
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

177

Manuscript received November 5, 2009
Manuscript revised November 20, 2009

Greedy Algorithm Solution of Flexible Flow Shop
Scheduling Problem

 Xiaofeng Li Hai Zhao

College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province, 110004

Business Support Center of China Mobile Group Jilin Co., Ltd., Changchun, Jilin Province, 130021

Abstract: Flexible flow shop scheduling problem (also
called blended flow shop scheduling problem) is a sort of
complex Job Shop Scheduling problem. For the Flexible
Flow Shop scheduling problem, only in very special cases,
there are polynomial optimal algorithms. In most of the
other cases, the problems are NP-Hard. It is a
simplification of the original problem to solve Flexible
flow shop scheduling with Greedy algorithm, and it is also
a combination of efficiency and algorithm. In this paper, a
greedy algorithm solving flexible flow shop scheduling
problem is given, and the capability of the algorithm is
evaluated.

Key words: Flexible Flow Shop, Job Shop Scheduling,
Greedy Algorithm

1. Introduction

Scheduling problem [1] was first proposed for
machine manufacturing industry and later it has been
widely applied in fields such as computer system, vehicle
scheduling, production management, etc. The theory and
algorithm of scheduling are used from daily life schedules
such as production schedule, personnel schedule and
curriculum schedule and to the huge and complex flight
plan of spacecraft.

As extensions of classical schedule problems,
schedule problems of processors also have wide
background. There are mainly following two factors
which promoted the study on the solutions of Flexible
Flow Shop scheduling problem.
1) Reasonable and efficient schedule can bring huge

economic benefits in manufacturing and there is no
need to consume excessive physical resources.

2) In the normal cases, schedule problems are HP-Hard
problems which are difficult to solve, and therefore,
it is of import academic value to study scheduling
problems.

Multiple discussions can be adopted for the situation
that the objective function is minimized scheduling table
length. At present, the corresponding solutions such as

mathematical models including mixed integer model [2],
Flow2Shop model [3] and immune genetic algorithm, etc.
are proposed.

2. Problem Description

2.1 Definition of Scheduling Problem

Scheduling problem is a class of important
combinatorial optimization problem where the given Task
or Job is optimally finished by use of Processors,
Machines or Resources [1-3]. During the execution of these
tasks or jobs, some limited conditions should be met, that
is, the objective function, which is a description of the
length of processing time and processor utilization, should
reach the minimum value.

Task and Job: they are the constraint conditions in
the scheduling problem. They mainly refer to the nature of
the Tasks and Jobs and the requirements and constraints
for them in the processes. The processing time vector of
the job is: Tj=(t1j, t2j, ……, tnj), where tij is the processing
time when Job j is processed in the processing center i.

Arrival time or Ready time: rj refers to the time
when Job j is ready for being processed. If the Ready time
of all the Jobs are the same, we take rj=0, j=1,2,……,n.

Due date: dj refers to the restricted completion time
for Job j. The time limit is called Deadline.

Priority Factor: wj is weight, which indicts the
importance degrees of Job j.

Processor: Scheduling problems in which there is
only one processor are called Single Processor scheduling
problem, otherwise the problems are called multiprocessor
scheduling problem.

For multiprocessor scheduling problems, if all the
processors perform identical function, they are called as
Uniform processors or Parallel processors.

If every job is needed to be processed by all the
processing centers, that is nj=m, j=1,2,…,n, and each job
is processed with the same processes in each processing
center, this kind of problem is called as Permutation
Flowshop Scheduling or Flow shop.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

178

Objective function: we use C=(C1, C2, ……, Cn) to
denote Completion time and the objective functions to be
minimized are the functions of the Completion time Cj for
the job[1]. In the scheduling problems, there are following
types of objective functions.

Schedule length: Its definition is Cmax=max{Cj}
which equals to the completion time for the job which is
last completed. Small schedule length means high
utilization of processors.

Mean weighted flow time is:
F =∑wj Fj /∑wj

where Fj＝Cj－rj is the flow time of Job j, which
equals to the sum of waiting time and processing time the
job spends in the system.

Deterministic scheduling problem: Among the
scheduling problems, if all the data is know before
decisions are made, such kind of scheduling problems are
called as Determinist scheduling problem[3][4].

2.2 Job Shop Scheduling Problem

Job shop scheduling problem mainly includes
Permutation Flowshop Scheduling Problem, Open-Shop
Scheduling Problem and asynchronous job scheduling
problem. As to the job shop scheduling problem, there are
no polynomial algorithms except a few ones. Many people
provide heuristic solutions to job shop scheduling
problems, for example: Artificial Immune Algorithm for
Flow-Shop Scheduling [2], Solution of jobshop scheduling
problems based on evolutionary algorithms [3] and a
genetic descent algorithm for hybrid flow shop scheduling
[5], and etc.

Permutation Flowshop problem is also called Job
Shop Scheduling problem, which can be expressed as:
Fm||g, where g is a non-decreasing function of completion
time. It is a common and important kind of job shop
scheduling problem. The common objection functions are
minimized scheduling length. Most of flowshop problems
are NP-Hard.

