
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

211

Manuscript received October 5, 2009

Manuscript revised October 20, 2009

Algorithms for IVDP Matching on Short Trees

Dr.G. SUGANTHI,

dr_suganthi_wcc@yahoo.co.in
Department of Computer Science,

Women’s Christian College,

Nagercoil ,INDIA-629001

Summary
A matching in a graph is a set of edges, no two of which have a

vertex in common. If edge (u,v) belongs to a matching, we say

that u and v are matched to each other. One is usually interested

in finding maximum matching that is, matching having a

maximum number of edges. Sometimes the edges have

associated weights and one is interested in finding maximum

weight matchings. Problems involving matching occur in many

situations. Workers may be matched to jobs, machines to parts,

players to teams etc. A path matching in a graph is a set of simple

paths with distinct end vertices. Two paths are said to be vertex

disjoint if they don’t have any vertex in common. They are

internally vertex disjoint if no vertex is an internal vertex of both

the paths. A set of paths P in a graph G is said to be an internally

vertex disjoint path matching(IVDP) if it is a path matching and

every pair of paths in P are internally vertex disjoint. A perfect

matching of G is a matching M which matches all the vertices

except possibly one. This paper deals with the necessary and

sufficient conditions for the existence of perfect IVDP matching

for the trees of height 1 and 2. We have developed sequential

and parallel algorithms and time complexity is determined. The

odd and even trees are treated separately.

Key words:
Parallel Algorithms, Tree, Rooted Tree, Matching Problems,

IVDP Matching

1. Introduction

Given an undirected graph G = (V,E), a matching is a set

of edges such that no two edges in M incident on the same

vertex WM[88]. Xavier[XA95] has defined perfect IVDP

matchings and analysed its structural properties. In this

paper we establish the necessary and sufficient conditions

for the existence of Perfect IVDP matching for the trees of

height 1 and 2. First we discuss the existence of Perfect

IVDP matching for trees of height 1 and 2. We develop

sequential and parallel algorithms for determining the

existence. Here odd and even trees are treated separately.

A set of paths P in a graph G, is said to be an internally

vertex disjoint path matching (IVDP) if it is a path

matching and every pair of paths in P are Internally Vertex

Disjoint. A perfect matching is a matching in which

atmost one vertex is left unmatched. A tree with even

number of nodes is an even tree. A tree with odd number

of nodes is an odd tree.

2. IVDP Matching in Trees

There are trees having no perfect IVDP matchings.

Theorem 1 and 2 establish the equivalent conditions for the

existence of perfect IVDP matching for even and odd trees

respectively.

Theorem 1 : Let T be an even tree (tree with even number

of nodes). If a node u of T has more than three leaf

children, then T doesn’t have a Perfect IVDP matching.

Theorem 2 : Let T be an odd tree. If a node u of T has

more than four leaf children, then T doesn’t have a perfect

IVDP matching.

3. Trees of height 1

In this section we will construct a perfect IVDP matching

for trees of height 1. The following are the results proved

for trees of height 1.

Theorem 3: An even tree T of height 1 has a perfect IVDP

matching if and only if T has at the most 4 nodes.

Theorem 4 : Let T be an odd tree of height 1. If the tree T

has seven nodes then T has no perfect IVDP matching.

Theorem 5 : Let T be an odd tree in which there exists two

nodes u and v each having four leaf children. Then T has

no IVDP matching.

Theorem 6 : A tree of height 1 has IVDP matching if and

only if it has at the most five nodes.

4. Algorithm for tree of height 1

The following is a very simple algorithm to find if a tree of

height 1 is IVDP.

Algorithm IsIVDPHeight1(T)

Input : Tree T of height 1 in the form of parent array. n is

the number of nodes. The nodes are numbered from 1

to n. p[i] is the parent of node i. The parent of root is itself.

It is given that the height of the tree is 1.

Output : A Boolean value result to say if the tree is IVDP.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

212

 1. If n  5 the tree is IVDP

 So result = true

 Else The tree is not IVDP,

 So result = false

Complexity Analysis

Since n itself is given as an input, this can be done in O(1)

time. This leads to the following theorem:

Theorem 7 : In a tree T of height 1 verification of the

existence of a perfect IVDP can be done in O(1) time.

