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Summary 
A matching in a graph is a set of edges, no two of which have a 

vertex in common.  If edge (u,v) belongs to a matching, we say 

that u and v are matched to each other.   One is usually interested 

in finding maximum matching that is, matching having a 

maximum number of edges.  Sometimes the edges have 

associated weights and one is interested in finding maximum 

weight matchings.  Problems involving matching occur in many 

situations.  Workers may be matched to jobs, machines to parts, 

players to teams etc. A path matching in a graph is a set of simple 

paths with distinct end vertices.  Two paths are said to be vertex 

disjoint if they don’t have any vertex in common.  They are 

internally vertex disjoint if no vertex is an internal vertex of  both 

the paths. A set of paths P in a graph G is said to be an internally 

vertex disjoint path matching(IVDP) if it is a path matching and 

every pair of paths in P are internally vertex disjoint.  A perfect 

matching of G is a matching M which matches all the vertices 

except possibly one. This paper deals with the necessary and 

sufficient conditions for the existence of perfect IVDP matching 

for the trees of height 1 and 2.  We have developed sequential 

and parallel algorithms and time complexity is determined.  The 

odd and even trees are treated separately. 
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1. Introduction 

Given an undirected graph G = ( V,E ), a matching is a set 

of edges such that no two edges in M incident on the same 

vertex WM[88].  Xavier[XA95] has defined perfect IVDP 

matchings and analysed its structural properties.  In this 

paper we establish the necessary and sufficient conditions 

for the existence of Perfect IVDP matching for the trees of 

height 1 and 2.  First we discuss the existence of Perfect 

IVDP matching for trees of height 1 and 2.  We develop 

sequential and parallel algorithms for determining the 

existence.  Here odd and even trees are treated separately. 

A set of paths P in a graph G, is said to be an internally 

vertex disjoint path matching (IVDP) if it is a path 

matching and every pair of paths in P are Internally Vertex 

Disjoint.  A perfect matching is a matching in which 

atmost one vertex is left unmatched.  A tree with even 

number of nodes is an even tree.  A tree with odd number 

of nodes is an odd tree. 

2. IVDP Matching in Trees  

There are trees having no perfect IVDP matchings.  

Theorem 1 and 2 establish the equivalent conditions for the 

existence of perfect IVDP matching for even and odd trees 

respectively.  

 

Theorem 1 : Let T be an even tree (tree with even number 

of nodes).  If a node u of T has more than three leaf 

children, then T doesn’t have a Perfect IVDP matching. 

Theorem  2 : Let T be an odd tree.  If a node u of T has 

more than four leaf children, then T doesn’t have a perfect 

IVDP matching. 

3. Trees of height 1 

In this section we will construct a perfect IVDP matching 

for trees of height 1.  The following are the results proved 

for trees of height 1. 

 

Theorem 3: An even tree T of height 1 has a perfect IVDP 

matching if and only if T has at the most 4 nodes.  

Theorem 4 : Let T be an odd tree of height 1. If the tree T 

has seven nodes then T has no  perfect IVDP matching.  

Theorem 5 : Let T be an odd tree in which there exists two 

nodes u and v each having four leaf children. Then T has 

no IVDP matching. 

Theorem 6 : A tree of height 1 has IVDP matching if and 

only if it has at the most five nodes.  

4. Algorithm for tree of height 1 

The following is a very simple algorithm to find if a tree of 

height 1 is IVDP. 

 

Algorithm IsIVDPHeight1(T) 

Input :  Tree T of height 1 in the form of parent array. n is 

the number        of nodes. The nodes are numbered from 1 

to n. p[i] is the parent of node i. The parent of root is itself.  

It is given that the height of the tree is 1. 

Output : A Boolean value result to say if the tree is IVDP.  
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  1. If n  5 the tree is IVDP  

   So result =  true 

   Else         The tree is not IVDP,  

   So result = false 

 

Complexity Analysis  

Since n itself is given as an input, this can be done in O(1) 

time.  This leads to the following theorem: 

Theorem 7 : In a tree T of height 1 verification of the 

existence of a perfect IVDP can be done in O(1) time. 

