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Summary 
The mainstream lossless data compression algorithms have been 
extensively studied in recent years. However, rather less 
attention has been paid to the block algorithm of those 
algorithms. The aim of this study was therefore to investigate the 
block performance of those methods. The main idea of this paper 
is to break the input into different sized blocks, compress 
separately, and compare the results to determine the optimal 
block size. The select of optimal block size involves tradeoffs 
between the compression ratio and the processing time. We 
found that, for PPM, BWT and LZSS, a block size of greater 
than 32 KiB may be optimal.  For Huffman coding and LZW, a 
moderate sized block (16KiB for Huffman and 32KiB for LZSS) 
is better. We also use the mean block standard deviation (MBSD) 
and locality of reference to explain the compression ratio. We 
found that good data locality implies a large skew in the data 
distribution, and the greater data distribution skew and the 
MBSD, the better the compression ratio. There is a positive 
correlation between MBSD and compression ratio. 
Key words: 
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1. Introduction 

Lossless data compression techniques are often partitioned 
into statistical and dictionary techniques. Statistical 
compression assigns codes to symbols so as to match code 
lengths with the probabilities of the symbols. Dictionary 
method exploits repetitions in the data. We can also divide 
the lossless data compression into two major families: 
stream compression and block compression. Most 
compression methods operate in the streaming mode, 
where the codec inputs a byte or several bytes, processes 
them, and continues until an end-of-file is sensed. Block 
compression is applied to data chunks of varying sizes for 
many types of data streams, which is a sequence of bytes 
or bits, having a nominal length (a block size). In block 
compression algorithm, the input 

stream is read block by block and each block is 
compressed separately.  

The block-based compression algorithms have been 
extensively used in many different fields. 

While system processor and memory speeds have 
continued to increase rapidly, the gap between processor 
and memory and disk speed has still widened. Apart from 
advances in cache hierarchies, computer architects have 
addressed this speed gap mainly in a brute force manner 
by simply wasting memory resources. As a result, the size 
of caches and the amount of main memory, especially in 
server systems, has increased steadily over the last decades. 
Clearly, techniques that can use memory resources 
effectively are of increasing importance to bring down the 
cost, power dissipation, and space. Lossless data 
compression techniques have the potential to utilize in-
memory resources more effectively. It is known from 
many independent studies that dictionary-based methods, 
such as LZ-variants, can free up more than 50% of in-
memory resources. 

In disaster backup system, a disk snapshot is an exact 
copy of the original file system at a certain point in time. 
The snapshot is a consistent view of the file system 
"snapped" at the point in time the snapshot is made. It 
preserves the disk file system by enabling you to revert to 
the snapshot in case something goes wrong. The bitmap 
contains one bit for every block which is multiples of disk 
sector on the snapped disk. Initially, all bitmap entries are 
zero. A set bit indicates that the appropriate block was 
copied from the snapped file system to the snapshot or 
changed. In order to achieve the best space utilization and 
support delta backup or recovery, we must use block 
compression algorithm to compress the disk data, 
therefore the block size should be carefully chosen. A long 
list of small blocks wastes space on pointers and harms 
compression efficiency; however, large blocks may 
contain substantial segments of unchanged data which 
wastes transmission bandwidth. The size of block depends 
on the granularity of delta backup and the compression 
efficiency of compression algorithm. 

Delta encoding is a way of storing or transmitting 
data in the form of differences between sequential data 
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rather than complete files. In addition to in-memory or on-
the-fly compression and disaster backup system, block 
compression algorithm may be one of the delta 
compression solutions. 

The basic compression algorithms, such as LZ, 
Huffman, PPM etc., have been extensively studied in 
recent years. However, few researchers attempts to focus 
on the block algorithm of basic compression algorithms. 
The purpose of this paper is to investigate the optimal 
block size for LZSS compression method and analyze 
factors which affect the optimal block size. 

The rest of this paper is organized as follows. Section 2 
reviews the traditional and recent related works for 
lossless compression. Section 3 introduces the factors 
which affect the compression efficiency of LZSS method. 
Experimental evidence and implementation considerations 
are presented in Section 4. Section 5 contains concluding 
remarks. 

2. Previous work 

In what follows we give a very brief account of some 
algorithms of this paper used. 

