
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

116

Manuscript received October 5, 2009
Manuscript revised October 20, 2009

The Block Lossless Data Compression Algorithm

Weiling Chang†, Binxing Fang†, Xiaochun Yun††, Shupeng Wang††

†Research Centre of Computer Network and Information Security Technology, Harbin Institute of Technology, Harbin

150001, China
††Institute of Computing Technology, Chinese Academy of Science, Beijing 100080, China

Summary
The mainstream lossless data compression algorithms have been
extensively studied in recent years. However, rather less
attention has been paid to the block algorithm of those
algorithms. The aim of this study was therefore to investigate the
block performance of those methods. The main idea of this paper
is to break the input into different sized blocks, compress
separately, and compare the results to determine the optimal
block size. The select of optimal block size involves tradeoffs
between the compression ratio and the processing time. We
found that, for PPM, BWT and LZSS, a block size of greater
than 32 KiB may be optimal. For Huffman coding and LZW, a
moderate sized block (16KiB for Huffman and 32KiB for LZSS)
is better. We also use the mean block standard deviation (MBSD)
and locality of reference to explain the compression ratio. We
found that good data locality implies a large skew in the data
distribution, and the greater data distribution skew and the
MBSD, the better the compression ratio. There is a positive
correlation between MBSD and compression ratio.
Key words:
Block data compression, LZSS, LZW, PPM, BWT

1. Introduction

Lossless data compression techniques are often partitioned
into statistical and dictionary techniques. Statistical
compression assigns codes to symbols so as to match code
lengths with the probabilities of the symbols. Dictionary
method exploits repetitions in the data. We can also divide
the lossless data compression into two major families:
stream compression and block compression. Most
compression methods operate in the streaming mode,
where the codec inputs a byte or several bytes, processes
them, and continues until an end-of-file is sensed. Block
compression is applied to data chunks of varying sizes for
many types of data streams, which is a sequence of bytes
or bits, having a nominal length (a block size). In block
compression algorithm, the input

stream is read block by block and each block is
compressed separately.

The block-based compression algorithms have been
extensively used in many different fields.

While system processor and memory speeds have
continued to increase rapidly, the gap between processor
and memory and disk speed has still widened. Apart from
advances in cache hierarchies, computer architects have
addressed this speed gap mainly in a brute force manner
by simply wasting memory resources. As a result, the size
of caches and the amount of main memory, especially in
server systems, has increased steadily over the last decades.
Clearly, techniques that can use memory resources
effectively are of increasing importance to bring down the
cost, power dissipation, and space. Lossless data
compression techniques have the potential to utilize in-
memory resources more effectively. It is known from
many independent studies that dictionary-based methods,
such as LZ-variants, can free up more than 50% of in-
memory resources.

In disaster backup system, a disk snapshot is an exact
copy of the original file system at a certain point in time.
The snapshot is a consistent view of the file system
"snapped" at the point in time the snapshot is made. It
preserves the disk file system by enabling you to revert to
the snapshot in case something goes wrong. The bitmap
contains one bit for every block which is multiples of disk
sector on the snapped disk. Initially, all bitmap entries are
zero. A set bit indicates that the appropriate block was
copied from the snapped file system to the snapshot or
changed. In order to achieve the best space utilization and
support delta backup or recovery, we must use block
compression algorithm to compress the disk data,
therefore the block size should be carefully chosen. A long
list of small blocks wastes space on pointers and harms
compression efficiency; however, large blocks may
contain substantial segments of unchanged data which
wastes transmission bandwidth. The size of block depends
on the granularity of delta backup and the compression
efficiency of compression algorithm.

Delta encoding is a way of storing or transmitting
data in the form of differences between sequential data

Supported by the National High-Tech Development 863 Program
of China (Grant Nos. 2007AA01Z406, 2007AA010501,
2009AA01A403, 2009AA01Z437)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

117

rather than complete files. In addition to in-memory or on-
the-fly compression and disaster backup system, block
compression algorithm may be one of the delta
compression solutions.

