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Abstract- Data Classification is a prime task in Data 
mining. Accurate and simple data classification task 
can help the clustering of large dataset appropriately. 
In this paper we have experimented and suggested a 
simple ANN based classification models called as 
Simple ANN (SANN) for different classification 
problems.  The GA is used for optimally finding out 
the number of neurons in the single hidden layered 
model. Further, the model is trained with Back 
Propagation (BP) algorithm and GA (Genetic 
Algorithm) and classification accuracies are compared. 
The designed models are also compared with the 
Functional Link ANN (FLANN) for Data classification 
accuracies. It is revealed from the simulation that our 
suggested model is performing better compared to 
FLANN model and it can be a very good candidate for 
many real time domain applications as these are 
simple with good performances. 
 
Key words: ANN, Genetic Algorithm, Data 
classification, FLANN 
I.  Introduction 
 
Data classification is a classical problem extensively 
studied by statisticians and machine learning researchers. 
It is an important problem in variety of engineering and 
scientific disciplines such as biology, psychology, 
medicines, marketing, computer vision, and artificial 
intelligence [1]. The goal of the data classification is to 
classify objects into a number of categories or classes. 
Given a dataset, its classification may fall into two tasks 
 

i) supervised classification in which given data 
object is identified as a member of 
predefined class 

ii) Unsupervised classification (or also known 
as Clustering) in which the data object is 
assigned to an unknown class. 

Supervised classification (here onwards to be referred as 
classification ) algorithms have been widely applied to 
speech, vision, robotics, diseases, and artificial 
intelligence applications etc where real time response 
with complex real world data is necessity. There have 
been wide ranges of machine learning and statistical 
methods for solving classification problems. Different 
parametric and non-parametric classification algorithms 
have been studied [2-9]. Some of the algorithms are 
well suited for linearly separable problems. Non-linear 
separable problems have been solved by neural 
networks [10], support vector machines [11] etc. 
However, in many cases it is desired to find a simple 
classifier with simple architecture. There has been wide 
spectrum of work on developing ANN based 
classification models consisting of many hidden layers 
and large number of neurons in the hidden layers. It is 
obviously understood from the literature of ANN that 
more number of hidden layers and large number of 
neurons may sometimes present a good solution for the 
problem but at the cost of computational cost. There hve 
been also some attempts made to use FLANN [13] for 
classification purpose. In this paper SANN (Simple 
Artificial Neural Network) model is suggested in which 
we have proposed a ANN model having m-n-p as the 
model parameters wherein m is the number of inputs 
( based on the dataset under investigation) , n is the 
number of neurons in hidden layer ( only one hidden 
layer is used to minimize the computational complexity) 
and p is the number of output neurons ( based on the 
dataset under investigation). The optimal numbers of 
neurons in the hidden layer are chosen by Genetic 
Algorithm (GA) [12]. The weights of the SANN are 
tuned by BP algorithm and GA for different datasets 
and results are compared. Our results are also compared 
with FLANN based models. It is revealed that the 
models suggested by us are less in complexity and 
better in performance.  
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The rest of the paper comprises of as follows. In section II, 
Back Propagation ( BP) algorithm is briefly described, 
which is used to train the SANN. Section III describes the 
GA approach for optimally finding the values for the 
number of neurons in the hidden layer. FLANN basics are 
described in section IV. In section V the datasets are 
described. Section VI discusses the simulation and results. 
Conclusion and future research are given in Section VII. 
 
II. Back Propagation Training of SANN 
 
An MLP( Multi Layer Perceptron) network with 2-3-3 
neurons (2, 3 and 3 denote the number of neurons in the 
input layer, the hidden layer and the output layer 
respectively) with the back-propagation (BP) learning 
algorithm, is depicted in Fig.1. 
 
 
 

 
Fig1: MLP network 
 
 
Initialize the weights 

In BP algorithm, initially the weights are 
initialized to very small random numbers. Each unit has a 
bias associated with it. The biases are similarly initialized 
to small random numbers. 
 