2.1 Huffman Coding and Related Techniques 

Huffman coding [1] is an entropy encoding algorithm 
used for lossless data compression. It uses a specific 
method for choosing the representation for each symbol, 
resulting in a prefix-free code that expresses the most 
common characters using shorter strings of bits than are 
used for less common source symbols. Huffman coding is 
optimal when the probability of each input symbol is a 
negative power of two. Prefix-free codes tend to have 
slight inefficiency on small alphabets, where probabilities 
often fall between these optimal points. "Blocking", or 
expanding the alphabet size by coalescing multiple 
symbols into "words" of fixed or variable-length before 
Huffman coding, usually helps, especially when adjacent 
symbols are correlated. 

Prediction by Partial Matching (PPM) [2, 3] is an 
adaptive statistical data compression technique based on 
context modeling and prediction. In general, PPM predicts 
the probability of a given character based on a given 
number of characters that immediately precede it. 
Predictions are usually reduced to symbol rankings. The 
number of previous symbols, n, determines the order of 
the PPM model which is denoted as PPM(n). Unbounded 
variants where the context has no length limitations also 
exist and are denoted as PPM*. If no prediction can be 
made based on all n context symbols a prediction is 
attempted with just n-1 symbols. This process is repeated 
until a match is found or no more symbols remain in 
context. At that point a fixed prediction is made. PPM is 

conceptually simple, but often computationally expensive. 
Much of the work in optimizing a PPM model is handling 
inputs that have not already occurred in the input stream. 
The obvious way to handle them is to create a "never-
seen" symbol which triggers the escape sequence. But 
what probability should be assigned to a symbol that has 
never been seen? This is called the zero-frequency 
problem. PPM compression implementations vary greatly 
in other details. The actual symbol selection is usually 
recorded using arithmetic coding, though it is also possible 
to use Huffman encoding or even some type of dictionary 
coding technique. The underlying model used in most 
PPM algorithms can also be extended to predict multiple 
symbols. The symbol size is usually static, typically a 
single byte, which makes generic handling of any file 
format easy. 

2.2 The LZ family of compressors 

Lempel–Ziv compression is a dictionary method based 
on replacing text substrings by previous occurrences 
thereof. The dictionary of Lempel–Ziv compression starts 
in some predetermined state but the contents change 
during the encoding process, based on the data that has 
already been encoded. Ziv-Lempel methods are popular 
for their speed and economy of memory, the two most 
famous algorithms of this family are called LZ77 [4] and 
LZ78 [5]. One of the most popular versions of LZ77 is 
LZSS [6], while one of the most popular versions of LZ78 
is LZW [7]. 

Lempel-Ziv-Storer-Szymanski (LZSS) is a derivative 
of LZ77, which was created in 1982 by James Storer and 
Thomas Szymanski. The LZ77 solves the case of no match 
in the window by outputting an explicit character after 
each pointer. This solution contains redundancy: either is 
the null-pointer redundant, or the extra character that 
could be included in the next match. And in LZ77 the 
dictionary reference could actually be longer than the 
string it was replacing. The LZSS algorithm solves this 
problem in a more efficient manner: the pointer is output 
only if it points to a match longer than the pointer itself; 
otherwise, explicit characters are sent. Since the output 
stream now contains assorted pointers and characters, each 
of them has to have an extra ID-bit which discriminates 
between them, LZSS uses one-bit flags to indicate whether 
the next chunk of data is a literal (byte) or a reference to 
string. 

LZW compression replaces strings of characters with 
single codes. It does not do any analysis of the incoming 
text. Instead, LZW builds a string translation table from 
the text being compressed. The string translation table 
maps fixed-length codes to strings. The string table is 
initialized with all single-character strings. Whenever a 
previously-encountered string is read from the input, the 
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longest such previously-encountered string is determined, 
and then the code for this string concatenated with the 
extension character is stored in the table. The code for this 
longest previously-encountered string is output and the 
extension character is used as the beginning of the next 
word. Compression occurs when a single code is output 
instead of a string of characters. Although LZW is often 
explained in the context of compressing text files, it can be 
used on any type of file. However, it generally performs 
best on files with repeated substrings, such as text files. 