The basic compression algorithms, such as LZ,
Huffman, PPM etc., have been extensively studied in
recent years. However, few researchers attempts to focus
on the block algorithm of basic compression algorithms.
The purpose of this paper is to investigate the optimal
block size for LZSS compression method and analyze
factors which affect the optimal block size.

The rest of this paper is organized as follows. Section 2
reviews the traditional and recent related works for
lossless compression. Section 3 introduces the factors
which affect the compression efficiency of LZSS method.
Experimental evidence and implementation considerations
are presented in Section 4. Section 5 contains concluding
remarks.

2. Previous work

In what follows we give a very brief account of some
algorithms of this paper used.

2.1 Huffman Coding and Related Techniques

Huffman coding [1] is an entropy encoding algorithm
used for lossless data compression. It uses a specific
method for choosing the representation for each symbol,
resulting in a prefix-free code that expresses the most
common characters using shorter strings of bits than are
used for less common source symbols. Huffman coding is
optimal when the probability of each input symbol is a
negative power of two. Prefix-free codes tend to have
slight inefficiency on small alphabets, where probabilities
often fall between these optimal points. "Blocking", or
expanding the alphabet size by coalescing multiple
symbols into "words" of fixed or variable-length before
Huffman coding, usually helps, especially when adjacent
symbols are correlated.

Prediction by Partial Matching (PPM) [2, 3] is an
adaptive statistical data compression technique based on
context modeling and prediction. In general, PPM predicts
the probability of a given character based on a given
number of characters that immediately precede it.
Predictions are usually reduced to symbol rankings. The
number of previous symbols, n, determines the order of
the PPM model which is denoted as PPM(n). Unbounded
variants where the context has no length limitations also
exist and are denoted as PPM*. If no prediction can be
made based on all n context symbols a prediction is
attempted with just n-1 symbols. This process is repeated
until a match is found or no more symbols remain in
context. At that point a fixed prediction is made. PPM is

conceptually simple, but often computationally expensive.
Much of the work in optimizing a PPM model is handling
inputs that have not already occurred in the input stream.
The obvious way to handle them is to create a "never-
seen" symbol which triggers the escape sequence. But
what probability should be assigned to a symbol that has
never been seen? This is called the zero-frequency
problem. PPM compression implementations vary greatly
in other details. The actual symbol selection is usually
recorded using arithmetic coding, though it is also possible
to use Huffman encoding or even some type of dictionary
coding technique. The underlying model used in most
PPM algorithms can also be extended to predict multiple
symbols. The symbol size is usually static, typically a
single byte, which makes generic handling of any file
format easy.

2.2 The LZ family of compressors

Lempel–Ziv compression is a dictionary method based
on replacing text substrings by previous occurrences
thereof. The dictionary of Lempel–Ziv compression starts
in some predetermined state but the contents change
during the encoding process, based on the data that has
already been encoded. Ziv-Lempel methods are popular
for their speed and economy of memory, the two most
famous algorithms of this family are called LZ77 [4] and
LZ78 [5]. One of the most popular versions of LZ77 is
LZSS [6], while one of the most popular versions of LZ78
is LZW [7].

Lempel-Ziv-Storer-Szymanski (LZSS) is a derivative
of LZ77, which was created in 1982 by James Storer and
Thomas Szymanski. The LZ77 solves the case of no match
in the window by outputting an explicit character after
each pointer. This solution contains redundancy: either is
the null-pointer redundant, or the extra character that
could be included in the next match. And in LZ77 the
dictionary reference could actually be longer than the
string it was replacing. The LZSS algorithm solves this
problem in a more efficient manner: the pointer is output
only if it points to a match longer than the pointer itself;
otherwise, explicit characters are sent. Since the output
stream now contains assorted pointers and characters, each
of them has to have an extra ID-bit which discriminates
between them, LZSS uses one-bit flags to indicate whether
the next chunk of data is a literal (byte) or a reference to
string.