In the flowshop scheduling problems, all the jobs are
processed by processors P1, P2, ……, Pm in turn. However,
the processes for jobs done by the same processor may be
different. If the processes of any job done by all
processors are identical, it is called Permutation schedule.
The schedule number of Permutation Flowshop is (n!)m
for n jobs and m processors. If we only consider
Permutation schedule, the schedule number is n!. However,
the optimal scheduling for Permutation Flowshop
Scheduling are not always Permultaion schedule when
m≥4.

2.3 Flexible flow shop scheduling problem

Flexible flow shop scheduling problem (also called
blended flow shop scheduling problem) [5] is a sort of
complex Job Shop Scheduling problem. In the Flexible
flow shop scheduling problem, let Z1，Z2，……，Zs be
the S processing centers, among which there are mL
synchronizers at No. L processing center ZL and every two
processing centers have unlimited storage capacity
between them. The n jobs are ：J1, J2, ……，Jn and for
job Jj, there are s processes which are T1j, T2j, ……，Tsj
and the processing time for process TLj is tLj where tLj≥0，
L=1,2,……,s, and j=1,2,……,n. The process TLj can be
processed by every processor of processing center ZL.

This problem is often denoted by FFs | m1,m2,…,ms |g
where g denotes the non-decreasing function of
completion time for the job.(Figure 1)

Figure 1 Flexible flow shop scheduling problem

Apparently, if there is only one processor in every
processing center, the problem is transformed into
Permutation Flowshop problem. If there is only one
processing center, the problem is transformed into parallel
machine scheduling problem. Hence, flexible flow shop
scheduling problem is an extension of parallel machine
scheduling problem and Permutation Flowshop problem.
For the Flexible Flow Shop scheduling problem, only in
very special cases, there are polynomial optimal
algorithms. In most of the other cases, the problems are
NP-Hard.

3. Greedy Algorithm Solution of Flexible
Flow Shop Scheduling Problem

3.1 Model of Simple Flexible Flow Shop
Scheduling Problem

It is a simplification of the original problem to solve
Flexible flow shop scheduling with Greedy algorithm, and
it is also a combination of efficiency and algorithm. If
solving NP-Hard problem is for mathematics study, the
optimal solution is purpose, no matter how much the time
cost is; however, if solving NP-Hard problem is for

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

179

computer study, the optimal solution may be not the
purpose, while the relative optimal solution and less time
complexity is the purpose.

Therefore, we can adopt some common algorithms to
simulate solving Flexible flow shop scheduling for study
purpose so that to make the time complexity be
polynomial time or linear time. It is a good choice to adopt
Greedy Method to solve Flexible flow shop scheduling

After further abstraction of Flexible flow shop
scheduling, a simple model for Job shop scheduling is
obtained.

We define that, the Simple Flexible Flow Shop
(hereafter referred to as SFFS for short) has m processing
centers which are Z1, Z2, ……，Zm where processing
center Zj have zj parallel processors; there are n jobs, and
each job must be processed by any processor of processing
centers Z1, Z2, ……，Zm in order and the processing time
of job in the processing center is vector Jj, where Jj =(j1, j2,
……，jm).

The constraints are as follows:
a) On processing center can only process one job at the

same time(that is, time shouldn’t be overlapped)
b) One processing center consists of one or many

parallel processors, all of which can work at the same
time, processing different jobs;

c) All the processes of each job must be done in order,
and a process shouldn’t be started until its pervious
process is finished and one process can be done by
any parallel processor of the corresponding
processing center.
Based on the three constraints above, it can be

concluded that, if we adopt Greedy Method to solve
Flexible flow shop scheduling, the following requirements
must be met:

1. Every processor must record a last completion time
(that is, the completion time when the processor has
finished its last job which has been allocated to it) so that
the jobs allocated later can be processed immediately
when the pervious job is finished.

2. Every job must also record its last completion time
in its pervious process to ensure the beginning time for
process must equals to or later than completion time of the
previous process.

3.2 Greedy Algorithm and Analysis

In conclusion, we provide the following Greedy
solving strategies:

a) Let the current processing center be the first
processing center, the current processor be the
first processor of the processing center and the
current process of the job be the first process.

b) Choose the job which is finished earliest
currently and place it into the current processor

and then let the current processor be the next
processor of the current processing center; Repeat
the processes until the placement of all the jobs
are finished, and then start the next process.

c) Let the process be the next process. Return to b)
and execute again until all the processes are
finished. The algorithm is finished.

