3. Propagates the errors backwards by apportioning
them to each unit according to the amount of this
error the unit is responsible for.

4. Terminating condition (Error is minimum or till
the iterations are exhausted).

III. GA for optimally finding Neurons in hidden
layer of SANN

Genetic algorithms (GA) are an evolutionary
optimization approach which is an alternative to
traditional optimization methods. GAs are most
appropriate for complex non-linear models where
location of the global optimum is a difficult task. It may
be possible to use GA techniques to consider problems
which may not be modeled as accurately using other
approaches. Therefore, GA appears to be a potentially
useful approach. GA follows the concept of solution
evolution by stochastically developing generations of
solution populations using a given fitness statistic (for
example, the objective function in mathematical
programs). They are particularly applicable to problems
which are large, non-linear and possibly discrete in
nature, features that traditionally add to the degree of
complexity of solution. Due to the probabilistic
development of the solution, GA does not guarantee
optimality even when it may be reached. However, they
are likely to be close to the global optimum. This
probabilistic nature of the solution is also the reason
they are not contained by local optima. The standard
GA process consists of an initialization step and the
iterative generations [12]. The SGA process is shown in
the Fig. 2. First, a population of chromosomes is created.
Second ,the chromosomes are evaluated by a problem
defined fitness function. Third, some of the
chromosomes are selected for performing genetic
operations. Fourth, genetic operations of crossover and
mutations are performed. The offspring produced out of
genetic operations replace their parents in their initial
population. This GA process repeats until a user defined
criterion is met.

Fig2: GA procedure

ijijij OErrlww)(+=

jjj Errl)(+= θθ

Procedure of the standard GA

begin

i=0 // i : number of iteration

initialize P(i) // P(i): population for iteration i

evaluate f(P(i)) // f: fitness function

while (not termination condition) do

 begin

 i=i+1

 select 2 parents p1and p2 from P(i-1)

 perform genetic operations (crossover and mutation)

 reproduce a new P(i)

 evaluate f(P(i))

 end

end

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

108

In our work chromosomes are nothing but string of
integers within a random range depicting the possible
values for the number of neurons in the hidden layer.
Depending on the dataset complexity i.e the dimension
and number of data objects in the dataset this range has
been chosen for simulation. The fitness value is nothing
but the classification accuracy of the model. More the
percentage of correct classifications better the model. The
population size is chosen based on the dataset. However, a
population size up to 30 is a good choice for our
simulations. In our work as we are aiming for Simple
ANN having only one hidden layer, the binary GA is
implemented for the simulation. In Binary GA the
chromosomes initialized by integer is converted to binary
values for applying the GA operators. In entire of our
work the one point cross over is adopted with 0.8
crossover probabilities and with 0.01 mutation probability.

IV. Bascis of FLANN

Pao [13]. was originally proposed the FLANN
architecture. They have shown that, their proposed
network may be conveniently used for function
approximation and pattern classification with faster
convergence rate and lesser computational load than an
MLP structure. The FLANN is basically a flat net and the
need of the hidden layer is removed and hence, the
learning algorithm used in this network becomes very
simple. The functional expansion effectively increases the
dimensionality of the input vector and hence the hyper
planes generated by the FLANN provide greater
discrimination capability in the input pattern space.

To bridge the gap between the linearity in the single layer
neural network and the highly complex and computation
intensive multi layer neural network, the FLANN
architecture is suggested. The FLANN architecture uses a
single layer feed forward neural network and to overcome
the linear mapping, functionally expands the input vector.
Let each element of the input pattern before expansion be
represented as z(i),1 < i < d where each element z(i) is
functionally expanded as () n z i ,1 < n < N , where N =
number of expanded points for each input element.
Expansion of each input pattern is done as follows.

 x1(i) = z(i), x2(i) = f1(z(i)),...., xN(i) = fN(z(i))

 where, z(i),1 < i < d , d is the set of features in
the dataset.