2.3 The Burroughs-Wheeler Transform 

Most compression methods operate in the streaming 
mode, where the codec inputs a byte or several bytes, 
processes them, and continues until an end-of-file is 
sensed. The BWT [8] works in a block mode, where the 
input stream is read block by block and each block is 
encoded separately as one string. BWT takes a block of 
data and rearranges it using a sorting algorithm. The 
resulting output block contains exactly the same data 
elements that it started with, differing only in their 
ordering. The transformation is reversible, meaning the 
original ordering of the data elements can be restored with 
no loss of information. The BWT is performed on an 
entire block of data at once. The method is thus also 
referred to as block sorting. 

2.4 Block Compressors 

In 2003, Mohammad [9] introduced the concept of 
block Huffman coding. His main idea is to break the input 
stream into blocks and compress each block separately. He 
chooses block size in such a way that he can store one full 
single block in main memory. He use a block size as 
moderate as 5 KiB, 10 KiB or 12 KiB. He observed that to 
obtain better efficiency from his block Huffman coding, a 
moderate sized block is better and the block size does not 
depend on file types. 

bzip2 [8,10] is a block compression utility, which uses 
the Burrows-Wheeler transform  to convert frequently 
recurring character sequences into strings of identical 
letters, and then applies a move-to-front transform and 
finally Huffman coding. In bzip2 the blocks are generally 
all the same size in plaintext, which can be selected by a 
command-line argument between 100KiB–900 KiB. bzip2 
is generally considerably better than that achieved by more 
conventional LZ77/LZ78-based compressors, and 
approaches the performance of the PPM family of 
statistical compressors. 

Arithmetic coding [11-13] is a form of variable-length 
entropy encoding that converts a stream of input symbols 
into another representation that represents frequently used 
symbols using fewer bits and infrequently used symbols 
using more bits, with the goal of using fewer bits in total. 

As opposed to other entropy encoding techniques that 
separate the input message into its component symbols 
and replace each symbol with a code word, arithmetic 
coding encodes the entire message (a single block) into a 
single number, a fraction n where (0.0 ≤ n < 1.0). 

Gzip [14,15] is a software application used for file 
compression. gzip is based on the DEFLATE algorithm, 
which is a combination of LZ77 and Huffman coding. In 
gzip, data which has been compressed by LZSS is broken 
up into blocks, whose size is a configurable parameter, 
and each block uses a different compression mode of 
Huffman coding (Literals or match lengths are compressed 
with one Huffman tree, and match distances are 
compressed with another tree.).  

3. The block Lossless Data Compression 

Our main idea is to break the input into blocks, 
compress each block separately, and compare the results to 
determine the optimal block size. One thing we have to 
consider in this proposed method is the block size. Since 
the sector size, which is the smallest accessible amount of 
data on hard disk, is 512 bytes. If we take block size to be 
less than 1 KiB, there would be a large number of blocks. 
This will cause penalty in compression ratio and 
considerably increase the running time. So we use a block 
size which is greater than 1KiB. We choose block size in 
such a way that the block size is multiples of 1KiB, but 
less than or equal to half of test file size. 

The select of optimal block size involves trade-offs 
among various factors, including the degree of 
compression, the specific application, the block size and 
the processing time. 

3.1 Information entropy 

The theoretical background of lossless data 
compression is provided by information theory. 
Information theory is based on probability theory and 
statistics. The most fundamental results of Information 
theory are Shannon's source coding theorem, which 
establishes that, on average, the number of bits needed to 
represent the result of an uncertain event is given by its 
entropy. Intuitively, entropy quantifies the uncertainty 
involved when encountering a random variable. From the 
point of view of data compression, entropy is the amount 
of information, in bits per byte or symbol, needed to 
encode it. Shannon's entropy measures the information 
contained in a message as opposed to the portion of the 
message that is determined or predictable. The entropy 
indicates how easily message data can be compressed.  
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3.2 Locality of reference 

Locality of reference, also known as the principle of 
locality, is one of the cornerstones of computer science. 
Locality of reference is the phenomenon of the same value 
or related storage locations being frequently accessed. 
This phenomenon is widely observed and a rule of thumb, 
often called the 90/10 rule, states that a program spends 
90% of its execution time in only 10% of the code. As far 
as data compression is concerned, principle of locality is 
the most recently used data objects is likely to be reused in 
the near future.  