LZW compression replaces strings of characters with
single codes. It does not do any analysis of the incoming
text. Instead, LZW builds a string translation table from
the text being compressed. The string translation table
maps fixed-length codes to strings. The string table is
initialized with all single-character strings. Whenever a
previously-encountered string is read from the input, the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

118

longest such previously-encountered string is determined,
and then the code for this string concatenated with the
extension character is stored in the table. The code for this
longest previously-encountered string is output and the
extension character is used as the beginning of the next
word. Compression occurs when a single code is output
instead of a string of characters. Although LZW is often
explained in the context of compressing text files, it can be
used on any type of file. However, it generally performs
best on files with repeated substrings, such as text files.

2.3 The Burroughs-Wheeler Transform

Most compression methods operate in the streaming
mode, where the codec inputs a byte or several bytes,
processes them, and continues until an end-of-file is
sensed. The BWT [8] works in a block mode, where the
input stream is read block by block and each block is
encoded separately as one string. BWT takes a block of
data and rearranges it using a sorting algorithm. The
resulting output block contains exactly the same data
elements that it started with, differing only in their
ordering. The transformation is reversible, meaning the
original ordering of the data elements can be restored with
no loss of information. The BWT is performed on an
entire block of data at once. The method is thus also
referred to as block sorting.

2.4 Block Compressors

In 2003, Mohammad [9] introduced the concept of
block Huffman coding. His main idea is to break the input
stream into blocks and compress each block separately. He
chooses block size in such a way that he can store one full
single block in main memory. He use a block size as
moderate as 5 KiB, 10 KiB or 12 KiB. He observed that to
obtain better efficiency from his block Huffman coding, a
moderate sized block is better and the block size does not
depend on file types.

bzip2 [8,10] is a block compression utility, which uses
the Burrows-Wheeler transform to convert frequently
recurring character sequences into strings of identical
letters, and then applies a move-to-front transform and
finally Huffman coding. In bzip2 the blocks are generally
all the same size in plaintext, which can be selected by a
command-line argument between 100KiB–900 KiB. bzip2
is generally considerably better than that achieved by more
conventional LZ77/LZ78-based compressors, and
approaches the performance of the PPM family of
statistical compressors.

Arithmetic coding [11-13] is a form of variable-length
entropy encoding that converts a stream of input symbols
into another representation that represents frequently used
symbols using fewer bits and infrequently used symbols
using more bits, with the goal of using fewer bits in total.

As opposed to other entropy encoding techniques that
separate the input message into its component symbols
and replace each symbol with a code word, arithmetic
coding encodes the entire message (a single block) into a
single number, a fraction n where (0.0 ≤ n < 1.0).

Gzip [14,15] is a software application used for file
compression. gzip is based on the DEFLATE algorithm,
which is a combination of LZ77 and Huffman coding. In
gzip, data which has been compressed by LZSS is broken
up into blocks, whose size is a configurable parameter,
and each block uses a different compression mode of
Huffman coding (Literals or match lengths are compressed
with one Huffman tree, and match distances are
compressed with another tree.).

3. The block Lossless Data Compression

Our main idea is to break the input into blocks,
compress each block separately, and compare the results to
determine the optimal block size. One thing we have to
consider in this proposed method is the block size. Since
the sector size, which is the smallest accessible amount of
data on hard disk, is 512 bytes. If we take block size to be
less than 1 KiB, there would be a large number of blocks.
This will cause penalty in compression ratio and
considerably increase the running time. So we use a block
size which is greater than 1KiB. We choose block size in
such a way that the block size is multiples of 1KiB, but
less than or equal to half of test file size.

The select of optimal block size involves trade-offs
among various factors, including the degree of
compression, the specific application, the block size and
the processing time.