5.   Even Trees of Height 2  

In this section we develop algorithm to verify the existence 

of perfect IVDP matching in trees of height 2.   Let T be an 

even tree of  height 2. Let r be the root of T. Let nodd 

denotes the number of odd children of r, neven denotes the 

number of even children of r and l denotes the number of 

leaf nodes which are children of r.  

  

Example : Consider the tree shown in Figure 6.  r is the 

root.  a is a child of r.  The maximal subtree with a as the 

root has the nodes a, h, and k.  So, a is an odd child of r.  b 

is also an odd child of r.  c, d and e are even children of r.  

Hence in this case 

 

 

Figure 6. A tree t 

The following are the results proved for the trees of height 

2. 

Theorem 8 : Let T be an even tree with root r of height 2.  

T has a perfect IVDP matching if and only if the following 

two conditions are satisfied. 

1. The sum of the number of leaf children of r and the 

number of odd children of r is at the most 3.  

2. Each odd and even subtree of r has a perfect IVDP 

matching.  

Theorem 9 : Let T be an even tree of height 2. T has a 

perfect IVDP matching if it satisfies the following three 

conditions  

1)  (nodd+l)    3 

2)  The root doesnot have a subtree isomorphic to T5, 

where T5 is a tree of height 1 with 5 nodes.  

3)  Each subtree of r has a perfect IVDP matching. 

6   Odd trees of height 2 

The following is the result proved for odd trees of height 2. 

Theorem  10 : Let T be an odd tree of height 2. T has a 

perfect IVDP matching if it satisfies the following three 

conditions.  

1) The root has at the most one subtree isomorphic to 

T5.  

     Where T5 is the tree of height 1 with 5 nodes. 

2) If    T5 is present then nodd+l   3 

 else    nodd+l   4 

3) Each subtree of r has a perfect IVDP matching.  

7.  Algorithm for Trees of height 2 

Theorem 9 and 10 gives the necessary and sufficient 

conditions for the existence of perfect IVDP matching for 

trees of height 2.  In this section we develop the sequential 

and parallel algorithms for determining the existence of 

perfect IVDP matching for trees of height 2.   

7.1  To find the root 

When the tree is represented in the form of the parent array 

p[i], we can identify the root as follows: 

Algorithm FindRoot (p, n) 

 {  

 For i = 1 to n 

 If p[i] = i then root = i 

 } 

In sequential algorithm, this can be implemented in O(n) 

time. 

7.2   To count the number of leaf children for each 

node 

Let T be the tree with root r.  The tree is represented in the 

form of parent array p[i].  The algorithm to find the 

number of leaf children is given below. 

Algorithm FindNoOfLeafChildren (p, n) 

Input :  p[i] Parent array 

Output :  1) C[i] number of children for i 

2) LC[i] number of leaf child for I 

 

Step 0 : Initialize C[i] = 0 and LC[i] = 0 for i 

= 1 to n. 

Step 1 : For i = 1 to n 

             {  C[p[i]] = C[p[i]] + 1 

             } 

Step 2 : For i = 1 to n 

  {    If C[i] = 0 

  LC[p[i]] = LC [p[i]] + 1 

  } 
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Example  : Consider the tree shown in the Figure 7. 

 

 

 

Figure 7. A Tree T’ 

Table 1  The node, parent, number of children and number of leaf 

children arrays of Figure 7. 

 

The node i, for a parent p[i], and the corresponding child 

nodes and number of leaf children are given in the Table 1. 

 

Complexity Analysis 

From the above algorithm, the time complexity is O(n).  

This leads to the following theorem. 

Theorem 11 : In a tree T the sequential algorithm to count 

the number of children C[i] and number of leaf children 

LC[i] can be determined in linear time. 