These expanded input patterns (shown in Fig 3) are then
fed to the single layer neural network and the network is
trained to obtain the desired output. The set of functions
considered for function expansion may not be always

suitable for mapping the nonlinearity of the complex
task. In such cases few more functions may be
incorporated to the set of functions considered for
expansion of the input dataset. However dimensionality
of many problems itself are very high and further
increasing the dimensionality by to a very large extent
may not be an appropriate choice. So, it is advisable to
choose a small set of alternate functions, which can map
the function to the desired extent.
FLANN CLASSIFIER:

In this, a single layer model based on trigonometric
expansion is presented. Let each element of the input
pattern before expansion be represented as z(i),1 < i < I
where each element z(i) is functionally expanded as
zn (i),1 < n < N , where
N = number of expanded points for each input element.
In this, N = 5 and I = total number of features in the
dataset as been taken. Expansion of each input pattern is
done as follows:
 x (i) = z(i), x (i)= sin　π (z(i)), x (i)=sin
2π (z(i)), x (i)= cos　π (z(i)),
 x (i)= cos 2　π (z(i))

 where, z(i),1 < i < d , d is the set of features
in the dataset.

 Fig3: Functional expansion of each unit

These nonlinear outputs are multiplied by a set of
random initialized weights from the range [-0.5, 0.5]
and then summed to produce the estimated output. This
output is compared with the corresponding desired
output and the resultant error for the given pattern is
used to compute the change in weight in each signal
path P, given by
 Δ Wj (k) = μ * xf j (k) * e(k)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

109

 where, xf j(k) is the functionally expanded
input at kth iteration.

Then the equation, which is used for weight update, is
given by
 Wj(k +1) = Wj (k) + DWj (k)
 where, Wj(k) is the jth weight at the kth
iteration, m is the convergence coefficient, its value lies
between 0 to 1 and 1<j<J, J = M´d. M is defined as the
number of functional expansion unit for one element.

 e(k) = y(k) - yˆ (k)
 where, y(k) is the target output and yˆ (k) is the
estimated output for the respective pattern an and is
defined as:

 yˆ (k) = xf j (k) .w k
 where, xfj is the functionally expanded input at
kth iteration and Wj(k) is the jth weight at the kth iteration
and Wj(0) is initialized with some random value from the
range [-0.5, 0.5]. The FLANN for classification shown in
Fig4.

 Fig4: FLANN nonlinear model for
classification

V. Dataset Description

In our work we have used 3 different data sets for training
and testing the neural network model. In this section we
shall describe the details of the data sets. The data sets we
used are IRIS dataset, DIABETES dataset and BLOOD
TRANSFUSION dataset. And one bio-informatics dataset
ECOLI dataset is also used (UCI machine learning
repository and archive.ics.uci.edu/ml/datasets.html

IRIS Dataset:

This is perhaps the best known database to be found in
the pattern recognition literature.The data set contains 3
classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from
the other 2; the latter are NOT linearly separable from
each other. The predicted attribute is class of iris plan.

Attribute Information:

1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. Class:
 -- Iris Setosa
 -- Iris Versicolour
 -- Iris Virginica

PIMA INDIAN DIABETES Dataset:

Several constraints were placed on the selection of these
instances from a larger database. In particular, all
patients here are females at least 21 years old of Pima
Indian heritage.

Attribute Information:

1. Number of times pregnant
2. Plasma glucose concentration a 2 hours in an oral
glucose tolerance test
3. Diastolic blood pressure (mm Hg)
4. Triceps skin fold thickness (mm)
5. 2-Hour serum insulin (mu U/ml)
6. Body mass index (weight in kg/(height in m)^2)
7. Diabetes pedigree function
8. Age (years)
9. Class variable (0 or 1)

ECOLI Dataset:

The reference below describes a predecessor to this
dataset and its development.
Reference: "Expert Sytem for Predicting Protein
Localization Sites in Gram-Negative Bacteria", Kenta
Nakai & Minoru Kanehisa, PROTEINS: Structure,
Function, and Genetics 11:95-110, 1991.

Attribute Information:

1. Sequence Name: Accession number for the SWISS-
PROT database

∑

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

110

2. mcg: McGeoch's method for signal sequence
recognition.
3. gvh: von Heijne's method for signal sequence
recognition.
4. lip: von Heijne's Signal Peptidase II consensus
sequence score. Binary attribute.
5. chg: Presence of charge on N-terminus of predicted
lipoproteins. Binary attribute.
6. aac: score of discriminant analysis of the amino acid
content of outer membrane and periplasmic proteins.
7. alm1: score of the ALOM membrane spanning region
prediction program.
8. alm2: score of ALOM program after excluding putative
cleavable signal regions from the sequence.