3.1 Information entropy

The theoretical background of lossless data
compression is provided by information theory.
Information theory is based on probability theory and
statistics. The most fundamental results of Information
theory are Shannon's source coding theorem, which
establishes that, on average, the number of bits needed to
represent the result of an uncertain event is given by its
entropy. Intuitively, entropy quantifies the uncertainty
involved when encountering a random variable. From the
point of view of data compression, entropy is the amount
of information, in bits per byte or symbol, needed to
encode it. Shannon's entropy measures the information
contained in a message as opposed to the portion of the
message that is determined or predictable. The entropy
indicates how easily message data can be compressed.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

119

3.2 Locality of reference

Locality of reference, also known as the principle of
locality, is one of the cornerstones of computer science.
Locality of reference is the phenomenon of the same value
or related storage locations being frequently accessed.
This phenomenon is widely observed and a rule of thumb,
often called the 90/10 rule, states that a program spends
90% of its execution time in only 10% of the code. As far
as data compression is concerned, principle of locality is
the most recently used data objects is likely to be reused in
the near future.

Locality is one of the predictable behaviors that occur
to data stream. The data stream exhibits locality in that
data distribution is non-uniform in terms of the data
objects being used. A consequence of data stream locality
is that some objects are used much more frequently than
others making these highly used entities attractive
compression targets.

Data stream which exhibit strong locality, are good
candidates for data compression through the use of some
techniques. For example, LZSS uses the built-in implicit
assumption that patterns in the input data occur close
together. Data streams that don’t satisfy this assumption
compress poorly. BWT permutes blocks of data to become
more compressible by performing a sorting algorithm on
the shifted blocks according to its previous context. MTF
is a simple heuristic method which exploits the locality of
reference.

 One possible quantifiable definition for data locality in
the spirit of the 90/10 rule is the smaller percentage of
used data objects (not necessarily to unique data objects)
that are responsible for 90% of compression ratio. Thus,
good data locality implies a large skew in the data
distribution.

Fig. 1. Data distributions skew in 6 test files.

Figure 1 indicates the fraction of data size (greater than

80%) that is attributable to the most frequently referenced
data phrase (less than 20% of phrases and characters). The
graphs indicate that compressible data possess significant
data distribution locality, as the 90/10 rule predicts.
Interestingly, they also indicate that the greater data

distribution skew or the more locality, the better the
compression ratio.

3.3 Mean Block Standard Deviation (MBSD)

In probability and statistics, the standard deviation is a
measure of the dispersion of a collection of values. The
standard deviation measures how widely spread the values
in a data set are. If many data points are close to the mean,
the standard deviation is small; if many data points are far
from the mean, then the standard deviation is large. If all
data values are equal, then the standard deviation is zero.

We can use the mean block standard deviation (MBSD)
to measure the dispersion of byte values. The MBSD is
computed by the following formula:

where , is the arithmetic mean of the values xj and
yj, xj is defined as the count of byte value j in block i. b is
the block number, n is the number of byte value in block i.

Lossless data compression algorithms cannot guarantee
compression for all input data sets. Any lossless
compression algorithm that makes some files shorter must
necessarily make some files longer, to choose an algorithm
always means implicitly to select a subset of all files that
will become usefully shorter.

There are two kinds of redundancy contained in the
data stream: statistics redundancy and non-statistics
redundancy. The non-statistics redundancy includes
redundancy derived from syntax, semantics and
pragmatics. The trick that allows lossless compression
algorithms to consistently compress some kind of data to a
shorter form is that the data the algorithm are designed to
act on all have some form of easily-modeled redundancy
that the algorithm is designed to remove. Order-1
statistics-based compressor compress the statistics
redundancy, higher orders statistics-based and dictionary-
based compression algorithms, which exploit the statistics
redundancy and the non-statistics redundancy, are
designed to respond to specific types of local redundancy
occurring in certain applications.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

120

Table 1. MBSD and Compression Ratio (CR, bpc) of 10 files on
optimal blocking mode.

It can be seen from table 1, as the values of MBSD
increase, the values of the compression ratio also increase.
Likewise, as the value of MBSD decreases, the value of
the other variable also decreases. There is a positive
correlation between MBSD and compression ratio. Thus,
we can use the MBSD to measure the compression
performance, the greater the MBSD is, and the better the
compression ratio will be.

4. Experiment Result

Table 2: Test files used in experiments: raw size in KiB (kibibyte: kilo
binary byte)

We show in this section our empirical results on four

mainstream compression schemes. Our experiments
carried out on a small set of test files. Table 2 lists the files
used for our experiments.

