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ABSTRACT 
The Chameleon Cipher-192 is a polymorphic cipher that uses a 
variable word size and variable-size user’s key. The cipher 
employs a shuffler and two nonlinearity-associated filters for 
selective addition. The cipher structure is based on the 
simultaneous use of block and stream cipher approaches. Other 
elements of the cipher include a specially-developed hash 
function for key expansion. In addition, this hash acts as a PRG 
to provide a random input to the filters. These filters are 
designed to elaborate the enciphering sequence by irregularly 
interrupting the data encryption at pseudo random, however, 
recoverable intervals. The cipher provides concepts of key-
dependent number of rotations, key-dependent number of rounds 
and key-dependent addresses of substitution tables. The 
parameters used to generate the different substitution words are 
likewise key-dependent. In a previous work, we have established 
that the self-modifying proposed cipher, based on the 
aforementioned key-dependencies, provides an algorithm 
polymorphism and adequate security with a simple parallelizable 
structure. In this work, we provide an analysis of this cipher and 
an FPGA  implementation.  
KEYWORDS:  FPGA, Cipher, Polymorphic, Hardware, 
Analysis. 

1. Introduction 

The Chameleon Cipher-192 is a polymorphic cipher that 
can be efficiently implemented in hardware. Contrary to 
conventional ciphers where it is implicitly assumed that 
the cipher machine is not reprogrammable, the proposed 
polymorphic cipher utilizes the user key to change the 
parameters of its operations. Three constructs that are key-
dependent are proposed. These are: Shuffle, 
Select/Remove and Change parameters [SAEB09].  One 
considers the user key as the system memory where both 
the user key data and cipher re-programmability 
instructions are stored. The proposed cipher is a word-
based cipher with variable word and key sizes. The bit-
level S-orb replaces the conventional S-box leading to a 

noticeable increase of addressing space and added security. 
The key stream and the number of rounds are both key-
dependent; thus eliminating the possibility of trap door 
functions. The generated S-orb is key-dependent using a 
specially-developed hash- function. Two large integer 
numbers are used to generate the different S-orb words. 
These two numbers are also key-dependent. These key-
dependencies provided the foundation from which this 
polymorphic cipher acquired its name.  The objective of 
using selective additions is to enhance homophonic 
substitutions.  In these homophonic bit-level substitutions, 
the mapping of characters varies depending on the 
sequence of bits in the message text. Inside the encryption 
process, the round keys act initially as pointers in the 
homophonic substitutions without directly being part of 
the computations. Finally, a poly-alphabetic substitution is 
performed on the data. This involves using bit-wise XOR 
between the partially ciphered data and the generated keys. 
The security of this cipher is a direct consequence of the 
polymorphic key-dependent design of the cipher operation 
parameters.  The paradigm of polymorphic encryption 
provides the required security with relatively simple round 
function constructs. We have preserved the pseudo-
random permutations using robust bit-wise homophonic 
substitutions.  In addition, we have utilized the capabilities 
of contemporary processors’ superior performance to 
achieve acceptable execution speeds. In the following 
sections, we provide a discussion regarding the building 
blocks of the cipher, the proposed nonlinearity-associated 
filters, the multiplexer-based shuffler and the hash 
function. Moreover, we present an analysis of the 
algorithm, the results of the FPGA implementation and 
our conclusions. 
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2. Building Blocks 

The formal description of the algorithm, as shown in 
[SAEB09],  is summarized as follows: 
 
Algorithm Chameleon-Cipher 
[Given a plain text message P, key K, the aim of the algorithm is 
to encrypt the plain text into a cipher text C and decrypt it again. 
To achieve this the algorithm utilizes a specially developed hash 
function to generate the key stream, and a dynamic transposition 
to permute the plain text, and finally modulo two addition to 
scramble a varying-size data unit] 

Encrypt: 

Input: Plain text P, key K Output: Cipher C, word-size 

Algorithm body: 

 Initialize the S-orb 

 Input: n is a positive integer ε Ζ+ equal to number of 
words of the S-orb, pi, qi are pairs of large positive integer 
numbers ε Z+ required to update the iterative application of the  
hash function. 