5. Even Trees of Height 2

In this section we develop algorithm to verify the existence

of perfect IVDP matching in trees of height 2. Let T be an

even tree of height 2. Let r be the root of T. Let nodd

denotes the number of odd children of r, neven denotes the

number of even children of r and l denotes the number of

leaf nodes which are children of r.

Example : Consider the tree shown in Figure 6. r is the

root. a is a child of r. The maximal subtree with a as the

root has the nodes a, h, and k. So, a is an odd child of r. b

is also an odd child of r. c, d and e are even children of r.

Hence in this case

Figure 6. A tree t

The following are the results proved for the trees of height

2.

Theorem 8 : Let T be an even tree with root r of height 2.

T has a perfect IVDP matching if and only if the following

two conditions are satisfied.

1. The sum of the number of leaf children of r and the

number of odd children of r is at the most 3.

2. Each odd and even subtree of r has a perfect IVDP

matching.

Theorem 9 : Let T be an even tree of height 2. T has a

perfect IVDP matching if it satisfies the following three

conditions

1) (nodd+l)    3

2) The root doesnot have a subtree isomorphic to T5,

where T5 is a tree of height 1 with 5 nodes.

3) Each subtree of r has a perfect IVDP matching.

6 Odd trees of height 2

The following is the result proved for odd trees of height 2.

Theorem 10 : Let T be an odd tree of height 2. T has a

perfect IVDP matching if it satisfies the following three

conditions.

1) The root has at the most one subtree isomorphic to

T5.

 Where T5 is the tree of height 1 with 5 nodes.

2) If T5 is present then nodd+l   3

 else nodd+l   4

3) Each subtree of r has a perfect IVDP matching.

7. Algorithm for Trees of height 2

Theorem 9 and 10 gives the necessary and sufficient

conditions for the existence of perfect IVDP matching for

trees of height 2. In this section we develop the sequential

and parallel algorithms for determining the existence of

perfect IVDP matching for trees of height 2.

7.1 To find the root

When the tree is represented in the form of the parent array

p[i], we can identify the root as follows:

Algorithm FindRoot (p, n)

 {

 For i = 1 to n

 If p[i] = i then root = i

 }

In sequential algorithm, this can be implemented in O(n)

time.

7.2 To count the number of leaf children for each

node

Let T be the tree with root r. The tree is represented in the

form of parent array p[i]. The algorithm to find the

number of leaf children is given below.

Algorithm FindNoOfLeafChildren (p, n)

Input : p[i] Parent array

Output : 1) C[i] number of children for i

2) LC[i] number of leaf child for I

Step 0 : Initialize C[i] = 0 and LC[i] = 0 for i

= 1 to n.

Step 1 : For i = 1 to n

 { C[p[i]] = C[p[i]] + 1

 }

Step 2 : For i = 1 to n

 { If C[i] = 0

 LC[p[i]] = LC [p[i]] + 1

 }

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

213

Example : Consider the tree shown in the Figure 7.

Figure 7. A Tree T’

Table 1 The node, parent, number of children and number of leaf

children arrays of Figure 7.

The node i, for a parent p[i], and the corresponding child

nodes and number of leaf children are given in the Table 1.

Complexity Analysis

From the above algorithm, the time complexity is O(n).

This leads to the following theorem.

Theorem 11 : In a tree T the sequential algorithm to count

the number of children C[i] and number of leaf children

LC[i] can be determined in linear time.

7.3 To count the number of odd and even children of

the root

Let T be the tree with root r. Let i be a child of r. If i is

the root of the subtree, with odd number of children, i is

called an odd child of r. Similarly we can define the even

child of r. Let nodd and neven be the number of odd and

even children of r. Assume that T is represented in the

form of its parent array.

Algorithm FindOddAndEvenChildrenOfRoot (p, n,

root)

 1) Find C[i]

 2) nodd = 0

 3) neven = 0

 4) for i = 1 to n

 4a) If ((p[i] = root) and (i  root))

 if C[i] is odd

 neven ++

 else

 nodd ++

 end if

 endif

From the above algorithm, the number of odd and even

children can be determined in O(n) time.

7.4 Sequential algorithm for even trees of height 2

The sequential algorithm to check whether the tree is

perfect IVDP is given below.