7.3 To count the number of odd and even children of 

the root 

Let T be the tree with root r.  Let i be a child of r.  If i is 

the root of the subtree, with odd number of children, i is 

called an odd child  of  r.  Similarly we can define the even 

child of r.  Let nodd and neven be the number of odd and 

even children of r.  Assume that T is represented in the 

form of its parent array. 

 

Algorithm FindOddAndEvenChildrenOfRoot (p, n, 

root) 

 1)    Find C[i] 

 2)    nodd = 0 

 3)    neven = 0 

 4)    for i = 1 to n 

 4a)  If ((p[i] = root) and (i  root))   

   if C[i] is odd 

    neven ++ 

   else 

    nodd ++ 

   end if 

         endif 

From the above algorithm, the number of odd and even 

children can be determined in O(n) time. 

7.4  Sequential algorithm for even trees of height 2 

The sequential algorithm to check whether the tree is 

perfect IVDP is given below. 

Algorithm EvenTwo( ) 

Input :  i)   A tree T of height 2 

 ii)  Parent array p[i] 

 iii)   Number of nodes n 

Output :  A Boolean value result which indicates 

whether T is perfect    IVDP 

1.  Find nodd   =  number of odd subtrees of r. 

           l   =  number of leaf children of r 

2.  If nodd + l > 3 then result = false; exit 

  else proceed to step 3 

3.  For every subtree of r verify if it has a perfect IVDP 

matching. 

    If  any of them doesn’t have a perfect IVDP matching 

then  

  result  = false; exit 

         If all the even subtrees have perfect IVDP 

matching 

             proceed to  step 4. 

4.  result  =  True 

Complexity Analysis 

In a tree T of height 2, the sequential algorithm 

EvenTwo( ) checks whether the tree is IVDP which is 

determined as follows. 

Step 1 can be found out in O(n) time.  Steps 2, 3 check for 

the existence of IVDP matching.  Step 4 gives the Boolean 

value result which is true or false.  So the algorithm is 

determined in O(n) time. 

7.5  Algorithm for odd tree of height 2     

The sequential algorithm to determine the perfect IVDP 

matching is given below. 

Algorithm  OddTwo( ) 

Input : i)  A tree T of height 2 

    ii) Parent array p(i) 

i 1      2      3      4      5       6      7       8       

p[i] 1      1      1      1      2       2      2       3       

C[i] 3      3      1      0      0       0      0       0       

LC[i] 1      3      1      0      0       0      0       0       

1 

2 3 4 

5 6 7 8 
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    iii) Number of nodes n 

Output :  A Boolean value result which indicates whether 

T is perfect IVDP     

1.  Find nodd = number of odd subtrees of r 

   l = number of leaf children of r 

   t5= number of subtrees with 5 

nodes 

2.  If t5 > 1 then result = false ; exit. 

3.  if (t5 = 1) and (nodd + l) > 3 then 

     result = false; exit. 

4.  If (t5 = 0) and (nodd + l) > 4 then  

    result = false; exit 

5.  For every subtree Ti verify if the subtree is perfect 

IVDP.  

      If any one is not perfect IVDP, 

               then result = false; exit      

     If all the subtrees are perfect IVDP, 

     proceed to step 6. 

6. result  =  True 

 

Complexity Analysis 

The complexity of the algorithm OddTwo( ) is same as the 

complexity of the algorithm EvenTwo(  ).  

8.  Parallel Algorithms for Trees of height 2 

In this section we develop a parallel implementation of the 

algorithm given in the previous section.  Consider a tree of 

height 2 represented in the form of its parent array.  To 

implement the algorithm in parallel machines, consider the 

two dimensional array, child(i, j) which consists of n rows 

and n columns.  Where n is the number of nodes, defined 

as follows:  

  child (i, j) = 1    if i is the child of j and i     j 

          =    0  otherwise 

For Example consider the tree in Figure 8. 

 

Figure 8. A Tree T 

The parent relation of the above tree is given in Table 2 

 

Table 2.  Parent relation of tree T 

i 1 2 3 4 5 6 7 8 

p[i] 1 1 1 1 2 2 2 3 

The two dimensional array child(i, j) is given in Table 3.  