 Output: A 192-bit n-word table utilized as a pseudo 
random number generator PRG called the S-orb. 

Begin   {Initialize S-orb body } 

i: = 0; 

h0 := p0. h (K) + q0;    

{Hash the user key using MDP-192} 

While i <= n 

 hi+1 := pi+1. hi (k) + qi+1; 

 Save in S-orb file; 

End while; 

End Initialize. 

 Begin     {Encrypt} 

{P[m] = m blocks in P file} 

Divide the Plaintext file P into m-1 192-bit blocks; Append last 
block if necessary;  

Read max-number of rounds from user key; {Input max-number 
of rounds from user key from assigned secret location in user 
key} 

If max-number of rounds < 4 then max-number of rounds: = 4;  

For round = 1 to max-number of rounds 

While (P[m] ≠ EOF)  {EOF: End Of File} 

 j := 0; 

 While j ≠ n 

Read kw [j] of S file; 

Using the round key kw[j], read value of integer given by bit 
location 23-to-29;  {This address represents the address of the 
center element of the block}  

For the next block address, slide the 7-bit window two bits to the 
right and find new block address; 

Divide the plain text 192-bit block into six 32-bit words, or 
twelve 16-bit words, or twenty four 8-bit words depending on 
user word-size; 

From the LSB and moving to the right of the word-to- be 
encrypted: {Input: P[m], kw[j](round key), Output: Ci1} 
If   ki =1 then move depending on location weights 0,1,2,...7 to 
N, NE, …, NW respectively then xor with corresponding bit of 
round-key kw[j];  
Else do nothing; 
ROTL (r); {r is determined from key 5-bit field (16-20) value, 
output Ci2} 
{Input: Ci2, kw [j](round key), Output: Ci3} 
If   ki =0 then move depending on location weights 0,1,2,...7 to 
N, NE, …, NW respectively then xor with corresponding bit of 
round-key kw[j]; 
Else do nothing;  
{Input: Ci3, kw[j]i (round key), Output: Ci} 
Ci = Ci3 xor kw[j];  
Save Ci in output file  
End while; 
Next round; 
End Algorithm.  
  

This algorithm is best described by the following 
conceptual block diagram. A specially-designed hash 
function is used iteratively to generate the round keys and 
the selection vector. This hash function is based on the user 
key and the two constants that are obtained from the first 
round key. The second part is the encryptor, which is based 
on two nonlinearity-associated filters, a shuffler and a 
masking xor-based operation. 
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Fig. 1 The conceptual block diagram of the Chameleon Cipher 

 

2.1 Nonlinearity-associated Filters 

One of the basic building blocks of this cipher is the set of 
digital filters associated with nonlinearity. Similar filters 
are commonly used in digital signal processing 
applications [LING07]. These filters are designed to refine 
the enciphering sequence by interrupting the data 
scrambling at random, however, recoverable intervals. The 
filters’ symbols are shown in Figures 2 and 3 where P, K, 
and S are the plaintext, the key and the select input 
respectively.  As long as the K and S inputs are highly 
random, then the correlation between the P bit stream and 
C bit stream will be negligible.  
 