Locality is one of the predictable behaviors that occur 
to data stream. The data stream exhibits locality in that 
data distribution is non-uniform in terms of the data 
objects being used. A consequence of data stream locality 
is that some objects are used much more frequently than 
others making these highly used entities attractive 
compression targets.  

Data stream which exhibit strong locality, are good 
candidates for data compression through the use of some 
techniques. For example, LZSS uses the built-in implicit 
assumption that patterns in the input data occur close 
together. Data streams that don’t satisfy this assumption 
compress poorly. BWT permutes blocks of data to become 
more compressible by performing a sorting algorithm on 
the shifted blocks according to its previous context. MTF 
is a simple heuristic method which exploits the locality of 
reference. 

 One possible quantifiable definition for data locality in 
the spirit of the 90/10 rule is the smaller percentage of 
used data objects (not necessarily to unique data objects) 
that are responsible for 90% of compression ratio. Thus, 
good data locality implies a large skew in the data 
distribution.  

 

 
Fig. 1. Data distributions skew in 6 test files. 

 
Figure 1 indicates the fraction of data size (greater than 

80%) that is attributable to the most frequently referenced 
data phrase (less than 20% of phrases and characters). The 
graphs indicate that compressible data possess significant 
data distribution locality, as the 90/10 rule predicts. 
Interestingly, they also indicate that the greater data 

distribution skew or the more locality, the better the 
compression ratio. 

3.3 Mean Block Standard Deviation (MBSD) 

In probability and statistics, the standard deviation is a 
measure of the dispersion of a collection of values. The 
standard deviation measures how widely spread the values 
in a data set are. If many data points are close to the mean, 
the standard deviation is small; if many data points are far 
from the mean, then the standard deviation is large. If all 
data values are equal, then the standard deviation is zero. 

We can use the mean block standard deviation (MBSD) 
to measure the dispersion of byte values. The MBSD is 
computed by the following formula: 

 

 
 

where ,  is the arithmetic mean of the values xj and 
yj, xj is defined as the count of byte value j in block i. b is 
the block number, n is the number of byte value in block i. 

Lossless data compression algorithms cannot guarantee 
compression for all input data sets. Any lossless 
compression algorithm that makes some files shorter must 
necessarily make some files longer, to choose an algorithm 
always means implicitly to select a subset of all files that 
will become usefully shorter.  

There are two kinds of redundancy contained in the 
data stream: statistics redundancy and non-statistics 
redundancy. The non-statistics redundancy includes 
redundancy derived from syntax, semantics and 
pragmatics. The trick that allows lossless compression 
algorithms to consistently compress some kind of data to a 
shorter form is that the data the algorithm are designed to 
act on all have some form of easily-modeled redundancy 
that the algorithm is designed to remove.  Order-1 
statistics-based compressor compress the statistics 
redundancy, higher orders statistics-based and dictionary-
based compression algorithms, which exploit the statistics 
redundancy and the non-statistics redundancy, are 
designed to respond to specific types of local redundancy 
occurring in certain applications.  
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Table 1. MBSD and Compression Ratio (CR, bpc) of 10 files on 
optimal blocking mode. 

 
 

It can be seen from table 1, as the values of MBSD 
increase, the values of the compression ratio also increase. 
Likewise, as the value of MBSD decreases, the value of 
the other variable also decreases. There is a positive 
correlation between MBSD and compression ratio. Thus, 
we can use the MBSD to measure the compression 
performance, the greater the MBSD is, and the better the 
compression ratio will be. 

4. Experiment Result 

Table 2: Test files used in experiments: raw size in KiB (kibibyte: kilo 
binary byte) 

 
 
We show in this section our empirical results on four 

mainstream compression schemes. Our experiments 
carried out on a small set of test files. Table 2 lists the files 
used for our experiments. 

The Huffman coding、  LZSS and LZW algorithm 
adapted from the related codes of the data compression 
book [18]. The PPMVC algorithm adapted from the 
related codes of Dmitry Shkarin and Przemyslaw 
Skibinski [19]. The bzip2 coding uses the code of 
literature [10]. All associated codes were written in the C 
or C++ language and compiled by Microsoft Visual C++ 
6.0. All experiments are performed on a Lenovo computer 
with an Intel Core2 CPU 4300 @ 1.80GHz & 1.79GHz, 
1024 MB memory. The operating system in use is the 
Microsoft Windows XP. 