Algorithm EvenTwo()

Input : i) A tree T of height 2

 ii) Parent array p[i]

 iii) Number of nodes n

Output : A Boolean value result which indicates

whether T is perfect IVDP

1. Find nodd = number of odd subtrees of r.

 l = number of leaf children of r

2. If nodd + l > 3 then result = false; exit

 else proceed to step 3

3. For every subtree of r verify if it has a perfect IVDP

matching.

 If any of them doesn’t have a perfect IVDP matching

then

 result = false; exit

 If all the even subtrees have perfect IVDP

matching

 proceed to step 4.

4. result = True

Complexity Analysis

In a tree T of height 2, the sequential algorithm

EvenTwo() checks whether the tree is IVDP which is

determined as follows.

Step 1 can be found out in O(n) time. Steps 2, 3 check for

the existence of IVDP matching. Step 4 gives the Boolean

value result which is true or false. So the algorithm is

determined in O(n) time.

7.5 Algorithm for odd tree of height 2

The sequential algorithm to determine the perfect IVDP

matching is given below.

Algorithm OddTwo()

Input : i) A tree T of height 2

 ii) Parent array p(i)

i 1 2 3 4 5 6 7 8

p[i] 1 1 1 1 2 2 2 3

C[i] 3 3 1 0 0 0 0 0

LC[i] 1 3 1 0 0 0 0 0

1

2 3 4

5 6 7 8

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

214

 iii) Number of nodes n

Output : A Boolean value result which indicates whether

T is perfect IVDP

1. Find nodd = number of odd subtrees of r

 l = number of leaf children of r

 t5= number of subtrees with 5

nodes

2. If t5 > 1 then result = false ; exit.

3. if (t5 = 1) and (nodd + l) > 3 then

 result = false; exit.

4. If (t5 = 0) and (nodd + l) > 4 then

 result = false; exit

5. For every subtree Ti verify if the subtree is perfect

IVDP.

 If any one is not perfect IVDP,

 then result = false; exit

 If all the subtrees are perfect IVDP,

 proceed to step 6.

6. result = True

Complexity Analysis

The complexity of the algorithm OddTwo() is same as the

complexity of the algorithm EvenTwo().

8. Parallel Algorithms for Trees of height 2

In this section we develop a parallel implementation of the

algorithm given in the previous section. Consider a tree of

height 2 represented in the form of its parent array. To

implement the algorithm in parallel machines, consider the

two dimensional array, child(i, j) which consists of n rows

and n columns. Where n is the number of nodes, defined

as follows:

 child (i, j) = 1 if i is the child of j and i  j

 = 0 otherwise

For Example consider the tree in Figure 8.

Figure 8. A Tree T

The parent relation of the above tree is given in Table 2

Table 2. Parent relation of tree T

i 1 2 3 4 5 6 7 8

p[i] 1 1 1 1 2 2 2 3

The two dimensional array child(i, j) is given in Table 3.

The column sum gives the number of child nodes

Table 3. Number of child nodes for each i of Tree T in Figure 8

Child 1 2 3 4 5 6 7 8

1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

Column

Sum
3 3 1

The parallel algorithm to find the number of child nodes is

given below.

8.1 Parallel Algorithm to count the number of

children

Algorithm CountNumberOfChildren

Input : Tree T

Output : C[i] Number of children for i

1) For i = 1 to n do in parallel

 If i  p[i]

1.1.1.1.1.1 Child [i, p[i]] = 1

2) For each column j do in parallel

 Find column sum in child matrix

 C[j] = Column sum of j
th

 column

Complexity Analysis

The above algorithm can be implemented in O(logn) time

using O(n
2
) processors in EREW PRAM

Theorem 12 : In a tree T with root r, the number of

children for each node i can be determined in O(logn)

time using O(n
2
) processors in EREW PRAM.

8.2 Parallel Algorithm to find the number of leaf

children

To find the number of leaf children in parallel, consider

another two dimensional array

LChild [i, j] with n rows and n Columns, where

 LChild (i, j) = 1 if i is a leaf child of j

 = 0 otherwise

Example

Consider the tree given in the Figure 8. Also consider the

following arrays p[i] and C[i] as given in Table 4.