 

Fig. 1 The nonlinear filter seladd_1 symbol 

 
Fig. 2  The nonlinear filter seladd_0 symbol 

 
The Chameleon Cipher-192, as explained in detail in 
[SAEB09], utilizes the user key for two major functions; 
to generate the sub-keys as in conventional ciphers and 
more importantly to vary the cipher encrypting parameters 
to achieve polymorphism.  In the simplified hardware 
version of this cipher, we use the key as a source of data 
for generating the sub-keys.  Simultaneously, the key 
serves as data flow and rotation controller to attain the 
required security through polymorphism. The 
simplification of the cipher is essential for low gate-count 
FPGA device implementation. The primary thought 
behind this hardware implementation is to provide two 
data paths; one path where bit-wise xor operation takes 
place and the second path where no operation takes place 
depending on the key value. This is called selective 
addition. Certainly, all operations are performed at the bit 
level; otherwise, there will be information leakage. To 
clarify this idea, the general conceptual diagram is shown 
in Figure 4. The select input S can be taken from another 
designated sub-key bit. If the select input, taken from the 
round key, is one, then a bit-wise xor operation is 
performed. If the selection bit is zero, no operation will 
take place. In this case, the cipher bit will be the same as 
the plaintext bit. This combined operation, as mentioned 
before, is called selective addition. 
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Fig. 3 The nonlinear filter basic operation; Selective addition conceptual 

diagram  

This basic operation is summarized in Table 1. To 
eliminate any bias to the one value, the same circuit 
concept is utilized again, after performing a rotation 
operation. Alternatively, we use the complement of the S 
input.  
 

Table 1: The basic circuit operation of the selective addition 
Value of S  

(select input) 
Operation 

0 Ci ← Pi 
1 Ci ←Ki xor Pi 

 
To clarify the operation of this circuit, we provide some 
details as shown in the following few lines. Redirecting 
the data flow, one uses a multiplexer, implemented at the 
gate level, as shown in Figure 5. The select input S0 can be 
taken from another designated sub-key bit; P0, K0, and C0 
are the input plain text, the sub-key and the enciphered bit 
respectively. 

 

F
ig. 4 The seladd_1 digital logic circuit 

 
Table 2 is the truth table for such a one-based selective 
addition circuit.  
 
 
 
 
 
 

Table 2: The truth table for seladd_1 filters 
P K S C 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

 
A basic requirement for any cipher to be viable is that it 
will show no bias to the number of ones or zeroes. This is 
usually referred to as the ciphertext being bit-balanced. 
Therefore, one has to perform the same operation, using 
zero-based selective addition rather one-based selection, to 
obtain the required bit-balance. The circuit shown in 
Figure 6 performs this function. The select input S0 can be 
taken from another designated sub-key bit.  

 

 
Fig.5 The seladd_0 digital logic circuit 

Table 3 is the truth table for such a zero-based selective 
addition circuit.  

 
Table 3: The truth table for seladd_0 filters 

P K S C 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

 
In both of these two circuits, one observes that the output 
cipher is bit-balanced, as long as the key is bit-balanced. 
The ASCII table used for plaintext is also bit-balanced. 
However, the frequency of various characters is different 
giving rise to roughly 30% bias to the number of zeroes in 
the resulting text messages. More bias in the number of 
zeroes or ones is noticed in some image files where a large 
area of the image may be of the same color. Increasing the 
cipher number of rounds will usually take care of this 
condition. On the other hand, the selection bits are 
normally bit-balanced. They are obtained from a sub-
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key data itself where all sub-keys were previously 
generated using a hash function that, by design, 
provides a bit-balanced output.  Moreover, the final xor 
operation of Chameleon Cipher-192 provides the required 
masking operation.  It is worth mentioning that both of 
these two circuits can simply be implemented as lookup 
tables (LUT). This is illustrated in Figure 7, shown below.  
The implementation using the logic circuits of Figures 5 
and 6 provide security through computation with small 
silicon area consumption and relatively longer execution 
times.  

 

 
 Fig. 7 Lookup LUT realization of the seladd_0  

 
On the other hand, using a LUT such as the one shown in 
Figure 7 provides faster execution times and on the 
expense of larger consumed implementation area. One can 
visualize the two alternatives as security by computation 
versus security by randomization respectively. The 
randomization can be obtained by changing the LUT 
dynamically while initializing the system as long as the 
output is bit-balanced. However, this idea requires further 
investigation in future work. 