Experimental results of running the block compression 
algorithms on our test files are shown in table 3 – 6. The 
compression ratios for each file shown in the tables are 

given in bits per character (bpc) or the reduction in size 
relative to the uncompressed size: 

 
Compression Ratio Gain = Blocking Compression 

Ratio –No Blocking Compression Ratio 
The best ratio for each file is printed in boldface. 

4.1 Block PPM 

PPMVC [15] is a file-to-file compressor. It uses 
Variable-length Contexts technique, which combines 
traditional character based PPM with string matching. The 
PPMVC algorithm, inspired by its predecessors, PPM* 
and PPMZ, searches for matching sequences in arbitrarily 
long, variable-length, deterministic contexts. The 
algorithm significantly improves the compression 
performance of the character oriented PPM, especially in 
lower orders (up to 8). 

Table 3 and table 4 show results of experiments with 
block PPMVC algorithm. The experiments were carried 
out using PPMVC ver. 1.2 (default mode). The results 
presented in table 3 and 4 indicate that a reduced block 
size may result in lower compression ratio, and the no 
blocking mode of PPMVC gives the best compression. 
From the point of practical use, the optimal block size 
seems to be greater than 32 KiB. 

 
Table 3.  Compression ratio (bpc) in PPMVC for different block sizes 

(KiB). 

 
 
 
Table 4.  Compression Ratio Gain (%) in PPMVC for different block 

sizes (KiB). 

 
 

We believe that the Maximum Corpus files are too 
small to get a full potential from the block PPMVC 
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algorithm, so we decided to perform similar experiments 
on the Hutter Prize corpus. Figure 2 shows the experiment 
results which were carried out on the test file enwik8. It 
can be seen from the figure that the compression generally 
increases as the block size increases, it is similar to the 
results achieved in the previous experiments. 

 

 
Fig. 2. Compression Ratio of file “enwik8” for different block sizes. 

 
 

 
Fig. 3. Compression Ratio of file “english.dic” for different block sizes. 

 
 

One of the drawbacks with PPM is that it performs 
relatively poorly at the start. This is because it has not yet 
built up the counts for the higher order context models, so 
must resort to lower order models. Figure 3 shows the 
compression ratio of file English.dic under different block 
sizes. We can see in the figure that PPM obtains the best 
performance when the block size is 13 KiB. The poor 
performance PPM in no blocking mode can be explained 
by the fact that the english.dic is alphabetically sorted 
English word-list (354,951 words), PPM must reinitialize 
for every about 13 KiB-sized block. 

4.2 Block Huffman 

Table 5 displays the compression ratio gain for block 
Huffman to original Huffman coding. From the results of 
Table 5, we have found that, in most cases, the block 
Huffman coding has a better compression ratio than no 
blocking Huffman coding, and with the increasing block 
size, the compression ratio deteriorates. The optimal block 
size in which it obtains the best compression ratio is more 
or less 16KiB.  The reason for the better efficiency may be 
attributed to the principle of locality of data. Given this, it 

can be concluded that the block Huffman coding is 
advantageous over original no blocking Huffman coding. 

 
Table 5.  Compression Ratio Gain (%) in Huffman for different block 

sizes (KiB). 

 

4.3 Block LZSS 

Table 6 lists the average gain in compression ratio for 
LZSS of the various block size comparing with the no 
blocking mode. The index bit count of the LZSS 
implementation shown here is set to 12 bits and the length 
bit count macro is set to 4 bits. 

 
Table 6.  Compression Ratio Gain (%) in LZSS for different block 

sizes (KiB). 

 
 
We can see from table 6 that no blocking LZSS 

achieves best results on our test files. The average 
compression ratio gain of block LZSS is worse by about 
15.23% - 0.02% than that of no blocking LZSS. It can be 
clearly seen in table 6 that the compression ratio gain 
increases with the increasing size of the block. We can use 
a moderate block size, so the optimal block size could be 
32KiB or so, it is only worse by about 1% compared with 
the no blocking LZSS. 