The Huffman coding、 LZSS and LZW algorithm
adapted from the related codes of the data compression
book [18]. The PPMVC algorithm adapted from the
related codes of Dmitry Shkarin and Przemyslaw
Skibinski [19]. The bzip2 coding uses the code of
literature [10]. All associated codes were written in the C
or C++ language and compiled by Microsoft Visual C++
6.0. All experiments are performed on a Lenovo computer
with an Intel Core2 CPU 4300 @ 1.80GHz & 1.79GHz,
1024 MB memory. The operating system in use is the
Microsoft Windows XP.

Experimental results of running the block compression
algorithms on our test files are shown in table 3 – 6. The
compression ratios for each file shown in the tables are

given in bits per character (bpc) or the reduction in size
relative to the uncompressed size:

Compression Ratio Gain = Blocking Compression

Ratio –No Blocking Compression Ratio
The best ratio for each file is printed in boldface.

4.1 Block PPM

PPMVC [15] is a file-to-file compressor. It uses
Variable-length Contexts technique, which combines
traditional character based PPM with string matching. The
PPMVC algorithm, inspired by its predecessors, PPM*
and PPMZ, searches for matching sequences in arbitrarily
long, variable-length, deterministic contexts. The
algorithm significantly improves the compression
performance of the character oriented PPM, especially in
lower orders (up to 8).

Table 3 and table 4 show results of experiments with
block PPMVC algorithm. The experiments were carried
out using PPMVC ver. 1.2 (default mode). The results
presented in table 3 and 4 indicate that a reduced block
size may result in lower compression ratio, and the no
blocking mode of PPMVC gives the best compression.
From the point of practical use, the optimal block size
seems to be greater than 32 KiB.

Table 3. Compression ratio (bpc) in PPMVC for different block sizes

(KiB).

Table 4. Compression Ratio Gain (%) in PPMVC for different block

sizes (KiB).

We believe that the Maximum Corpus files are too
small to get a full potential from the block PPMVC

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

121

algorithm, so we decided to perform similar experiments
on the Hutter Prize corpus. Figure 2 shows the experiment
results which were carried out on the test file enwik8. It
can be seen from the figure that the compression generally
increases as the block size increases, it is similar to the
results achieved in the previous experiments.

Fig. 2. Compression Ratio of file “enwik8” for different block sizes.

Fig. 3. Compression Ratio of file “english.dic” for different block sizes.

One of the drawbacks with PPM is that it performs
relatively poorly at the start. This is because it has not yet
built up the counts for the higher order context models, so
must resort to lower order models. Figure 3 shows the
compression ratio of file English.dic under different block
sizes. We can see in the figure that PPM obtains the best
performance when the block size is 13 KiB. The poor
performance PPM in no blocking mode can be explained
by the fact that the english.dic is alphabetically sorted
English word-list (354,951 words), PPM must reinitialize
for every about 13 KiB-sized block.

4.2 Block Huffman

Table 5 displays the compression ratio gain for block
Huffman to original Huffman coding. From the results of
Table 5, we have found that, in most cases, the block
Huffman coding has a better compression ratio than no
blocking Huffman coding, and with the increasing block
size, the compression ratio deteriorates. The optimal block
size in which it obtains the best compression ratio is more
or less 16KiB. The reason for the better efficiency may be
attributed to the principle of locality of data. Given this, it

can be concluded that the block Huffman coding is
advantageous over original no blocking Huffman coding.

Table 5. Compression Ratio Gain (%) in Huffman for different block

sizes (KiB).

4.3 Block LZSS

Table 6 lists the average gain in compression ratio for
LZSS of the various block size comparing with the no
blocking mode. The index bit count of the LZSS
implementation shown here is set to 12 bits and the length
bit count macro is set to 4 bits.

Table 6. Compression Ratio Gain (%) in LZSS for different block

sizes (KiB).