2.2 The Shuffler 

To provide better shuffling of bits, one uses a rotation 
operation between the two previously discussed operations.  
The rotation operation does not change the bit-balance 
condition of the register contents. The rotate left is 
performed a certain number of times that are key-
dependent. This is achieved by using a set of multiplexers 
as shown in Figure 8. In this Figure the data flow is from 
the bottom register to the right hand register through the 
MUXs shown.  The rotation operation is an essential 
cryptographic low level operation. It provides data 
shuffling without changing the state of bit-balance since 
the number of 1’s and the number of 0’s do not change. 
Unfortunately, there is no hardware-support for such an 

operation in most processors. The only alternative left to 
the programmer is to use shift operations. However, this 
type of implementation consumes a number of cycles 
equal to the number of register bits even for one rotation. 
Accordingly, this operation is quite slow and requires the 
largest amount of power consumption. Fortunately, one 
can implement a shuffler simply by using a set of MUX’s. 
The delay in this case will be few cycles depending on the 
type of MUX used. However, the MUX select codes, two 
bits in the case shown in Figure 8, have to be mutually 
exclusive. To generate such a code, one may have to resort 
to some sort of shift register that, in turn, will slow down 
the whole operation. Therefore, a design decision was 
undertaken to resort to shuffling by using the same select 
code on all MUX’s and changing the inputs to the various 
MUX’s as shown in Figure 8. The estimated delay is 
about three cycles assuming one clock cycle for each logic 
gate in the data path. Still,   the disadvantage of this 
approach is to limit the shuffling within the module bits. 
In order to correctly shuffle, say, 32 bits we need a 32-to-1 
MUX’s. In other words, repeating the 4-bit module eight 
times will not provide the same security, at least in theory, 
when compared to building a 32-bit module. The number 
of logic gates required for the 4-bit module is 28 logic 
gates. To use this module for 32-bit shuffling we need 8 
modules with a total of 224 logic gates. On the other hand, 
if we use 32-to-1 MUXs, then each MUX requires 38 
logic gates. For a 32-bit shuffling, we need 32 MUX’s of 
this type. The total number of gates required in this case is 
1216 logic gates. This is more than 5 times the 4-bit 
module. For a 64-bit block, the number of logic gates 
increases to 4544 logic gates. Then the proportion, as 
compared to the 4-bit module, is about 10 times more 
logic gates. One can call this the price of security! In this 
implementation, we will use a maximum block size of 32 
bits. Consulting the literature, one can find trials to build 
some other cryptographic shufflers. However, these are 
based on extensive use of sequential logic with 
appreciable increase in data path delays. The MUX-based 
shuffler, on the other hand does not increase the estimated 
delay. Only the implementation area is noticeably 
increased. With continuing increase in FPGA device gate 
count, it appears that the consumed implementation area 
will be a less important factor when compared to the data 
throughput. Another point to be taken into consideration 
when designing cryptographic shufflers is the fact that 
MUX’s are an essential design primitive in all FPGA 
families. Therefore, in this case, the designer would expect 
optimum implementation.  
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Fig. 8  A Shuffler using MUX’s 

2.3 The Hash Function MDP-192 

The sub-keys and the select inputs, used in the selective 
addition modules, are obtained from a PRG that is 
constructed by using a specially designed hash function. 
This hash is called MDP-192 and is explained next. The 
design of new hashes should follow, we believe, an 
evolutionary rather than a revolutionary paradigm.  
Consequently, changes to the original structure are kept to 
a minimum to utilize the confidence previously gained 
with SHA-1 and its predecessors MD4 and MD5. 
However, the main improvements included in MDP-192 
[SAEB09a], as shown in Figure 9, are:  