4.4 Block LZW 

The LZW’s advantage over the LZ77-based algorithms 
is in the speed because there are not that many string 
comparisons to perform. Due to management of the 
dictionary, implementation of LZW is somewhat 
complicated. The code used here is a simple version, 
which uses twelve-bit codes. Further refinements add 
variable code word size (depending on the current 
dictionary size), deleting of the old strings in the 
dictionary etc.  
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Table 7.  Compression Ratio Gain (%) in LZW for different block 
sizes (KiB). 

 
 
It can be seen from the table 7 that the block LZW has 

a better compression ratio than original LZW method. The 
better efficiency in the compression ratio is the outcome of 
locality characteristics of the block LZW algorithm as it 
compresses locally rather than globally. Therefore, it can 
be concluded that the optimal block size for block LZW is 
about 32 KiB. The block LZW is advantageous over no 
blocking LZW coding in compression ratio. 

4.5 Block bzip2 

Table 8 shows the compression ratio gain in bzip2 for 
different block size. The bzip2 use the default mode. As 
can be seen from table 8, in most cases, the no blocking 
mode of bzip2 can obtain the best compression ratio. One 
of the exceptions is the test file english.dic which reaches 
the best efficiency at 10 KiB sized block. The reason for it 
is the specific distribution characteristic of file english.dic. 
Thus, it can be concluded that we need to have different 
compression algorithms for different kinds of files: there 
cannot be any algorithm that is good for all kinds of data. 

 
Table 8.  Compression Ratio Gain (%) in bzip2 for different block 

sizes (KiB). 

 
 

4.6 Time Efficiency of Block Methods 

Figure 4 presents the effect of varying block size on 
compression time of five lossless compression algorithms. 
The times include both I/O and compression time, as well 
as the overhead blocking, open, close, etc.  
 

 
Fig. 4. Compression time and block size for file “enwik8” 

 
As can be seen, for the Huffman coding, LZSS, bzip2 

and PPMVC, the compression time decrease steeply when 
the block size increases from 1 KiB to 4 KiB, then decline 
steadily from 5 KiB until 64 KiB, and level off as the 
block size is greater than 64KiB. For LZW algorithm, the 
compression time declines steadily as the block size 
increases from 1 to 3 KiB, and then fluctuated slightly. 
The figures indicate that as the volume of block being 
compressed grows, compression become increasingly 
effective in reducing the overall compression time. One 
reason is due to disk activity. From figure 4, it also can be 
seen that LZW is the fastest method, because LZW has not 
that many string comparisons to perform or to build up 
counts. Therefore, in order to select the optimal block size, 
we must tradeoff between data compression speed and the 
amount of compression achieved, a moderate sized block 
(for example, greater than 32 KiB) may be appropriate. 

5. Conclusion 

We can conclude from the discussion above, for PPM 
and LZSS algorithm, a bigger sized block may yield better 
compression ratios.  However, for Huffman coding, BWT 
and LZW, a moderate sized block is better. The time 
performance of those block methods and potential 
improvements to block techniques are also investigated. 

In our another paper, "The Block LZSS Compression 
Algorithm [20]", we have studied the block LZSS 
algorithm and investigated the relationship between the 
compression ratio of block LZSS and the value of index or 
length. We found that as the block size increases, the 
compression ratio becomes better. We also found that the 
bit of length has little effect on the compression 
performance, and the bit of index has a significant effect 
on the compression ratio. We showed that the more the bit 
of index is set, the bigger optimal block size is obtained.  

We can conclude from table 6 that to obtain better 
efficiency from block LZSS, a moderate sized block 
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which is greater than 32KiB, may be optimal, and the 
optimal block size is not depend on file types. 

From the results of table 4 and table 7, we have found 
that, in most cases, the block coding methods of Huffman 
and LZW have better compression ratio than original 
Huffman coding and LZW, and with the increasing block 
size, the compression ratio deteriorates. The optimal block 
size of Huffman coding is about 16KiB, and LZW obtain 
the best compression ratio in about 32KiB.  The reason 
may be attributed to the principle of locality of data. 

We also studied the blocking algorithm of bzip2. We 
found that block bzip2 is similar to the block PPM in that 
the compression efficiency is increased with the increasing 
block size.  
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