Propagate the inputs forward: 

First, the training tuple is fed into the input layer 
of the network. The inputs pass through the input units, 
unchanged. Next, the net input and output of each unit in 
the hidden and output layers are computed. The net input 
to a unit in the hidden or output layers is computed as a 
linear combination of its inputs. To compute the net input 
to the unit, each input connected to the unit is multiplied 
by its corresponding weight, and is summed. Given a unit   
in a hidden layer or output layer, the net input, I j, to unit j 
is 
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i
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Where ijW is the weight of the connection from the unit 
I in the previous layer to unit j 
              iO  output of unit I from the previous layer 

                jθ  is the bias of the unit 
 
 
The bias acts as a threshold in that it serves to vary the 
activity of the unit. 

Each unit in the hidden and output layers takes 
its net input and then applies an activation function. The 
function symbolizes the activation of neuron 
represented by the unit. The logistic or sigmoid function 
is used and the output of unit j, is computed as 

 
        
 
 
 
 

This function is also referred to as squashing function, 
because it maps a large input domain onto the smaller 
range of 0 to 1.  
 
Back propagate the error: 
 

The error is back propagated backward by 
updating the weights and biases to reflect the networks 
prediction. For a unit j in the output layer, the error is 
computed by 

  
 
 
Where          is the actual output of unit j, and 
   
     jT  is the known target value of the given 

training tuple. 
 

To compute the error of a hidden layer unit j, the 
weighted sum of the errors of the units connected to unit 
j in the next layer is considered. The error of a hidden 
layer unit j is, 
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Where  jkW    is the weight of the connection from unit j 

to a unit k in the next higher layer, and kErr                                       
is the error of unit k. 
 
The weights and biases are updated to reflect the 
propagated errors. Weights are updated by following 
equation, 
          
 
 
The variable l  is the learning rate, a constant having a 
value betwen 0 to 1. Back propagation learns using a 
method of gradient descent to search for a set of weights 
that fits the training data so as to minimize the mean 
squared error. The learning rate helps avoid getting stuck 
at a local minimum and encourages finding global 
minimum. 
Biases are updated by following equation, 
       
 
 
Terminating condition: 
    Training stops when 

• All weights in the previous epoch were so small 
as to below some specific threshold 

• The percentage of tuples misclassified in the 
previous epoch is below some threshold 

• A prespecified number of epochs has expired 
 
A classifier which gives a higher accuracy value is 
considered as a good classifier. 
 
Algorithm: 
 

1. Initialize weights and biases in the network. 
 
2. Propagates inputs forward in the usual way, i.e.  

 All outputs are computed using 
sigmoid threshold of the inner 
product of the corresponding 
weight and input vectors.  

 All outputs at stage n are 
connected to all the inputs at 
stage n+1 

3. Propagates the errors backwards by apportioning 
them to each unit according to the amount of this 
error the unit is responsible for.  
 
4. Terminating condition (Error is minimum or till 
the iterations are exhausted). 
 

 
 
 

III. GA for optimally finding Neurons in hidden 
layer of SANN 

Genetic algorithms (GA) are an evolutionary 
optimization approach which is an alternative to 
traditional optimization methods. GAs are most 
appropriate for complex non-linear models where 
location of the global optimum is a difficult task. It may 
be possible to use GA techniques to consider problems 
which may not be modeled as accurately using other 
approaches. Therefore, GA appears to be a potentially 
useful approach. GA follows the concept of solution 
evolution by stochastically developing generations of 
solution populations using a given fitness statistic (for 
example, the objective function in mathematical 
programs). They are particularly applicable to problems 
which are large, non-linear and possibly discrete in 
nature, features that traditionally add to the degree of 
complexity of solution. Due to the probabilistic 
development of the solution, GA does not guarantee 
optimality even when it may be reached. However, they 
are likely to be close to the global optimum. This 
probabilistic nature of the solution is also the reason 
they are not contained by local optima. The standard 
GA process consists of an initialization step and the 
iterative generations [12]. The SGA process is shown in 
the Fig. 2. First, a population of chromosomes is created. 
Second ,the chromosomes are evaluated by a problem 
defined fitness function. Third, some of the 
chromosomes are selected for performing genetic 
operations. Fourth, genetic operations of crossover and 
mutations are performed.  The offspring produced out of 
genetic operations replace their parents in their initial 
population. This GA process repeats until a user defined 
criterion is met. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig2: GA procedure 