To overcome the skewing/biasing effect we have divided
the Ecoli dataset into two different datasets naming as
Ecoli (1) and Ecoli (2).

BLOOD TRANSFUSION Dataset:

To demonstrate the RFMTC marketing model (a modified
version of RFM), this study adopted the donor database of
Blood Transfusion Service Center in Hsin-Chu City in
Taiwan. The center passes their blood transfusion service
bus to one university in Hsin-Chu City to gather blood
donated about every three months. To build a FRMTC
model, we selected 748 donors at random from the donor
database. These 748 donor data, each one included R
(Recency - months since last donation), F (Frequency -
total number of donation), M (Monetary - total blood
donated in c.c.), T (Time - months since first donation),
and a binary variable representing whether he/she donated
blood in March 2007 (1 stand for donating blood; 0 stands
for not donating blood).

Attribute Information:

Given is the variable name, variable type, the
measurement unit and a brief description. The "Blood
Transfusion Service Center" is a classification problem.
The order of this listing corresponds to the order of
numerals along the rows of the database.
R (Recency - months since last donation),
F (Frequency - total number of donation),
M (Monetary - total blood donated in c.c.),
T (Time - months since first donation), and
a binary variable representing whether he/she donated
blood in March 2007 (1 stand for donating blood; 0 stands
for not donating blood).
Variable Data Type Measurement Description min max
mean std Recency quantitative Months Input 0.03 74.4
9.74,8.07 Frequency quantitative Times Input 1 50 5.51
5.84 Monetary quantitative c.c. blood Input 250 12500

1378.68,1459.83 Time quantitative Months Input 2.27
98.3,34.42,24.32 Whether he/she donated blood in
March 2007 binary 1=yes 0=no Output 0 1 1 (24%) 0
(76%) .

VI. Simulation and Results

The neural network, which we are using in back
propagation algorithm, is m-n-1 type network. It
represents that input layer would contain ‘n’ nodes,
which will be equal to the number of attributes in the
dataset we are using. Say for example in Iris dataset we
have 4 attributes so for construction neural network for
this we require 4 nodes in its input layer. In the above
notation m represents nodes in hidden layer (only one
hidden layer we are considering). We can have any
number of nodes in hidden layer and in output layer we
are considering only one node.

For training and testing we have adopted 10-fold cross-
validation for Iris, Pima Indian Diabetes, and Blood
transfusion datasets in which we divide tuples in the
dataset into 10 equal divisions. We apply back
propagation algorithm for first 9 divisions and train the
network for certain number of iterations. After training
the network we then apply same algorithm without
propagation of errors back and find the accuracy of the
10th division. We repeat this process for all the
remaining divisions by placing the last division on the
top moving down the remaining tuples Such that each
division will take part in training the network. However,
we have used 3 fold-cross validations for Ecoli dataset.

GA is used for optimally selecting the n values. For Iris
dataset the range of probable n values are taken from 2
to 15. And after applying the GA it is found that the
classifier provides best result with the SANN model
described by 4-4-1, or in other words having 4 neurons
in hidden layer. The percentage of correct classification
obtained for this model with learning rate 0.9 and
momentum constant 0.9 with 500 epoch and 10
simulations is 98.667 (best value),96.8667 (average
value) with 0.0965 standard deviation. The mean square
error plot is shown below for Iris dataset.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

111

For Pima dataset the SANN gives the best accuracy with
5 neurons in the hidden layer. Best accuracy being 72%
with average accuracy of 72.2%. The MSE is at 1.6838e-
004. The error plot is shown below.

Similarly, for Blood Transfusion dataset the SANN is
arrived at 4-4-1. The model provides 76.1333 % of best

correct classification with 76.0533% average over 500
epoch and 10 simulation runs. The standard deviation is
being 0.0891. The MSE plot is shown below.

For Ecoli(1) dataset the SANN model settles at 7-3-1
with 96.2991 best accuracy and 96.3413 average
accuracy. The epoch size is 20 and 10 simulation runs
are done for this dataset. The std obtained is 0.3993. the
MSE plot is shown below.

