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Summary 
In this paper, the performance analysis of a cryptosystem using 
algebraic geometric code over various fields is studied. 
Implementation is done by an algorithm developed using Mat 
lab. A comparison on   time taken for finding key generation, 
encryption and decryption over various fields is done. Result 
indicates that key generation, encryption and decryption time 
increases as the size of field size increase. Security level also 
increases with field size. 
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1. Introduction 

Cryptosystem using algebraic geometric code was 
developed by Mc-Eliece [1] during early 1970’s.. Later 
Niederaiter [2] and others developed cryptosystem using 
algebraic geometric code. But due to excessive size of 
key they were not efficiently used. In this paper we will 
deal with a cryptosystem using algebraic geometric code 
which makes use of elliptic curve and we will have a 
study about the time taken to execute it over various 
fields. 
The organization of this paper is as follows. In section 2, 
an overview of algebraic geometric code is presented. 
Next section deals with a brief overview of cryptosystem 
using elliptic curves. In section 4: key generation, 
encryption and decryption are given. In section 5 
implementation details and comparison over various 
field is given. Finally conclusion is given. 

2. Algebraic geometric code 

In 1948[3] Claude Shannon’s paper “theory of 
communication” led to twin disciplines- information 
theory and coding theory. Main aim of these two 
disciplines is to provide efficient and reliable 
communications. To be efficient the transfer of 
information must not require a prohibitive amount of 
time and effort and to be reliable the received data 
stream must resemble the transmitted stream to with the 
narrow tolerances.  

Coding theory deals with error correction and detection of the 
information transmitted. It involves generation of codes, 
encoding of information transmitted, decoding of information 
received. Algebraic geometric codes are code generated using 
curves. As in any other code these codes also generator and 
parity check matrices. 
Algebraic geometric code is code defined over a curve. The 
code is defined by Goppa [4]. The curve used in generation of 
algebraic geometric code is defined over a finite field Fq.  The 
curve should be absolutely irreducible nonsingular and 
equations of curve should be polynomials with coefficients Fq. 

2.1 Divisor, Rational functions and Function field 

A divisor[5] D on a curve X is a formal sum of form D=∑npP 
where np ε Z and np = 0 for all but a finite number of points P on  
X. Divisors  are often thought to be the key stone to 
understand how algebraic geometry is formed and its 
relationship to curve. Another important thing in the 
construction of algebraic geometric code is order function. 
The order is a generalization of the degree of a function as 
well as its zeroes. There are two candidates, the x-order and 
the y-order. Usually they are the same; however care must be 
taken to ensure their accuracy. 

Let X: f (x, y) =0 be a curve and P (x=α, y=β) be a point on 
curve X, with α and β ε F, Let g (x, y) ε F [X], then the largest 
power n for which there exists polynomials g0 ε F [X] and h0 
(x, y) ε F [x, y] with h0 (0, 0) ≠ 0 such that 

g = ((x- α) g0(x- α) / h0(x- α, y- β)) mod f 
 

is called the x-order of g at P and denoted by ordp,x(g).The x-
order can be defined using the notation Vp,x(g/h) is defined as 
Vp,x(g)- Vp,x(h) and y order is defined analogously. 
Rational function [6] can be defined as follows: Let X is a 
curve defined by a field F. On the points of X, any two 
polynomials that differ by multiplies of F have same value. So 
when we compare it with the curve they will be the same. So 
we can say or define rational function R as the ratio                       
f =A(x, y, z)/B(x, y, z) of two homogeneous polynomials of 
the same degree up to factorization modulo F(x, y, z) A 
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rational function [11] f is defined at a point P, if there 
exists a representation f = A/B such that B (P) ≠ 0. 
Another important thing we have to discuss before the 
construction and definition of algebraic geometric code 
is the space associated with the divisor. The space 
associated with the divisor can be called linear space. 
Let D =∑npP, be a divisor and space associated to D [5]  
denoted by L (D) is the linear vector space which 
contains  set of all functions satisfying Vp (f) ≥ -np at 
every point P, together with the zero function. For an 
effective divisor D, L (D) consists of rational functions 
and all its poles lies in the Supp (D) and the multiplicity 
of each of them is not greater than np 
 
For an effective divisor D, L (D) consists of rational 
functions and all its poles lie in the Supp (D) and the 
multiplicity of each of them is not greater than np. 
By making use of above mentioned concepts an 
algebraic geometric code is defined as follows. Let X be 
a curve, P be the points on the curve (P1, P2…..Pn) and 
divisor D = P1 + P2+Pn. Let L (D) denote the vector 
space and length of the vector is defined by Rienmann-
Roch theorem [6] is given by l (D) = n+g-1 and let f1, 
f2….fk form basis of vector space L (D). The algebraic 
geometric code ((X, P, D) is the image of evaluation map 
 

E: L (D)  Fq
n 

F= (f (p1) ….f (pn)). 
 

The code can be converted into (n, k, d) code where n is 
the number of points on curve, k is the dimension and d 
is the distance. Dimension k = degD+1-g and min 
distance        d>n-degD. Generator matrix[5]  is defined 
as 
         
       F1 (P1)………………………. F1 (Pn) 
. 