1

2 4 3

5 6 7 8

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

215

Table 4. The child, Parent, number of children of Tree T in Figure 8.

i 1 2 3 4 5 6 7 8

p[i] 1 1 1 1 2 2 2 3

C[i] 3 3 1 0 0 0 0 0

The two dimensional array LChild[i, j] for this tree is

given in Table 5. The column sum of the table gives the

number of leaf children for each node i.

Table 5. Number of leaf children for each node i of Tree T in Figure 8.

LChild 1 2 3 4 5 6 7 8

1

2

3

4 1

5 1

6 1

7 1

8 1

Column

sum

1 3 1

The parallel algorithm to find out the number of leaf

children is given below:

Algorithm CountLeafChildren

Input : 1) Tree T

 2) parent array p[i]

 3) Array C[i] which gives the number

of children of each node i

Output : number of leaf children LC[i]

 1) For i = 1 to n do in parallel

 if C[i] = 0 then

 LChild [i, p [i]] = 1

 2) For each column j

 Find column sum in child matrix

 LC[j] = Column sum of j
th

 column of

LChild matrix

Complexity Analysis

The above algorithm can be implemented in O(logn) time

using O(n
2
) processors in EREW PRAM which leads to the

following theorem.

Theorem 13 : In a tree T with root r the algorithm

CountLeafChildren for each node i can be determined in

O(logn) time using O(n
2
) processors in EREW PRAM.

8.3 Algorithm to find the number of odd and Even

subtrees of root.

 Consider two arrays EVEN [i] and ODD [i]

 EVEN [i] = 1 if i is a child of root and i is the

root of an even subtree

 = 0 otherwise

 ODD [i] = 1 if i is a child of root and i is the

root of an odd subtree

 = 0 otherwise

Algorithm CountEvenOddSubtreesOfRoot (p,n,root,

C[i], LC[i])

Input : 1) Tree T of height 2

 2) Parent array p[i]

 3) Root of T

 4) Array C[i] which gives the number of

children for each node i

 5) Array LC[i] which gives the number of

leaf children for each node i

Output : Number of odd subtrees and number of

even subtrees

 1. For i = 1 to n do in parallel

 1.1 If (p[i] = root and C[i] = odd) then

 EVEN [i] = 1;

 1.2 If (p[i] = root and C[i] = even)

then

 ODD [i] = 1

 2. Find the sum of the arrays

 n odd = sum of the array ODD[i]

 neven = sum of the array EVEN [i]

Theorem 14 : The algorithm

CountEvenOddSubtreesOfRoot correctly determines the

value of nodd and neven

Complexity Analysis

Step1 can be implemented in O(1) time using O(n)

processors. As sum of n numbers can be computed in

O(log n) time using O(n) processors in EREW PRAM.

Step 2 can be implemented in O(log n) time using O(n)

processors. So, the above algorithm can be implemented

in O(log n) time using O(n) processors in EREW PRAM.

This leads to the following result.

Theorem 15 : In a tree T of height 2 with root r, the

number of odd subtrees nodd and the number of even

subtrees neven can be determined in O(log n) time using

O(n) processors in EREW PRAM.

Par8.4 l Algorithm for even trees of height 2.

Algorithm EvenIVDPheight2

Input: i) A tree T of height 2

 ii) Parent array p[i]

 iii) Number of nodes n

Output : A Boolean value result which indicates whether

T is perfect IVDP

 1. Find nodd = number of odd subtrees of r

 l = number of leaf children of r

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

216

 2. If nodd + l > 3 then result = false; exit

 else proceed to step 3

 3. For each subtree Ti of r do in parallel

 3.1 Check if Ti is perfect IVDP. If Ti is not

perfect IVDP,

 result = false: exit.

 4. result = true

Complexity Analysis

The above algorithm can be implemented in O(logn) time

using O(n
2
) processors. This leads to the following result.

Theorem 16 : If T is an even tree of height 2, we can

verify if T has a perfect IVDP matching in O(log n) time

using O(n
2
) processors in EREW PRAM.