We can see from table 6 that no blocking LZSS

achieves best results on our test files. The average
compression ratio gain of block LZSS is worse by about
15.23% - 0.02% than that of no blocking LZSS. It can be
clearly seen in table 6 that the compression ratio gain
increases with the increasing size of the block. We can use
a moderate block size, so the optimal block size could be
32KiB or so, it is only worse by about 1% compared with
the no blocking LZSS.

4.4 Block LZW

The LZW’s advantage over the LZ77-based algorithms
is in the speed because there are not that many string
comparisons to perform. Due to management of the
dictionary, implementation of LZW is somewhat
complicated. The code used here is a simple version,
which uses twelve-bit codes. Further refinements add
variable code word size (depending on the current
dictionary size), deleting of the old strings in the
dictionary etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

122

Table 7. Compression Ratio Gain (%) in LZW for different block
sizes (KiB).

It can be seen from the table 7 that the block LZW has

a better compression ratio than original LZW method. The
better efficiency in the compression ratio is the outcome of
locality characteristics of the block LZW algorithm as it
compresses locally rather than globally. Therefore, it can
be concluded that the optimal block size for block LZW is
about 32 KiB. The block LZW is advantageous over no
blocking LZW coding in compression ratio.

4.5 Block bzip2

Table 8 shows the compression ratio gain in bzip2 for
different block size. The bzip2 use the default mode. As
can be seen from table 8, in most cases, the no blocking
mode of bzip2 can obtain the best compression ratio. One
of the exceptions is the test file english.dic which reaches
the best efficiency at 10 KiB sized block. The reason for it
is the specific distribution characteristic of file english.dic.
Thus, it can be concluded that we need to have different
compression algorithms for different kinds of files: there
cannot be any algorithm that is good for all kinds of data.

Table 8. Compression Ratio Gain (%) in bzip2 for different block

sizes (KiB).

4.6 Time Efficiency of Block Methods

Figure 4 presents the effect of varying block size on
compression time of five lossless compression algorithms.
The times include both I/O and compression time, as well
as the overhead blocking, open, close, etc.

Fig. 4. Compression time and block size for file “enwik8”

As can be seen, for the Huffman coding, LZSS, bzip2

and PPMVC, the compression time decrease steeply when
the block size increases from 1 KiB to 4 KiB, then decline
steadily from 5 KiB until 64 KiB, and level off as the
block size is greater than 64KiB. For LZW algorithm, the
compression time declines steadily as the block size
increases from 1 to 3 KiB, and then fluctuated slightly.
The figures indicate that as the volume of block being
compressed grows, compression become increasingly
effective in reducing the overall compression time. One
reason is due to disk activity. From figure 4, it also can be
seen that LZW is the fastest method, because LZW has not
that many string comparisons to perform or to build up
counts. Therefore, in order to select the optimal block size,
we must tradeoff between data compression speed and the
amount of compression achieved, a moderate sized block
(for example, greater than 32 KiB) may be appropriate.

5. Conclusion

We can conclude from the discussion above, for PPM
and LZSS algorithm, a bigger sized block may yield better
compression ratios. However, for Huffman coding, BWT
and LZW, a moderate sized block is better. The time
performance of those block methods and potential
improvements to block techniques are also investigated.

In our another paper, "The Block LZSS Compression
Algorithm [20]", we have studied the block LZSS
algorithm and investigated the relationship between the
compression ratio of block LZSS and the value of index or
length. We found that as the block size increases, the
compression ratio becomes better. We also found that the
bit of length has little effect on the compression
performance, and the bit of index has a significant effect
on the compression ratio. We showed that the more the bit
of index is set, the bigger optimal block size is obtained.

We can conclude from table 6 that to obtain better
efficiency from block LZSS, a moderate sized block

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

123

which is greater than 32KiB, may be optimal, and the
optimal block size is not depend on file types.

From the results of table 4 and table 7, we have found
that, in most cases, the block coding methods of Huffman
and LZW have better compression ratio than original
Huffman coding and LZW, and with the increasing block
size, the compression ratio deteriorates. The optimal block
size of Huffman coding is about 16KiB, and LZW obtain
the best compression ratio in about 32KiB. The reason
may be attributed to the principle of locality of data.