The increased size of the hash; that is 192 bits compared 
to 128 and 160 bits for the other two schemes. That is the 
security bits have been increased from 64 and 80 to 96 bits. 
The message block size is increased to 1024 bits providing 
faster execution times. The message words in the different 
rounds are not only permuted but computed by xor and 
addition with the previous message words. This renders it 
harder for local changes to be confined to a few bits. In 
other words, individual message bits influence the 
computations at a large number of places. This, 
successively, provides faster avalanche effect. Moreover, 
adding two nonlinear functions and one of the variables to 
compute another variable, not only eliminates the 
possibility of certain attacks but also provides faster data 
diffusion. The fifth improvement is based on processing 
the message blocks employing six variables rather than 
four or five variables. This contributes, we believe, to 
better security and faster avalanche effect. The deliberate 
introduction of asymmetry in the procedure structure may 
help impede potential future attacks. The variables are not 
only permuted but also computed iteratively using data-
dependent xor operation. On the other hand, the xor and 
addition operations do not cause appreciable execution 
delays for today’s processors. Nevertheless, the number of 

rotation operations, in each branch, has been optimized to 
provide fast avalanche with minimum overall execution 
delays.  The MDP-192 hash function was implemented 
using Cyclone II device and Altera integrated design 
environment. The hash is used to generate the sub-keys as 
discussed in [SAEB09] and the random selective input for 
the nonlinear filters. 

 

Fig. 9  Operation of MDP-192 hash function [SAEB09a] 

3. Discussion of the Algorithm 

Given the cipher text c and a part of the message m ∈ M, 
the attacker objectives [ZENR04] are:  

1. To find the set of all probable message M- ∈ M 
where m- ∈ M  if ∃ k ∈ K ⏐ E(k, m) = c. The two 
functions E: K x M→C and D: K x C→M are 
satisfying D (k, E (k, m)) = m,  ∀ m ∈ M and k ∈ 
K.  

2. To find the set K- ⊆ K if k- ∈ K ⇔ ∃ m- ∈ M : E 
(k-, m-) = c.  

 
To design a semantically-secured cipher, two major 
building blocks are required; a pseudo random number 
generator PRG and an encryption function. The PRG is a 
function G :{ 0, 1} l→ {0, 1}* that expands a short seed 
into a bit sequence of arbitrary length. This function has 
inner state Si ∈ {0,1}l   and   an  update function f: {0,1}l 
→ {0,1}l  and  an output  function          g: {0,1}n → {0,1}, 
n ≤ l . The update function f modifies the inner state 
between two outputs. The output function g computes the 
next output bit from the current inner state or part of it. 
This canonic structure was implemented in Chameleon by 
using a specially–designed hash function acting as the 
function G. This PRG is secure if and only if a pseudo 
One-Time-Pad using G is secure.  Consequently, for a 
bounded number of the inner states of G, the 
encryption process had to be refined by adding two other 
sources of nonlinearities: 

1. Nonlinearity-associated filters, 
2. Irregular data encryption intervals. 
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The essential design elements of the Chameleon Cipher, 
as explained in detail in [SAEB09], are: 

• Algorithm polymorphism based on the notion of 
a key-driven encryption rather than only using 
the user key to generate the sub-keys in 
conventional ciphers, 

• The structure of the cipher is based on the 
simultaneous use of block and stream cipher 
approaches to conform with the concept of 
Universal Secure Encryption USE, 

• The utilization of a simple nonlinearity-
associated filters to refine the enciphered 
sequence by  interrupting the data scrambling at 
random, however, recoverable intervals, 

• A separate specially-designed hash function is 
used to generate the sub-keys. In case of a valid 
attack on the sub-keys this hash can be changed 
easily. In addition,  if the user requires more 
security a hash cascade can be used,  

• In the software version, a rotation operation is 
used to shuffle the data. However, in the 
hardware version this operation was replaced by 
a MUX-based shuffler that is purely 
combinational logic to appreciably reduce the 
number of cycles required to complete the 
shuffling. 