For Ecoli(2) the 7-2-1 SANN shows best accuracy of
68.1881 and average accuracy of 56.3636 with 0.5

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

112

learning parameter and 0.5 momentum constant. The
MSE plot is as shown below.

The results obtained using BP algorithm for all the
investigated dataset reveal that the networks may have fall
into the local minima. It appears that results can be
improvised if some randomized optimization techniques
is used for training the SANN i.e optimizing weights of
the SANN. This has motivated us to explore the use of
GA for optimizing the weights of SANN. In our
experiments we have used the same SANN which we
have obtained with GA and trained with BP. For example
for Iris dataset we take the SANN 4-4-1 network, for
Pima the SANN is 8-5-1, for Blodd Transfusion the
SANN is 4-4-1 and for E-coli(1) it is 7-2-1 and Ecoli(2)
7-3-1. The weights of these networks are optimized using
GA. The chromosomes of GA are the strings of real
numbers randomly chosen in a range. The length of
chromosome is determined by the number of weights to
be optimized. The number of weights to be optimized is
(m*n+n*p). For example, in Iris dataset SANN model
total weights to optimized are (4*4 + 4*1=20) 20. In all
our simulation the population size is taken to be 30. The
performances of these models are shown in the table
1given below.

Table:1

Model/dataset Best Accuracy Avg

accuracy(std)
4-4-1/Iris 100 98.467(0.023)
8-5-1/Pima 73.438 71.212 (0.324)
4-4-1/Blood
Tansfusion

81.93 78.0154(0.256)

7-2-1/Ecoli(1) 92.428 88.4848(0.453)
7-3-1/Ecoli(2) 85.714 80.857(3.234)

The results reveal GA based optimization for SANN is
far more accurate with comparison to BP based training.
However, for Ecoli(2) dataset the BP algorithm provides
better result. The fitness curves for each datasets are
given below.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

113

The simulated results of FLANN models are shown below
in a tabular format in Table 2. All experimenst are done
for 30 epochs and 10 such simulations are considered for
finding average correct classifications..

Table: 2

The error curves for FLANN for all models are shown
below.

Dataset Convergence
co-efficient

Best
accuracy

Avg
accuracy

Iris 8e-006 98 74.6
Pima 8e-006 71.845 59.76
Blood
Trans

8e-006 77.108 76.14

Ecoli(1) 8e-005 93.443 74.09
Ecoli(2) 8e-005 82.857 67.34

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

114

VII. Conclusion and further Research

This paper has explored the design of a simple ANN for
data classifications. The simple ANN termed as Simple
ANN (SANN) is envisioned by using GA for optimally
deciding the number of neurons in a single hidden layer
architecture. The weights of such SANNs are trained
using BP algorithm and GA algorithm respectively. The
results shown in the paper give very clear impression of
the simplicity of the model without sacrificing the cost of
accuracy. Contrary to the views of many researchers it is
felt that we can have simple ANN model or Simple ANN
model with only one hidden layer and having very few
neurons in the hidden layer. Even our designed SANN

outperforms FLANN classification models in all dataset
except Ecoli(2). However, in Ecoli(2) SANN gives a
competition to FLANN as regard to the percentage of
correct classification. Due to less computational cost at
the hidden layer SANN can have applications in the real
time domain.

However, this study is too early to claim the universal
ness of the model. It left for further study to see how the
other models like Bayesian classifier, Decision tree etc
behave with comparison to our suggested models. Also
we can further investigate to improvise the classification
accuracies using some other randomized optimization
techniques. Performance comparisons with some other
well known approach for data classification will also be
a good direction for future work.

References

[1] A.K.Jain, R.P.W. Duin, and J.Mao, Statistical

Pattern Recognition: A Review, IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol.
22(1), January 2000, pp.4-37.

[2] R.O.Duda and P.E.Hard, Pattern classification and
Scene Analysis, John wiley & Sons, NY, USA, 1973.

[3]Breitman,L.,Friedman,J.H.,Olshen,R.A.,C.J.,
Classification and Regression
tress,Wadsworth,Belmont,CA,1984.

[4] Buntine,W.L., Learning classification trees,
Statistics and Computing, 1992,pp. 63-73.

