
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

240

Manuscript received November 5, 2009
Manuscript revised November 20, 2009

Hardware Implementation of The Chameleon Polymorphic
Cipher-192

MAGDY SAEB
Arab Academy for Science, Technology & Maritime Transport,

Computer Engineering Department,
Alexandria, Egypt

 On Leave to: Malaysian Institute of Microelectronic Systems (MIMOS)
Office of Chief Researchers,

Kuala Lumpur, Malaysia

ABSTRACT
The Chameleon Cipher-192 is a polymorphic cipher that uses a
variable word size and variable-size user’s key. The cipher
employs a shuffler and two nonlinearity-associated filters for
selective addition. The cipher structure is based on the
simultaneous use of block and stream cipher approaches. Other
elements of the cipher include a specially-developed hash
function for key expansion. In addition, this hash acts as a PRG
to provide a random input to the filters. These filters are
designed to elaborate the enciphering sequence by irregularly
interrupting the data encryption at pseudo random, however,
recoverable intervals. The cipher provides concepts of key-
dependent number of rotations, key-dependent number of rounds
and key-dependent addresses of substitution tables. The
parameters used to generate the different substitution words are
likewise key-dependent. In a previous work, we have established
that the self-modifying proposed cipher, based on the
aforementioned key-dependencies, provides an algorithm
polymorphism and adequate security with a simple parallelizable
structure. In this work, we provide an analysis of this cipher and
an FPGA implementation.
KEYWORDS: FPGA, Cipher, Polymorphic, Hardware,
Analysis.

1. Introduction

The Chameleon Cipher-192 is a polymorphic cipher that
can be efficiently implemented in hardware. Contrary to
conventional ciphers where it is implicitly assumed that
the cipher machine is not reprogrammable, the proposed
polymorphic cipher utilizes the user key to change the
parameters of its operations. Three constructs that are key-
dependent are proposed. These are: Shuffle,
Select/Remove and Change parameters [SAEB09]. One
considers the user key as the system memory where both
the user key data and cipher re-programmability
instructions are stored. The proposed cipher is a word-
based cipher with variable word and key sizes. The bit-
level S-orb replaces the conventional S-box leading to a

noticeable increase of addressing space and added security.
The key stream and the number of rounds are both key-
dependent; thus eliminating the possibility of trap door
functions. The generated S-orb is key-dependent using a
specially-developed hash- function. Two large integer
numbers are used to generate the different S-orb words.
These two numbers are also key-dependent. These key-
dependencies provided the foundation from which this
polymorphic cipher acquired its name. The objective of
using selective additions is to enhance homophonic
substitutions. In these homophonic bit-level substitutions,
the mapping of characters varies depending on the
sequence of bits in the message text. Inside the encryption
process, the round keys act initially as pointers in the
homophonic substitutions without directly being part of
the computations. Finally, a poly-alphabetic substitution is
performed on the data. This involves using bit-wise XOR
between the partially ciphered data and the generated keys.
The security of this cipher is a direct consequence of the
polymorphic key-dependent design of the cipher operation
parameters. The paradigm of polymorphic encryption
provides the required security with relatively simple round
function constructs. We have preserved the pseudo-
random permutations using robust bit-wise homophonic
substitutions. In addition, we have utilized the capabilities
of contemporary processors’ superior performance to
achieve acceptable execution speeds. In the following
sections, we provide a discussion regarding the building
blocks of the cipher, the proposed nonlinearity-associated
filters, the multiplexer-based shuffler and the hash
function. Moreover, we present an analysis of the
algorithm, the results of the FPGA implementation and
our conclusions.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

241

2. Building Blocks

The formal description of the algorithm, as shown in
[SAEB09], is summarized as follows:

Algorithm Chameleon-Cipher
[Given a plain text message P, key K, the aim of the algorithm is
to encrypt the plain text into a cipher text C and decrypt it again.
To achieve this the algorithm utilizes a specially developed hash
function to generate the key stream, and a dynamic transposition
to permute the plain text, and finally modulo two addition to
scramble a varying-size data unit]

Encrypt:

Input: Plain text P, key K Output: Cipher C, word-size

Algorithm body:

 Initialize the S-orb

 Input: n is a positive integer ε Ζ+ equal to number of
words of the S-orb, pi, qi are pairs of large positive integer
numbers ε Z+ required to update the iterative application of the
hash function.

 Output: A 192-bit n-word table utilized as a pseudo
random number generator PRG called the S-orb.

Begin {Initialize S-orb body }

i: = 0;

h0 := p0. h (K) + q0;

{Hash the user key using MDP-192}

While i <= n

 hi+1 := pi+1. hi (k) + qi+1;

 Save in S-orb file;

End while;

End Initialize.