In conventional ciphers, the transposition operation is 
performed on the character level. This results in 
information leakage and invites the attacker to reposition 
the cipher text characters to find some intelligible 
plaintext. However, if the transposition is performed on 
the bit-level, a very large number of wrong messages can 
be formed that hide the only correct one. In other words, 
an agglomerated large number of bits will replace a 
relatively small bundle of characters. Moreover, if 
conventional transposition is used on the same set of 
identical characters, no permutation will change this data 
block. This is quite clear in multimedia files. In 
Chameleon Polymorphic Cipher, these permutations are 
performed on the bit-level preserving the bit balance 
condition in the output cipher. Thus, the cipher is 
emulating communication white noise. This is a clear 
requirement in semantic security or what is known as USE 
discussed in [BLGO85], [GOMI82] [ZENR07] and 
[ZENR04]. The efficient substitutions performed by 
Chameleon provide a huge number of different 
transpositions with almost equal probability. This requires 
a large PRG with a relatively large number of internal 
states. In conventional ciphers, on the other hand, a 
relatively diminutive number of all possible keyed 
permutation tables can be produced. A major constraint 
that is facing the cryptographer is to generate a cipher with 
equal probability of generating 1’s and 0’s. This was 

achieved by proper design of the utilized mentioned filters. 
However, as we have pointed out before, some data blocks 
may not be bit-balanced. In this case, one can resort to 
artificially bit-balance these blocks by appending 
balancing values to plaintext. The other option is to rely 
on the indirect randomization obtained by multiple rounds 
of encryption. The first option may be more time-
consuming when compared to an increase in the number 
of rounds. However, we have to concede that this point 
requires more investigation on different types of 
multimedia files. We have used the second option by 
applying an increased key-dependent number of rounds.  
Testing has showed conformity with the cipher bit-
balanced requirement as shown in [SAEB09].  The bit-
level selective substitution high computational cost is 
partially offset by today’s multi-execution unit superscalar 
processors. Opposed to the complex proofs of 
computational security of conventional ciphers, 
Chameleon Polymorphic Cipher is based on simple 
combinatorics as shown in [SAEB09]. It was shown that 
the attacker has a diminutive probability of figuring out 
the correct algorithm used and at the same time a 
negligible probability of key collision.  In this respect, if 
the hash function was successfully attacked, one can 
change it or even use a hash cascade to generate the sub-
keys. 

4. FPGA Implementation 

The simplicity of the hardware building blocks of the 
Encryptor lends itself to straight forward implementations. 
Either using TTL conventional technology or even 
advanced FGPA technology can be used to implement the 
design. The circuit diagram for a demonstrative four-bit 
encryption module is shown in Figure 10. In this Figure, 
the four stages are clearly shown. The first stage is the one 
selective addition. The second and third stages are the 
shuffler using four MUX’s and the zero selective addition 
stage.  The last operation is the xor operation. To obtain 
minimum pin-to-pin delay and accordingly high 
throughput, we have not used any sequential logic in the 
construction of the encryption module. The sequential 
logic, omitted here for simplicity, is used to only store the 
data block before and after encryption. The expected delay 
of the circuit is 10 cycles per byte. The circuit, shown in 
Figure 10, was implemented using Verilog, [BRVR08], 
[WAKE01], [ASICWRLD] and Quartus II 6.1 Web 
Edition [ALTRA], Altera design environment. 
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Fig. 10 The details of the circuit diagram for a 4-bit module using TTL 
family of logic gates 

The implementation was performed on a EP2C5T144C6, 
Cyclone II family device.  All results shown are for a 
simplified four-bit version of the Encryptor to convey the 
basic concepts of the design. The worst case pin-to-pin 
delay was 9.643 ns. The minimum delay was 8.550 ns and 
the average delay was calculated to be approximately 
9.1173 ns.  The system frequency is 100 MHz.  A series of 
screen-captures of the different design software outputs 
are shown in Figures 11 to 17. Figures 11, 12, 13, and 14 
provide indication of successful compilation, the nonlinear 
filter module RTL, the shuffler module RTL and the 
encryption module RTL respectively. Figure 15 displays 
the Encryptor simulation results where output pins 15, 16, 
17, and 20 are the encrypted data. Figure16 and 17 
demonstrate the timing report and the floor plan 
respectively. Figure 18 displays the schematic block 
diagram for the implementation of hash function.  