[5] Cover,T.M.,Hart,P.E., Nearest neighbors pattern
classification, IEEE Trans on Information Theory,
vol. 13, ,1967,pp. 21-27.

[6] Hanson R.,Stutz,J.,Cheeseman,P., Bayesian
classification with correlation and inheritance,
Proceedings of the 12th International Joint
Conference on Artificial Intelligence 2,
Sydney,Australia,Morgan KaufSANN, 1992,pp.
692-698.

[7] Michie,D. et al , Machine Learning, Neural and
Statistical Classification, Ellis Horwood,1994.

[8] Richard,M.D, LippSANN,R.P., Neural network
classifiers estimate Bayesian a-posterior
probabilities, Neural Computation ,vol.3, ,1991,pp.
461-483.

 [9] Tsoi, A.C et al, Comparison of three classification
Techniques, CART,C4.5 and multilayer perceptrons ,
Advances in Neural Information Processing Systems,
vol. 3, 1991 pp.963-969.

[10] C. Bishop, Neural Networks for Pattern
Recognition. New York: Oxford Univ. Press, 1995.

[11] V.N.Vapnik, A.Y. Chervonenkis, On the uniform
convergence of relative frequencies of events to

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

115

their probabilities, Theory of Probability and its
Applications, 1971, pp.264-280.

[12]D.E.Goldberg, “Genetic Algorithms in Search,
Optimization and machine Learning”, Addision-
Wesley, New York, 1989.

[13] Y. H. Pao, Adaptive Pattern Recognition and Neural
Networks, Reading, MA: Addison-Wesley, 1989.

Gunanidhi Pradhan has completed
M E. in Computer Sc. From N.I.T.,
Rourkela and M.B.A. in Human Resource
Management from North Orissa
University, Baripada. Currently perusing
Ph.D. in the Department of Information &
Communication Technology, Fakir
Mohan University, Balasore. He hass
about 20 years of Teaching experience
and 1 year of Industrial experience in a

Software Firm. Research interest areas are Soft Computing, Bio-
Informatics and Data Mining. Authored two text books in
Computer Networks and Programming in C. Awarded the Best
Teacher award for the year 2008 by Indian Society for Technical
Education, New Delhi. Presently working as the HOD
(Information Technology) at BOSE, Cuttack.

Vishal Korimilli, pursuing his
Final Year Computer Science and
Engineering in ANITS,
Vishakapatnam, AP, INDIA. His
interests include Data Mining, Soft
Computing and Swarm Intelligence
applications. He is also a Student
Member of IEEE. He is very active
in fundamental research activities

in the Dept of CSE of ANITS.

Suresh Chandra Satapathy has
submitted his PhD to JNTU,
Hyderabad, Andhra pradesh, India
on pattern Classification using
Swarm Intelligence Techniques in
2009. He has completed his
M.Tech from NIT, Rourkela,
Orissa, India. Presently he is
working as professor in computer

science and engineering in Anil Neerukonda Institute of
Technology and Sciences, Vishakapatnam Dist, AP, India.
His research area includes PSO, GA. Neural network and
Data mining. He is reviewer for many international
journals including from Elsevier sciences.

Dr. Sabyasachi Pattnaik
has done his B.E in Computer
Science, M Tech.from IIT Delhi. He
has received his PhD degree in
Computer Science in the year 2003,
now working as Reader in the
Department of Information and
Communication Technology, in Fakir
Mohan University, Vyasavihar,

Balasore, Orissa, India. He has got 15 years of teaching and
research experience in the field of neural networks, soft
computing techniques. He has got 22 publications in national
& international journals and conferences. He has published
three books in office automation, object oriented programming
using C++ and artificial intelligence. At present he is involved
in guiding 6 scholars in the field of neural networks in cluster
analysis, bio-informatics, computer vision & stock market
applications. He has received the best paper award & gold
medal from Orissa Engineering congress in 1992 and
institution of Engineers in 2009.

Dr B Mittra, Reader, School of
Biotechnology, F.M.University,
Orissa, working in the area of
proteomics and Bio-informatics. He
has fifteen years of research
experiences and produced research
papers in many international journals
related to molecular biology,
immunotechnology, and proteomics.