ijijij OErrlww )(+=

jjj Errl )(+= θθ

Procedure of the standard GA 

begin 

i=0    // i : number of iteration  

initialize P(i)  // P(i): population for iteration i 

evaluate f(P(i))   // f: fitness function 

while ( not termination condition) do 

            begin 

                i=i+1 

               select 2 parents p1and p2 from P(i-1) 

          perform genetic operations (crossover and mutation) 

            reproduce a new P(i) 

           evaluate f(P(i)) 

          end 

end 
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In our work chromosomes are nothing but string of 
integers within a random range depicting the possible 
values for the number of neurons in the hidden layer. 
Depending on the dataset complexity i.e the dimension 
and number of data objects in the dataset this range has 
been chosen for simulation. The fitness value is nothing 
but the classification accuracy of the model. More the 
percentage of correct classifications better the model. The 
population size is chosen based on the dataset. However, a 
population size up to 30 is a good choice for our 
simulations. In our work as we are aiming for Simple 
ANN having only one hidden layer, the binary GA is 
implemented for the simulation. In Binary GA the 
chromosomes initialized by integer is converted to binary 
values for applying the GA operators. In entire of our 
work the one point cross over is adopted with 0.8 
crossover probabilities and with 0.01 mutation probability. 

 
 

IV. Bascis of FLANN 
 
Pao [13]. was originally proposed the FLANN 
architecture. They have shown that, their proposed 
network may be conveniently used for function 
approximation and pattern classification with faster 
convergence rate and lesser computational load than an 
MLP structure. The FLANN is basically a flat net and the 
need of the hidden layer is removed and hence, the 
learning algorithm used in this network becomes very 
simple. The functional expansion effectively increases the 
dimensionality of the input vector and hence the hyper 
planes generated by the FLANN provide greater 
discrimination capability in the input pattern space. 
 
To bridge the gap between the linearity in the single layer 
neural network and the highly complex and computation 
intensive multi layer neural network, the FLANN 
architecture is suggested. The FLANN architecture uses a 
single layer feed forward neural network and to overcome 
the linear mapping, functionally expands the input vector. 
Let each element of the input pattern before expansion be 
represented as z(i),1 < i < d where each element z(i) is 
functionally expanded as ( ) n z i ,1 < n < N , where N = 
number of expanded points for each input element. 
Expansion of each input pattern is done as follows. 
  
          x1(i) = z(i), x2(i) = f1(z(i)),...., xN(i) = fN(z(i))     
 
              where, z(i),1 < i < d , d is the set of features in 
the dataset. 
 
These expanded input patterns ( shown in Fig 3) are then 
fed to the single layer neural network and the network is 
trained to obtain the desired output. The set of functions 
considered for function expansion may not be always 

suitable for mapping the nonlinearity of the complex 
task. In such cases few more functions may be 
incorporated to the set of functions considered for 
expansion of the input dataset. However dimensionality 
of many problems itself are very high and further 
increasing the dimensionality by to a very large extent 
may not be an appropriate choice. So, it is advisable to 
choose a small set of alternate functions, which can map 
the function to the desired extent. 
FLANN CLASSIFIER:  
 
In this, a single layer model based on trigonometric 
expansion is presented. Let each element of the input 
pattern before expansion be represented as z(i),1 < i < I 
where each element z(i) is functionally expanded as  
zn (i),1 < n < N , where 
N = number of expanded points for each input element. 
In this, N = 5 and I = total number of features in the 
dataset as been taken. Expansion of each input pattern is 
done as follows: 
                         x (i) = z(i), x (i)= sin　π (z(i)), x (i)=sin 
2π (z(i)), x (i)= cos　π (z(i)), 
                         x (i)= cos 2　π (z(i))                
 
                 where, z(i),1 < i < d , d is the set of features 
in the dataset. 
 