The column sum gives the number of child nodes 

Table 3.  Number of child nodes for each i of Tree T in Figure 8 

Child 1 2 3 4 5 6 7 8 

1         

2 1        

3 1        

4 1        

5  1       

6  1       

7  1       

8   1      

Column 

Sum 
3 3 1      

 
The parallel algorithm to find the number of child nodes is 

given below. 

8.1 Parallel Algorithm to count the number of 

children  

Algorithm CountNumberOfChildren 

Input :   Tree T 

Output :   C[i] Number of children for i 

1)   For i = 1 to n do in parallel 

  If  i   p[i] 

1.1.1.1.1.1  Child [i, p[i]] = 1 

2)   For each column j do in parallel 

  Find column sum in child matrix 

  C[j] = Column sum of j
th

 column 

 

Complexity Analysis 

The above algorithm can be implemented in O(logn) time 

using O(n
2
) processors in EREW PRAM 

Theorem  12  : In a tree T with root r, the number of 

children for each node i can be determined in O(logn) 

time using O(n
2
) processors in EREW PRAM. 

8.2 Parallel Algorithm to find the number of leaf 

children 

To find the number of leaf children in parallel, consider 

another two dimensional array   

LChild [i, j] with n rows and n Columns, where 

 LChild (i, j)  = 1  if   i is a leaf child of j 

            = 0    otherwise 

Example 

Consider the tree given in the Figure 8.  Also consider the 

following arrays p[i] and C[i] as given in Table 4. 

 

 

1 

2 4 3 

5 6 7 8 
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Table 4.  The child, Parent, number of children of Tree T in  Figure 8. 

i 1        2        3        4        5        6        7        8     

p[i] 1        1        1        1        2        2        2        3     

C[i] 3        3        1        0        0        0        0        0      

 

The two dimensional array LChild[i, j]  for this tree is 

given in Table 5.  The column sum of the table gives the 

number of leaf children for each node i. 

 

Table 5.  Number of leaf children for each node i of Tree T in Figure 8. 

LChild 1 2 3 4 5 6 7 8 

1         

2         

3         

4 1        

5  1       

6  1       

7  1       

8   1      

Column 

sum 

1 3 1      

 

The parallel algorithm to find out the number of leaf 

children is given below: 

 

Algorithm CountLeafChildren 

Input :   1) Tree T 

      2) parent array p[i] 

      3) Array C[i] which gives the number 

of children of each node i 

Output :   number of leaf children LC[i] 

 1)  For i = 1 to n do in parallel 

  if C[i] = 0 then 

  LChild [i, p [i]] = 1 

 2)  For each column j 

  Find column sum in child matrix 

  LC[j] = Column sum of j
th

 column of 

LChild  matrix 

Complexity Analysis 

The above algorithm can be implemented in O(logn) time 

using O(n
2
) processors in EREW PRAM which leads to the 

following theorem. 

Theorem 13  : In a tree T with root r the algorithm 

CountLeafChildren for each node i can be determined in 

O(logn) time using O(n
2
) processors in EREW PRAM. 

8.3 Algorithm to find the number of odd and Even 

subtrees of root. 

 Consider two arrays EVEN [i] and ODD [i] 

 EVEN [i]  =  1 if i is a child of root and i is the 

root of an even  subtree 

       =   0 otherwise 

 ODD [i]     =   1 if i is a child of root and i is the 

root of an odd subtree 

        =   0 otherwise 

 

Algorithm CountEvenOddSubtreesOfRoot (p,n,root, 

C[i], LC[i]) 

Input : 1) Tree T of height 2 

 2) Parent array p[i] 

 3) Root of T 

 4) Array C[i] which gives the number of 

children for each node i 

 5) Array LC[i] which gives the number of 

leaf children for each  node i 

Output : Number of odd subtrees and number of 

even subtrees 

 1.     For i = 1 to n do in parallel  

  1.1   If (p[i] = root and C[i] = odd) then  

    EVEN [i]  = 1; 