 Begin {Encrypt}

{P[m] = m blocks in P file}

Divide the Plaintext file P into m-1 192-bit blocks; Append last
block if necessary;

Read max-number of rounds from user key; {Input max-number
of rounds from user key from assigned secret location in user
key}

If max-number of rounds < 4 then max-number of rounds: = 4;

For round = 1 to max-number of rounds

While (P[m] ≠ EOF) {EOF: End Of File}

 j := 0;

 While j ≠ n

Read kw [j] of S file;

Using the round key kw[j], read value of integer given by bit
location 23-to-29; {This address represents the address of the
center element of the block}

For the next block address, slide the 7-bit window two bits to the
right and find new block address;

Divide the plain text 192-bit block into six 32-bit words, or
twelve 16-bit words, or twenty four 8-bit words depending on
user word-size;

From the LSB and moving to the right of the word-to- be
encrypted: {Input: P[m], kw[j](round key), Output: Ci1}
If ki =1 then move depending on location weights 0,1,2,...7 to
N, NE, …, NW respectively then xor with corresponding bit of
round-key kw[j];
Else do nothing;
ROTL (r); {r is determined from key 5-bit field (16-20) value,
output Ci2}
{Input: Ci2, kw [j](round key), Output: Ci3}
If ki =0 then move depending on location weights 0,1,2,...7 to
N, NE, …, NW respectively then xor with corresponding bit of
round-key kw[j];
Else do nothing;
{Input: Ci3, kw[j]i (round key), Output: Ci}
Ci = Ci3 xor kw[j];
Save Ci in output file
End while;
Next round;
End Algorithm.

This algorithm is best described by the following
conceptual block diagram. A specially-designed hash
function is used iteratively to generate the round keys and
the selection vector. This hash function is based on the user
key and the two constants that are obtained from the first
round key. The second part is the encryptor, which is based
on two nonlinearity-associated filters, a shuffler and a
masking xor-based operation.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

242

Fig. 1 The conceptual block diagram of the Chameleon Cipher

2.1 Nonlinearity-associated Filters

One of the basic building blocks of this cipher is the set of
digital filters associated with nonlinearity. Similar filters
are commonly used in digital signal processing
applications [LING07]. These filters are designed to refine
the enciphering sequence by interrupting the data
scrambling at random, however, recoverable intervals. The
filters’ symbols are shown in Figures 2 and 3 where P, K,
and S are the plaintext, the key and the select input
respectively. As long as the K and S inputs are highly
random, then the correlation between the P bit stream and
C bit stream will be negligible.

Fig. 1 The nonlinear filter seladd_1 symbol

Fig. 2 The nonlinear filter seladd_0 symbol

The Chameleon Cipher-192, as explained in detail in
[SAEB09], utilizes the user key for two major functions;
to generate the sub-keys as in conventional ciphers and
more importantly to vary the cipher encrypting parameters
to achieve polymorphism. In the simplified hardware
version of this cipher, we use the key as a source of data
for generating the sub-keys. Simultaneously, the key
serves as data flow and rotation controller to attain the
required security through polymorphism. The
simplification of the cipher is essential for low gate-count
FPGA device implementation. The primary thought
behind this hardware implementation is to provide two
data paths; one path where bit-wise xor operation takes
place and the second path where no operation takes place
depending on the key value. This is called selective
addition. Certainly, all operations are performed at the bit
level; otherwise, there will be information leakage. To
clarify this idea, the general conceptual diagram is shown
in Figure 4. The select input S can be taken from another
designated sub-key bit. If the select input, taken from the
round key, is one, then a bit-wise xor operation is
performed. If the selection bit is zero, no operation will
take place. In this case, the cipher bit will be the same as
the plaintext bit. This combined operation, as mentioned
before, is called selective addition.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

243

Fig. 3 The nonlinear filter basic operation; Selective addition conceptual

diagram

This basic operation is summarized in Table 1. To
eliminate any bias to the one value, the same circuit
concept is utilized again, after performing a rotation
operation. Alternatively, we use the complement of the S
input.

Table 1: The basic circuit operation of the selective addition
Value of S

(select input)
Operation

0 Ci ← Pi
1 Ci ←Ki xor Pi

To clarify the operation of this circuit, we provide some
details as shown in the following few lines. Redirecting
the data flow, one uses a multiplexer, implemented at the
gate level, as shown in Figure 5. The select input S0 can be
taken from another designated sub-key bit; P0, K0, and C0
are the input plain text, the sub-key and the enciphered bit
respectively.

F
ig. 4 The seladd_1 digital logic circuit

Table 2 is the truth table for such a one-based selective
addition circuit.