                          

 
                  Fig3: Functional expansion of each unit 
  
These nonlinear outputs are multiplied by a set of 
random initialized weights from the range [-0.5, 0.5] 
and then summed to produce the estimated output. This 
output is compared with the corresponding desired 
output and the resultant error for the given pattern is 
used to compute the change in weight in each signal 
path P, given by 
                          Δ Wj (k) = μ * xf j (k) * e(k)  
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                  where, xf j(k) is the functionally expanded 
input at kth iteration. 
 
Then the equation, which is used for weight update, is 
given by 
                           Wj(k +1) = Wj (k) + DWj (k) 
                 where, Wj(k) is the jth weight at the kth 
iteration,   m is the convergence coefficient, its value lies 
between 0 to 1 and 1<j<J, J = M´d. M is defined as the 
number of functional expansion unit for one element. 
 
                          e(k) = y(k) - yˆ (k) 
                 where, y(k) is the target output and yˆ (k) is the 
estimated output for the respective pattern an and is 
defined as: 
              
                               yˆ (k) =        xf j (k) .w k 
                  where, xfj is the functionally expanded input at 
kth iteration and Wj(k) is the jth weight at the kth iteration 
and Wj(0) is initialized with some random value from the 
range [-0.5, 0.5]. The FLANN for classification shown in 
Fig4. 
 
                          

 
                       Fig4:  FLANN nonlinear model for 
classification 
 
V. Dataset Description 
 
In our work we have used 3 different data sets for training 
and testing the neural network model. In this section we 
shall describe the details of the data sets. The data sets we 
used are IRIS dataset, DIABETES dataset and BLOOD 
TRANSFUSION dataset. And one bio-informatics dataset 
ECOLI dataset is also used (           UCI machine learning 
repository and     archive.ics.uci.edu/ml/datasets.html 
 
 
 

IRIS Dataset: 

This is perhaps the best known database to be found in 
the pattern recognition literature.The data set contains 3 
classes of 50 instances each, where each class refers to a 
type of iris plant. One class is linearly separable from 
the other 2; the latter are NOT linearly separable from 
each other. The predicted attribute is class of iris plan. 

Attribute Information: 

1. sepal length in cm  
2. sepal width in cm  
3. petal length in cm  
4. petal width in cm  
5. Class:  
     -- Iris Setosa  
     -- Iris Versicolour  
    -- Iris Virginica 

PIMA INDIAN DIABETES Dataset: 

Several constraints were placed on the selection of these 
instances from a larger database. In particular, all 
patients here are females at least 21 years old of Pima 
Indian heritage.  

Attribute Information: 

1. Number of times pregnant  
2. Plasma glucose concentration a 2 hours in an oral 
glucose tolerance test  
3. Diastolic blood pressure (mm Hg)  
4. Triceps skin fold thickness (mm)  
5. 2-Hour serum insulin (mu U/ml)  
6. Body mass index (weight in kg/(height in m)^2)  
7. Diabetes pedigree function  
8. Age (years)  
9. Class variable (0 or 1) 

ECOLI Dataset: 

The reference below describes a predecessor to this 
dataset and its development.  
Reference: "Expert Sytem for Predicting Protein 
Localization Sites in Gram-Negative Bacteria", Kenta 
Nakai & Minoru Kanehisa, PROTEINS: Structure, 
Function, and Genetics 11:95-110, 1991.  

Attribute Information: 

1. Sequence Name: Accession number for the SWISS-
PROT database  

∑



IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009 
 

 

110 

2. mcg: McGeoch's method for signal sequence 
recognition.  
3. gvh: von Heijne's method for signal sequence 
recognition.  
4. lip: von Heijne's Signal Peptidase II consensus 
sequence score. Binary attribute.  
5. chg: Presence of charge on N-terminus of predicted 
lipoproteins. Binary attribute.  
6. aac: score of discriminant analysis of the amino acid 
content of outer membrane and periplasmic proteins.  
7. alm1: score of the ALOM membrane spanning region 
prediction program.  
8. alm2: score of ALOM program after excluding putative 
cleavable signal regions from the sequence. 

To overcome the skewing/biasing effect we have divided 
the Ecoli dataset into two different datasets naming as 
Ecoli (1) and Ecoli (2).  