 

 

Fig. 11 Compiler tool screen 

 

Fig. 12 RTL screen for the nonlinear filter module 

 

Fig. 13 RTL screen for part of the shuffler module 

 

Fig. 14 RTL screen for the Encryption module 

 

Fig. 15: Simulator screen showing the output encrypted data 
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Fig.16 Timing report 

 

Fig.17 Floor plan 

 

Fig.18 Schematic diagram of the MDP-192  
hash function 

 

5. Summary & Conclusion 

We have given a brief discussion of the following 
hardware building blocks for the Chameleon Cipher (CC-
192): 

1. The nonlinearity-associated filters are based on 
irregular, however recoverable, interruption of 
the encryption process. One can view this 
approach as hiding encrypted bits in some 

plaintext bits using two keys; one key for 
encryption and one for hiding. 

2. The FPGA-hardware implementation of these 
filters was discussed based on a computational 
model and a lookup table. 

3. A pure combinational logic multiplexer-based 
shuffler, with minimum expected delay, is 
proposed and implemented. 

4. The encryptor part of Chameleon was 
implemented using simple Verilog modules that 
were integrated using the schematic editor. 

5. The PRG utilized is a specially-designed hash 
function that was implemented using simple 
Verilog code and a schematic editor. 

6. The design of the cipher, the filters and the hash 
function are, in general,  based on the notion that 
the cryptographic low level operations, which are 
bit-balanced are: xor, complement (invert) and 
rotate. All encryption processes are based on 
these three operations or their equivalents. 
 

In this work, we have provided a hardware-
implementation proof of concept. The estimated 10 cycles 
per byte delay was verified by the timing reports 
providing, at 100 MHz operating frequency, an average 
and maximum pin-to-pin delays of 9.1173 and 9.643 ns 
respectively. The total interconnect delay is 5.713 and the 
total cell delay is 3.930. However, at this stage of 
development, no area or timing optimization were 
performed. A comparison with other implementations is 
not applicable since this is the first time the cipher is 
FPGA-implemented. This and other related issues will be 
dealt with in future development of the device.  
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Appendix:  
SAMPLE VERILOG CODE 
 

module seladd_1(p1,k1,s1,c1); 

  input p1,k1,s1; 

  output c1; 

 xor(a1,p1,k1); 

  and(g1,~s1,a1); 

  and(h1,p1,s1); 

  or(c1,g1,h1); 

endmodule 

module mux4to1 (w0,w1,w2,w3,S,f); 

  input w0,w1,w2,w3; 

 input [1:0] S; 

 output f; 

assign f = S[1]? (S[0]? w3:w2):(S[0] ? w1:w0); 

endmodule 

module seladd_0(p0,k0,s0,c0); 

  input p0,k0,s0; 

  output c0; 

  xor(a0,p0,k0); 

  and(g0,s0,a0); 

  and(h0,p0,~s0); 

  or(c0,g0,h0); 

endmodule 

module phiJ (x, y, z, f); 

  input [31:0] x , y, z; 

  output [31:0] f; 

 assign f = (x & y)|(~x & z); 

endmodule 

module fulladd1(carryin , X, Y, S, carryout); 

 input carryin; 

  input [31:0]X,Y; 

  output[31:0]S;  

  output carryout;  wire [31:1] C; 

 fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]); 

 fulladd stage1 (carryin, X[1], Y[1], S[1], C[2]); 

 : 

: 

endmodule 

module fulladd (Cin, x, y, s, Cout); 

 input Cin, x, y; 

  output s, Cout; 

   assign s = x^ y^ Cin; 

assign Cout = (x &y)|(x &Cin)|(y & Cin); 

endmodule 
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