The pseudocode of this process is as follows:

//Completion time for the last process of the
job

int je[JOB_MAX]={0};
// Final completion time of the processor
int pp[20];
for (every process i of the job) {

Assign 0 to all the pp;
Schedule the Jobs according to their
completion times
 int k=0; // the No.k processor.
 for (all the jobs j after scheduling) {
 int pos=pp[k] and the last ones
among the completion time of the job;
 //Place Job to position pos of
processor k in the processing center i
 PositionJob(k, job, pos);
 pp[k]=pos+ processing time for
job j;
 k++;
 } // end of for j

} // end of for i
Suppose there are n jobs, each of which has m

processes, that is, there are m processing centers, each of
which has z1, z2, ……, zm processors and the processing
time for each job at every processing center is t1, t2, ……,
tn and then the time complexity of Greedy Algorithm is

m * (c + s + n) ………………… (1)
where c is a constant，which is mainly determined

by Z, the number of parallel processors of all the
processing centers; s is the time complexity of the
scheduling algorithm. If the scheduling algorithm adopt
quick sorting, the expected time complexity is O(n*log2 n)
and the equation (1) transformed into：

m * (c + s + n) = O(m*n) ……………(2)
Therefore, the time complexity for Greedy Algorithm

is O(m*n).
In the common productions, the number of

processing centers is not more than 10, each of which
consists of 5 processors or less and the number of jobs is
commonly about 10-20. In this way, m=10, n=20, Z = 5+
5+ ……+5=50, the scheduling time is about 86, and
therefore, the time of Greedy Algorithm is about
10*(1+86+20) = 1070.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

180

Apparently, though there are big difference between
the approximate solutions (relative Optimal Solution)
acquired by Greedy Algorithm and the optimal solutions,
however, it is enough for studying Flexible flow shop
scheduling problem due to its low time complexity.
What’s more, there is network expansion for further study
of Flexible flow shop scheduling problem and it can be
applied for the solution with remote heuristic algorithm
later.

4. Simulation Experiment

The type of simulation program is Win32 Application
with MFC [5] support, the development environment is
Windows XP + Visual Studio .NET 2003[5]. The whole
project is designed according to MVC [6][7] (Module View
Controller).

Test Environment:
Intel P4 1.7G Hz CPU
512M DDR MEMORY
Microsoft Windows XP

Table 1 Simulation data
Input Size Running Time of

Algorithm(sec) Process (m) Num of Jobs (n)
10 8 <0.1
10 16 0.1
10 20 0.2

The test sizes above are all similar to the data of
practical production.

5. Conclusions

Because of the complexity of Flexible flow shop
scheduling problem (FFS), it is hard for small-size optimal
solution to this kind of problem and it is almost infeasible
for large-size optimal algorithm. This paper introduces the
Flexible flow shop scheduling problem, which is
simplified into SFFS (Simple FFS) problem for simulation
implementation. Then we adopt Greedy Algorithm to
simulate approximate solution. Though there is difference
between the approximate salutation and theoretical
solution, it can be adopted for studying this kind of
problem and small-scale production due to its extremely
low time complexity. To the FFS problem, there are other
algorithms, such as Evolutionary algorithm for solving
multi - objective hybrid flow- shop scheduling problem [8],
Particle Swarm Optimization Algorithm in Flexible Job
Shop Scheduling Problems [9], Application of An

Improved Genetic Algorithm for Shop Floor Scheduling
[10], and etc, which should be studied in our future works.

References

[1] Tang HY ， Zhao CL ， Scheduling Introduction[M] ，
Beijing, Science Publishing Press，2002

[2] Zhang J, Li P, Solution of job shop scheduling problems
based on evolutionary algorithms[J], Journal of Zhejiang
University, 2004.38(12), pp: 1545-1549

[3] Wang ZQ, Feng BQ, Artificial Immune Algorithm for
Flow-Shop Scheduling [J], Journal of Xi’an Jiaotong
University, 2004.38(10), pp: 1031-1034

[4] Huang XY, Zhang ZH, He CJ, etc. Modern Intelligent
Algorithm Theory and Application [M], Science Publishing
Press, 2005

[5] Tang LX, Wu YP, A genetic descent algorithm for hybrid
flow shop scheduling [J], Journal of Automation,
2002.28(7), pp: 637-641

[6] Hou J, Dessecting MFC [M], Huazhong University of
Science and Technology, 2001

[7] Charles Petzold，Programming Windows [M]，Microsoft
Press，2005

[8] Wei Z, Xu XF, Deng SC, Evolutionary algorithm for
solving multi - objective hybrid flow- shop scheduling
problem [J], Computer Integrated Manufacture System,
2006,12(8), pp: 1227-1234

[9] Jia ZH, Application and Research on Particle Swarm
Optimization Algorithm in Flexible Job Shop Scheduling
Problems [D], Phd thesis of university of science and
technology of China, 2008

[10] Wang T, Fu YL, Application of An Improved Genetic
Algorithm for Shop Floor Scheduling [J], Computer
Integrated Manufacture System, 2002,8(5), pp: 392-395,420

Li Xiaofeng, born in 1967, Ph.D.,
student of Northeastern University. The
main research field is Financial
Computer Security. Implemented and
completed the sub-project of the
Research and Demonstration on
Framework for Security Safeguarding
System of National Important Financial

Information System, which is the project of National High-
tech R&D Program (863 Program).

Zhao Hai, Male, Professor of
Northeastern University doctoral tutor
Director of Research Lab of Embedded
Technology System. The main research
Field is Computer Network
Communication. Led the projects of
National High-tech R&D Program
(863 Program) and National Torch
Program.