BLOOD TRANSFUSION Dataset: 

To demonstrate the RFMTC marketing model (a modified 
version of RFM), this study adopted the donor database of 
Blood Transfusion Service Center in Hsin-Chu City in 
Taiwan. The center passes their blood transfusion service 
bus to one university in Hsin-Chu City to gather blood 
donated about every three months. To build a FRMTC 
model, we selected 748 donors at random from the donor 
database. These 748 donor data, each one included R 
(Recency - months since last donation), F (Frequency - 
total number of donation), M (Monetary - total blood 
donated in c.c.), T (Time - months since first donation), 
and a binary variable representing whether he/she donated 
blood in March 2007 (1 stand for donating blood; 0 stands 
for not donating blood).  

Attribute Information: 

Given is the variable name, variable type, the 
measurement unit and a brief description. The "Blood 
Transfusion Service Center" is a classification problem. 
The order of this listing corresponds to the order of 
numerals along the rows of the database.  
R (Recency - months since last donation),  
F (Frequency - total number of donation),  
M (Monetary - total blood donated in c.c.),  
T (Time - months since first donation), and  
a binary variable representing whether he/she donated 
blood in March 2007 (1 stand for donating blood; 0 stands 
for not donating blood).  
Variable Data Type Measurement Description min max 
mean std Recency quantitative Months Input 0.03 74.4 
9.74,8.07 Frequency quantitative Times Input 1 50 5.51 
5.84 Monetary quantitative c.c. blood Input 250 12500 

1378.68,1459.83 Time quantitative Months Input 2.27 
98.3,34.42,24.32 Whether he/she donated blood in 
March 2007 binary 1=yes 0=no Output 0 1 1 (24%) 0 
(76%) . 

 
 
 
VI. Simulation and Results 

The neural network, which we are using in back 
propagation algorithm, is m-n-1 type network. It 
represents that input layer would contain ‘n’ nodes, 
which will be equal to the number of attributes in the 
dataset we are using. Say for example in Iris dataset we 
have 4 attributes so for construction neural network for 
this we require 4 nodes in its input layer. In the above 
notation m represents nodes in hidden layer (only one 
hidden layer we are considering). We can have any 
number of nodes in hidden layer and in output layer we 
are considering only one node.  

For training and testing we have adopted 10-fold cross-
validation for Iris, Pima Indian Diabetes, and Blood 
transfusion datasets in which we divide tuples in the 
dataset into 10 equal divisions. We apply back 
propagation algorithm for first 9 divisions and train the 
network for certain number of iterations. After training 
the network we then apply same algorithm without 
propagation of errors back and find the accuracy of the 
10th division. We repeat this process for all the 
remaining divisions by placing the last division on the 
top moving down the remaining tuples Such that each 
division will take part in training the network. However, 
we have used 3 fold-cross validations for Ecoli dataset. 

GA is used for optimally selecting the n values. For Iris 
dataset the range of probable n values are taken from 2 
to 15. And after applying the GA it is found that the 
classifier provides best result with the SANN model 
described by 4-4-1, or in other words having 4 neurons 
in hidden layer. The percentage of correct classification 
obtained for this model with learning rate 0.9 and 
momentum constant 0.9 with 500 epoch and 10 
simulations is 98.667 ( best value),96.8667 ( average 
value) with 0.0965 standard deviation. The mean square 
error plot is shown below for Iris dataset. 
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For Pima dataset the SANN gives the best accuracy with 
5 neurons in the hidden layer. Best accuracy being 72% 
with average accuracy of 72.2%. The MSE is at 1.6838e-
004. The error plot is shown below. 
 
 

 
 
Similarly, for Blood Transfusion dataset the SANN is 
arrived at 4-4-1. The model provides 76.1333 % of best 

correct classification with 76.0533% average over 500 
epoch and 10 simulation runs. The standard deviation is 
being 0.0891. The MSE plot is shown below. 
    

 
 
For Ecoli(1) dataset the SANN model settles at 7-3-1 
with 96.2991 best accuracy and 96.3413 average 
accuracy. The epoch size is 20 and 10 simulation runs 
are done for this dataset. The std obtained is 0.3993. the 
MSE plot is shown below. 

