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Summary 
The model of signal propagation for two channel WDM system 
called coupled nonlinear Schrodinger equations (NLSE) are 
introduced. We demonstrate effect of nonlinearities and 
birefringence in 2 channel WDM system. The simulation model 
and his numeric solution was designed including polarization 
mode dispersion (PMD). The coupled NLSE was applied on 
gaussian pulses. 
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1. Introduction 

The transmission capacity of existing optical routes has 
limits and increasing the transmission capacity is needed. 
One way consist in using optical multiplexers or rising 
transmission speed. But when the bit rate reaches above 10 
Gbit/s, the influence of polarization mode dispersion 
(PMD) is more important. Optical signal in fiber has two 
ortogonal polarizated modes, factors like temperature, 
stress of fiber and others cause that the polarized modes 
have not same group velocity and time delay between the 
two polarized modes is PMD. If we use optical 
multiplexers, nonlinearities like cross-phase modulation 
(XPM) come out. Effect of nonlinearities and PMD has 
influence on bit-error-rate and must be consider. That is 
the reason why we introduce coupled nonlinear 
Schroedinger equations (NLSE), which includes these 
effect. 

2. Simulation model 

General nonlinear Schroedinger equation (NLSE) 
describes signal propagation in optical fiber, but with 
transmission speed 10 Gbit/s or above, the general NLSE 
is deficient, because we need to include in influence of the 
polarization mode dispersion (PMD). We achieve this by 
creating two NLSE, which describes propagation of each 
polarized component. If we use optical multiplexers, we 
can define system of NLSE, where new nonlinear effects 
are added. Following coupled NLSE describes two 
channel WDM system. 
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The parameters in equations (1)-(4) introduce: yxa ,1 , 

yxa ,2  - slowly developing optical intensity on 1st and 2nd 
wavelength, z - fiber length, t - time, α  - fiber 

attenuation, 21β  22β  - second order dispersion 

coefficients, 2,1γ  - nonlinear coefficients. 1d , 2d , 3d  - 
parameters of differentian group delay, which we express 
as 
 

ygxg vv
d

11
1

11
−=

,   xgxg vv
d

12
2

11
−=

,   xgyg vv
d

12
3

11
−=

. (5), (6), (7) 
 
The equations (5)-(7) gives the centre of time axis to the 
middle of pulse on 1st wavelength (equations (1), (2)). 
The brackets in right side of the equations (5)-(7) 
represents self-phase modulation (SPM) and cross-phase 
modulation (XPM). In each segment of a fiber, the 
polarized components has a random rotation and random 
phase-shift, we simulate these properties by following 
matrix [2] 
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 (i=1,2), (8) 

where yixa ,  and 
′

yixa , is optical intensity in input and 
output of each fiber segment. Segment (or section) is short 
piece of fiber with constant birefringence. Segment length 
is usually from 0,1 to 1 km, it depends on fiber length. In 
matrix (8), θ  is a random rotation and ϕ  is random 
phase-shift between two polarized components. Because 
difference between 1st and 2nd wavelength is very small, 
then dispersive and nonlinear coefficient for both 
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wavelength is practically same ( 2221 ββ = , 21 γγ = ). We can 
count these coefficient by equations [1] 
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In (9), (10) are D [ps/nm.km] dispersion parameter of fiber 

(chromatic dispersion), λ  - wavelength, 2n  - nonlinear 

parameter of fiber core, efA  - effective area of fiber core. 

3. Results 

For numerical solution of NLSE we used split-step Fourier 
method (SSFM), which consist in splitting calculation of 
dispersive and nonlinear effects and using principles of 
Fourier method. Optical signal (or slowly developing 
electric fiel on optical transmitter) is the gaussian pulse 
without chirping, [1]. His width T0 is pulse width for 

normalized power level 0,37e/1 ≈ . In all simulations 
we neglect fiber loss for comparing with input pulse, α = 0 
dB. Next fiber parameters in all simulations are n2 = 
3,2.10-16 cm2/W, Aef = 50 μm2. 

If we have only 1st wavelength, yxa ,2  = 0, and we take 
following parameters, we can see on figure 1 how the 
PMD caused closing eye diagram. The initial pulse width 
T0 = 12 ps, peak pulse power P0 = 1 mW, chromatic 
dispersion D = 1 ps/nm.km, fiber length z = 20 km, 
segment length Δz = 0,1 km, polarization mode dispersion 
DPMD = 1 ps/√km (it matches with d1 ≈ 34,3·10-16 s/m, 
[3]). 

 
Fig. 1   Eye diagram corresponding with 40 Gbit/s 

If we consider multiplex system – equation (1)-(4), two 
wavelength 1550 nm and  1551 nm, the input pulses on 
different wavelengths was launched in the same time. 
Fiber length 50 km (Δz = 0,25 km), T0 = 12 ps, D = 1 
ps/nm.km and P0 = 1 mW (0 dBm). We chose value of 
next parameters as d1 = -20.10-16 s/m, d2 = 5.10-16 s/m, 
d3 = 30.10-16 s/m. Figure 2a,b shows the pulse 

propagation. The pulses has not same time position and 
different broadering factor. Effect of nonlinearities is not 
obvious. 
 

 
Fig. 2    Transmission of optical pulses on two different 

wavelengths with P0 =1 mW 
 
If the peak pulse power is increased to 60 mW (18 dBm), 
then output signal is on figure 3a,b. The effect of 
nonlinearities is now obvious and we can particularly see 
it on both sides of outpul pulses. The nonlinearities 
(known as Kerr effect) can partly compensate chromatic 
dispersion. 
 

 
Fig. 3    Transmission of optical pulses on two different 

wavelengths with P0 = 60 mW 

3. Conslusion 

We introduced principles of signal propagation in two 
channel WDM system. In multiplex systems is the 
influence of nonlinearities more important and it is needed 
to be monitoring. For example, a high output power on 
start of the system can increase bit-error-rate from allowed 
value and the communication system may not be usable. 
Transmission speeds above 10 Gbit/s are very sensitive on 
PMD, that is the reason for using new coding schemes 
then RZ coding in our simulations.  
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