We also studied the blocking algorithm of bzip2. We
found that block bzip2 is similar to the block PPM in that
the compression efficiency is increased with the increasing
block size.

References
[1] D.A. Huffman, "A Method for the Construction of Minimum-

Redundancy Codes", Proceedings of the I.R.E., September
1952, pp 1098-1102.

[2] T. Bell, J. Cleary, and I. Witten, “Data compression using
adaptive coding and partial string matching,” IEEE
Transactions on Communications, Vol. 32 (4), p. 396-402,
1984.

[3] A. Moffat, Implementing the PPM data compression scheme ,
IEEE Transactions on Communications, Vol. 38 (11), pp.
1917-1921, November 1990.

[4] Ziv, J., & Lempel, A. “A Universal Algorithm for Sequential
Data Compression,” IEEE Transactions on Information
Theory, 23(3), pp.337-343, May 1977.

[5] Ziv, J., & Lempel, A. “Compression of individual sequences
via variable-rate coding,” IEEE Trans. Inform. Theory,
24(5), 530-536, September 1978.

[6] Storer, J.A., & Szymanski, T.G. “Data Compression via
Textual Substitution,” Journal of ACM, 29(4), 928-951,
1982.

[7] Welch, T.A. “A technique for high performance data
compression”, IEEE Computer, 17(6), 819, 1984.

[8] M. Burrows and D. J. Wheeler, “A Block-sorting Lossless
Data Compression Algorithm”, Digital Systems Research
Canter Research Report 124, May 1994.

[9] M. Mannan, M. Kaykobad, “Block Huffman Coding”,
International Journal of Computers and Mathematics with
Applications, vol 46, issue 10-11, pp 1581-1587, November
- December 2003.

[10] bzip2: http://www.bzip.org/
[11] Rissanen, Jorma. "Generalized Kraft Inequality and

Arithmetic Coding". IBM Journal of Research and
Development 20 (3): 198–203, May 1976.

[12] Rissanen, J.J.; Langdon, G.G., Jr. "Arithmetic coding". IBM
Journal of Research and Development 23 (2): 149–162,
March 1979.

[13] Witten, Ian H.; Neal, Radford M.; Cleary, John G.
"Arithmetic Coding for Data Compression". CACM 30 (6):
520–540, June 1987.

[14] gzip: http://www.gzip.org/, 18, Jun. 2008.
[15] P. Deutsch, “RFC1951: DEFLATE Compressed Data

Format Specification version 1.3”, May 1996.
[16] http://www.maximumcompression.com/index.html

[17] http://prize.hutter1.net/index.htm
[18] Nelson M., Gailly J., “The Data Compression Book, 2nd

edition”, M&T Books, New York, NY, 1995.
[19] Homepage of Przemysław Skibiński:

http://www.ii.uni.wroc.pl/~inikep/.
[20] Wei-ling Chang, Xiao-chun Yun, Bin-xing Fang, Shu-peng

Wang. The Block LZSS Compression Algorithm. Data
Compression Conference (DCC2009): 439-439, March
2009

Weiling Chang was born in Shanxi
province, China. He graduated with a
BA Econ from University of
International Business and
Economics (UIBE) in 1993 and
earned his master's degree in
computer science from China
Agricultural University (CAU) in
2006. He is currently in PhD program

in Computer Science at Harbin Institute of Technology
(HIT), Harbin, China. His major research interests include
data compression, computer network and information
security.

Binxing Fang, born in 1960, is a
professor and supervisor of Ph.D.
candidates, an academician of Chinese
Academy of Engineering and the
president of Beijing University of Post
and Telecommunications. His research
interests include computer network and
information security.

Xiaochun Yun, born in 1971, is a
professor and Ph.D. supervisor at
Institute of Computing Technology of
the Chinese Academy of Sciences. His
research interests include computer
network and information security.

Shupeng Wang, born in 1980, Ph.D.
His research interests include computer
network and information security.