 
For Ecoli(2) the 7-2-1 SANN shows best accuracy of 
68.1881 and average accuracy of 56.3636 with 0.5 
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learning parameter and 0.5 momentum constant. The 
MSE plot is as  shown below. 
 

 
The results obtained using BP algorithm for all the 
investigated dataset reveal that the networks may have fall 
into the local minima. It appears that results can be 
improvised if some randomized optimization techniques 
is used for training the SANN i.e optimizing weights of 
the SANN. This has motivated us to explore the use of 
GA for optimizing the weights of SANN. In our 
experiments we have used the same SANN which we 
have obtained with GA and trained with BP. For example 
for Iris dataset we take the SANN 4-4-1 network, for 
Pima the SANN is 8-5-1, for Blodd Transfusion the 
SANN is 4-4-1 and for E-coli(1) it is 7-2-1 and Ecoli(2) 
7-3-1. The weights of these networks are optimized using 
GA. The chromosomes of GA are the strings of real 
numbers randomly chosen in a range. The length of 
chromosome is determined by the number of weights to 
be optimized.  The number of weights to be optimized is 
(m*n+n*p). For example, in Iris dataset SANN model 
total weights to optimized are    (4*4 + 4*1=20) 20. In all 
our simulation the population size is taken to be 30. The 
performances of these models are shown in the table 
1given below. 

Table:1 
 
Model/dataset Best Accuracy Avg 

accuracy(std) 
4-4-1/Iris 100 98.467(0.023) 
8-5-1/Pima 73.438 71.212 ( 0.324) 
4-4-1/Blood 
Tansfusion 

81.93 78.0154(0.256) 

7-2-1/Ecoli(1) 92.428 88.4848(0.453) 
7-3-1/Ecoli(2) 85.714 80.857(3.234) 
   

The results reveal GA based optimization for SANN is 
far more accurate with comparison to BP based training. 
However, for Ecoli(2) dataset the BP algorithm provides 
better result. The fitness curves for each datasets are 
given below. 
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The simulated results of FLANN models are shown below 
in a tabular format in Table 2. All experimenst are done 
for 30 epochs and 10 such simulations are considered for 
finding average correct classifications.. 
 
 
 
 
 
 

Table: 2 
 
 
 
 
 
 
 
 
 
The error curves for FLANN for all models are shown 
below. 
 
 
 

 
 

 
 

Dataset Convergence 
co-efficient 

Best 
accuracy 

Avg 
accuracy

Iris 8e-006 98 74.6 
Pima 8e-006 71.845 59.76 
Blood 
Trans 

8e-006 77.108 76.14 

Ecoli(1) 8e-005 93.443 74.09 
Ecoli(2) 8e-005 82.857 67.34 
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VII. Conclusion and further Research 
 
This paper has explored the design of a simple ANN for 
data classifications. The simple ANN termed as Simple 
ANN ( SANN) is envisioned by using GA for optimally 
deciding the number of neurons in a single hidden layer 
architecture. The weights of such SANNs are trained 
using BP algorithm and GA algorithm respectively. The 
results shown in the paper give very clear impression of 
the simplicity of the model without sacrificing the cost of 
accuracy. Contrary to the views of many researchers it  is 
felt that we can have simple ANN model or Simple ANN 
model with only one hidden layer and having very few 
neurons in the hidden layer. Even our designed SANN 

outperforms FLANN classification models in all dataset 
except Ecoli(2). However, in Ecoli(2) SANN gives a 
competition to FLANN as regard to the percentage of 
correct classification.  Due to less computational cost at 
the hidden layer SANN can have applications in the real 
time domain. 
 
However, this study is too early to claim the universal 
ness of the model. It left for further study to see how the 
other models like Bayesian classifier, Decision tree etc 
behave with comparison to our suggested models. Also 
we can further investigate to improvise the classification 
accuracies using some other randomized optimization 
techniques. Performance comparisons with some other 
well known approach for data classification will also be 
a good direction for future work. 
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