  1.2   If (p[i] = root and C[i] = even) 

then 

    ODD [i]  = 1 

 2.     Find the sum of the arrays 

  n odd   =   sum of the array ODD[i] 

  neven  =   sum of the array EVEN [i] 

Theorem 14  : The algorithm 

CountEvenOddSubtreesOfRoot correctly determines the 

value of nodd and neven 

 

Complexity Analysis 

Step1 can be implemented in O(1) time using O(n) 

processors.  As sum of n numbers can be computed in 

O(log n) time using O(n) processors in EREW PRAM.   

Step 2 can be implemented in O(log n) time using O(n) 

processors.  So, the above algorithm can be implemented 

in O(log n) time using O(n) processors in EREW PRAM.  

This leads to the following result. 

 

Theorem 15  : In a tree T of height 2 with root r, the 

number of odd subtrees nodd and the number of even 

subtrees neven can be determined in O(log n) time using 

O(n) processors in EREW PRAM. 

 

Par8.4 l Algorithm for even trees of height 2. 

Algorithm  EvenIVDPheight2 

Input:   i)    A tree T of height 2 

 ii)   Parent array p[i] 

    iii)  Number of nodes n 

Output  : A Boolean value result which indicates whether 

T is perfect IVDP 

 1.   Find    nodd  =   number of odd subtrees of r 

       l     =   number of leaf children of r 
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 2.   If    nodd + l > 3 then result = false; exit  

    else proceed to step 3 

 3.   For each subtree Ti of r do in parallel 

      3.1   Check if Ti is perfect IVDP. If Ti is not 

perfect IVDP, 

   result = false: exit. 

 4.   result = true 

 

Complexity Analysis 

The above algorithm can be implemented in O(logn) time 

using O(n
2
) processors.  This leads to the following result. 

Theorem 16  : If T is an even tree of height 2, we can 

verify if T has a perfect IVDP matching in O(log n) time 

using O(n
2
) processors in EREW PRAM. 

8.5 Parallel Algorithm for odd trees of height 2 

Algorithm  OddIVDPheight2 

Input:   i)   A tree T of height 2 

   ii)   Parent array p[i] 

   iii)  Number of nodes n 

Output:   A Boolean value result which indicates whether 

T is perfect IVDP 

1.   Find  

  nodd   = number of odd subtrees of r 

  l        = number of leaf children of r 

  t5     = number of subtrees with  5 nodes 

 2.   If t5 >1 then result = false; exit 

 3.   if (t5=1) and (nodd + l) > 3 then 

   result =  false; exit 

 4.   if (t5 = 0) and  (nodd + l) > 4 then 

   result  = false; exit 

 5.   For every subtree Ti do in parallel 

5.1 Check if Ti is perfect IVDP.  If Ti is not perfect 

IVDP,  

  result = false; exit 

6. result = true 

 

Complexity Analysis 

The above algorithm can be implemented using O(log n) 

using O(n
2
) processors.  This leads to the following result. 

Theorem 17  : If T is an odd tree of height 2, we can verify 

if T has perfect IVDP matching in O(log n) time using 

O(n
2
) processors in EREW PRAM. 

9. Conclusion and Open Problems 

In the problem that we have discussed the matching paths 

are vertex disjoint.  Consider the following applications of 

this problem.  Suppose the vertices denote the computer 

terminals and the edges a connecting network.  By a path 

matching we mean pairing computers in order to do a work 

in parallel.  Since the works are done in parallel, we desire 

to have edge disjoint path matching.  Since an edge (a wire 

connecting two nodes) can be used for limited data flow.  

In the edge disjoint path matching, if an edge is used by 

more then one matching path, the parallel processing 

operation may not be efficient. 

The existence of IVDP matching for trees of arbitrary 

height may be studied.  In each case sequential and parallel 

algorithms may be developed and the execution time may 

be determined. 
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