 

 

 

         F1(P1)……………………… F1(Pn) 
 

3. Cryptosystems using elliptic curves 

In 1985 Kobliz and Miller [7] independently proposed a 
public key cryptosystems based on elliptic curve as an 
analogue of the Elgammal scheme [8] in which group 
Zp* is replaced by points on the elliptic curve defined 
over a finite field. The main attractions of elliptic curve 
cryptography over competing technologies such as RSA, 
DSA is that various algorithms are known for solving 
the underlying hard mathematical problems in elliptic 
curve cryptography .Elliptic curve discreet logarithm 

problem takes fully exponential time.  On other hand, the best 
algorithm known for solving the underlying hard 
mathematical problem in RSA and DSA (Integer Factorization 
problem and DLP problem) take sub-exponential time. This 
means that significant parameters used in ECC is small 
compared to RSA and DSA but with significant equivalent 
levels of security. 
The lack of sub exponential attack on ECC offers potential 
reductions in processing power, storage space, band width and 
electrical power. These advantages are especially important in 
applications on devices such as smart card, pagers, cellular 
phones etc. [88] 
The performance of ECC depends mainly on the efficiency of 
finite field computations and fast algorithm for elliptic scalar 
multiplication. In addition to the numerous known algorithms 
[8] the performance of ECC can be speeded up by selecting 
particular underlying finite field and/ or elliptic curve 

4. Algorithm for a cryptosystem using algebraic 
geometric code 

Any cryptographic algorithm includes the following steps. 

4.1 Key generation 

Key generation is a process of generation of keys for   
the process of encryption and decryption. Security of 
the cryptosystem is highly dependent on keys. So we 
must be very careful in generating keys. Every public 
key cryptosystem has two keys . Public key and Private 
Key . 

The following section describes the key generation 
 
Input   : Elliptic curve X, Fq 
Output: Public key (Fq, k, X) and Private Key (α, β) 
 

1. Compute base point B also the set the basis of linear 
vector space. 

2. User A selects a random integer β between 0 and 
ordB 

3. User B selects a random integer α between 0 and 
ordB 

4. Public key information include (Fq, k, X) and private 
key (α, β) 
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4.2 Encryption and decryption 

Encryption is the process of converting the received 
message into cipher text. It is done as follows. The 
message m is divided into m1, m2… mk and is converted 
into a code C by making use of generator matrix [5]. A 
private random key is generated and is multiplied by C 
and sent to the receiver. That is the cipher text of 
message m and is sent to the receiver. 
 
At the receiving end decryption process is done. 
Decryption process is the process of retrieving the 
original message m from the cipher text by using 
the private key. .By using inverse generator matrix 
and private key β  , the fragments of message m1, 
m2…mk can be obtained.  This is in turn converted 
into message M. This is possible because of the 
linear dependent property of generator matrix. 

5. Implementation 

The algorithm was implemented by a program developed 
using Mat lab for various fields and executed in an Intel 
Pentium processor. The system was tested for time 
required for key generation, encryption and decryption. 
Five fields were chosen which include 13, 31, 83,127 
and 167. An elliptic curve E is of form y2=x3+ax+b and 
is defined over a finite field Fp and is represented as         
Ep (a, b). 

 

1. q=13,a=1,b=1curveE13(1,1)                                    
Number of points  n=15,       base point(12,8) 

Random key limit: 11 

 
Key generation=0.0630 μs 

Encryption time=0.008667 μs 

Decryption time=0.0630 μs 

2.  q=31,a=1,b=1                                        
CurveE31(1,1)                                                     

 Number of points n =32:,base point(17,31): 

Random key limit: 31 

Key generation =0. 6090 μs    

Encryption time=0.002 μs   

Decryption time=0.082 μs 

3.q=83,a=1,b=1                                           
CurveE83(1,1) 

Number of points n =90:,base point(12,9) 

Random key limit: 89 

Key generation =10. 14100 μs 

Encryption time=0.04264μs 

Decryption time=0.055 μs 

 

4.q=127,a=1,b=1                                       
CurveE127(1,1) 

Number of points n =131, base point(18,3): 

Random key limit: 131 

 
Key generation =34.1 μs 

Encryption time=0.06233 μs 

Decryption time=0.63 μs 

5.q=167,a=1,b=1                                        
CurveE167(1,1)                                                            
Number of points n =147,  Base point  (35,21)  

 Random key limit: 144 

Key generation: 62.8280 μs 

Encryption time=025 μs 

Decryption time=0.85 μs 

Performance analysis can be viewed by the following graph 
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Fig 1: Graph showing time requirement for Key 
generation, Encryption and Decryption 

 
From Fig 1  we can   see that computation time increases 
as field size increase. Computational time is dependent 
on factors such as points of elliptic curve, scalar 
multiplications, point doubling and generator matrix 
generation.  The computation time for other 
cryptosystem using ECC is as follows.  An elliptic curve 
crypto system with a field size  F 127   has  taken around 
6.1 ms and  F 167  took  8.1  ms  for  key generation  in an 
ULTRA Sparc III processor. 
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Fig 2: Graph showing Field size Vs Key size 
 
Fig 2 shows that whenever field size increase security 
level goes high. System will be prone to less attacks 
when security increase. So it can be concluded that 
performance and security of a cryptosystem using 
algebraic geometric code can be improved by selecting a 
field of sufficiently large prime. 

6. Conclusion 

Here we have computed key generation, encryption, 
decryption time and key size for a curve. We can see that 
computational complexity increases with field size at the same 
time security level also increases. When ever we develop a 
system, field size should be a large prime. Overhead in 
computation can be solved by making use of processor of 
higher capacity. 
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