8.5 Parallel Algorithm for odd trees of height 2

Algorithm OddIVDPheight2

Input: i) A tree T of height 2

 ii) Parent array p[i]

 iii) Number of nodes n

Output: A Boolean value result which indicates whether

T is perfect IVDP

1. Find

 nodd = number of odd subtrees of r

 l = number of leaf children of r

 t5 = number of subtrees with 5 nodes

 2. If t5 >1 then result = false; exit

 3. if (t5=1) and (nodd + l) > 3 then

 result = false; exit

 4. if (t5 = 0) and (nodd + l) > 4 then

 result = false; exit

 5. For every subtree Ti do in parallel

5.1 Check if Ti is perfect IVDP. If Ti is not perfect

IVDP,

 result = false; exit

6. result = true

Complexity Analysis

The above algorithm can be implemented using O(log n)

using O(n
2
) processors. This leads to the following result.

Theorem 17 : If T is an odd tree of height 2, we can verify

if T has perfect IVDP matching in O(log n) time using

O(n
2
) processors in EREW PRAM.

9. Conclusion and Open Problems

In the problem that we have discussed the matching paths

are vertex disjoint. Consider the following applications of

this problem. Suppose the vertices denote the computer

terminals and the edges a connecting network. By a path

matching we mean pairing computers in order to do a work

in parallel. Since the works are done in parallel, we desire

to have edge disjoint path matching. Since an edge (a wire

connecting two nodes) can be used for limited data flow.

In the edge disjoint path matching, if an edge is used by

more then one matching path, the parallel processing

operation may not be efficient.

The existence of IVDP matching for trees of arbitrary

height may be studied. In each case sequential and parallel

algorithms may be developed and the execution time may

be determined.

References
[1] Aho.A.V. Hopcroft J.E. and Ullman J.D. The design

and Analysis of computer Algorithms. Addison-wesley,

1974

[2] Brassard G. and Brately P. Algorithmics. Prentice Hall,

1988

[3] C. Berge and C. Chvatal, editors. Topics on perfect

graphs, North-Holland, 1984. Annals of Discrete

Mathematics (21)

[4] J.A. Bondy and U.S.R Murthy. Graph Theory with

applications. North-Holland, NewYork 1976.

[5] H. J. Bandelt and H.M. Mulder. Distance-hereditary

graphs. J. of combin. Theory series B. 41 : 182-208.

1986

[6] Date structures and Algorithms

www. mpi-sb.mpg.de/~sanders/courses/algdat2/

[7] M. Habib and M.C Maurer. On the X – join

decomposition for undirected graphs Disc. Math, 3 :

198 – 207, 1979.

[8] D.Helmbold and E.Mayr. Perfect graphs and parallel

algorithms. In 1986 International conference on

Parallel processing. pages 853 – 860. IEEE 1986.

[9] Joseph Ja Ja, Introduction to parallel algorithms,

Addison Wesley (1992).

[10] A library of parallel Algorithms.

www. cs.cmu.edu/`scandal/nesi/algorithms. 31 Aug

2002.

[11] Sun Wu and Udi Manber, Algorithms for generalized

matching. Technical Report TR 88-89, Department of

computer Science, University of Arizona (1998).

[12] [Sun Wu and Udi Manber, Path Matching Problems,

Algorithmica(1992) 8:89 – 101

[13] C. Xavier and G. Arumugam Algorithms for parity

path problems in some classes of graphs, computer

science and Informatics Vol 24, No. 4, December

1994. pp50–54

[14] C. Xavier Sequential and parallel algorithms for some

graph theoretic problems Ph.D Thesis

[15] C. Xavier and S.S. Iyengar, Introduction to Parallel

algorithms, John Wiley & Sons Inc 1998.

http://www.mpi-sb.mpg.de/~sanders/courses/algdat2/
http://www.cs.cmu.edu/%60scandal/nesi/algorithms

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.10, October 2009

217

Dr.G.Suganthi is a Reader in

Computer Science in

women’s Christian College, Nagercoil,

Kanyakumari District ,South India.

She received her Ph.D in

ComputerScience from Manonmanium

Sundaranar University, Tirunelveli,

South India in June 2004. Her

research work is on Parallel

Algorithms . She is guiding students

to M.phil and Ph,D in various universities. Her research

guidance areas are networking, Image processing, Secured data

transfer etc. She has published five papers in international and

three papers in national level.