Table 2: The truth table for seladd_1 filters
P K S C
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

A basic requirement for any cipher to be viable is that it
will show no bias to the number of ones or zeroes. This is
usually referred to as the ciphertext being bit-balanced.
Therefore, one has to perform the same operation, using
zero-based selective addition rather one-based selection, to
obtain the required bit-balance. The circuit shown in
Figure 6 performs this function. The select input S0 can be
taken from another designated sub-key bit.

Fig.5 The seladd_0 digital logic circuit

Table 3 is the truth table for such a zero-based selective
addition circuit.

Table 3: The truth table for seladd_0 filters

P K S C
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

In both of these two circuits, one observes that the output
cipher is bit-balanced, as long as the key is bit-balanced.
The ASCII table used for plaintext is also bit-balanced.
However, the frequency of various characters is different
giving rise to roughly 30% bias to the number of zeroes in
the resulting text messages. More bias in the number of
zeroes or ones is noticed in some image files where a large
area of the image may be of the same color. Increasing the
cipher number of rounds will usually take care of this
condition. On the other hand, the selection bits are
normally bit-balanced. They are obtained from a sub-

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

244

key data itself where all sub-keys were previously
generated using a hash function that, by design,
provides a bit-balanced output. Moreover, the final xor
operation of Chameleon Cipher-192 provides the required
masking operation. It is worth mentioning that both of
these two circuits can simply be implemented as lookup
tables (LUT). This is illustrated in Figure 7, shown below.
The implementation using the logic circuits of Figures 5
and 6 provide security through computation with small
silicon area consumption and relatively longer execution
times.

 Fig. 7 Lookup LUT realization of the seladd_0

On the other hand, using a LUT such as the one shown in
Figure 7 provides faster execution times and on the
expense of larger consumed implementation area. One can
visualize the two alternatives as security by computation
versus security by randomization respectively. The
randomization can be obtained by changing the LUT
dynamically while initializing the system as long as the
output is bit-balanced. However, this idea requires further
investigation in future work.

2.2 The Shuffler

To provide better shuffling of bits, one uses a rotation
operation between the two previously discussed operations.
The rotation operation does not change the bit-balance
condition of the register contents. The rotate left is
performed a certain number of times that are key-
dependent. This is achieved by using a set of multiplexers
as shown in Figure 8. In this Figure the data flow is from
the bottom register to the right hand register through the
MUXs shown. The rotation operation is an essential
cryptographic low level operation. It provides data
shuffling without changing the state of bit-balance since
the number of 1’s and the number of 0’s do not change.
Unfortunately, there is no hardware-support for such an

operation in most processors. The only alternative left to
the programmer is to use shift operations. However, this
type of implementation consumes a number of cycles
equal to the number of register bits even for one rotation.
Accordingly, this operation is quite slow and requires the
largest amount of power consumption. Fortunately, one
can implement a shuffler simply by using a set of MUX’s.
The delay in this case will be few cycles depending on the
type of MUX used. However, the MUX select codes, two
bits in the case shown in Figure 8, have to be mutually
exclusive. To generate such a code, one may have to resort
to some sort of shift register that, in turn, will slow down
the whole operation. Therefore, a design decision was
undertaken to resort to shuffling by using the same select
code on all MUX’s and changing the inputs to the various
MUX’s as shown in Figure 8. The estimated delay is
about three cycles assuming one clock cycle for each logic
gate in the data path. Still, the disadvantage of this
approach is to limit the shuffling within the module bits.
In order to correctly shuffle, say, 32 bits we need a 32-to-1
MUX’s. In other words, repeating the 4-bit module eight
times will not provide the same security, at least in theory,
when compared to building a 32-bit module. The number
of logic gates required for the 4-bit module is 28 logic
gates. To use this module for 32-bit shuffling we need 8
modules with a total of 224 logic gates. On the other hand,
if we use 32-to-1 MUXs, then each MUX requires 38
logic gates. For a 32-bit shuffling, we need 32 MUX’s of
this type. The total number of gates required in this case is
1216 logic gates. This is more than 5 times the 4-bit
module. For a 64-bit block, the number of logic gates
increases to 4544 logic gates. Then the proportion, as
compared to the 4-bit module, is about 10 times more
logic gates. One can call this the price of security! In this
implementation, we will use a maximum block size of 32
bits. Consulting the literature, one can find trials to build
some other cryptographic shufflers. However, these are
based on extensive use of sequential logic with
appreciable increase in data path delays. The MUX-based
shuffler, on the other hand does not increase the estimated
delay. Only the implementation area is noticeably
increased. With continuing increase in FPGA device gate
count, it appears that the consumed implementation area
will be a less important factor when compared to the data
throughput. Another point to be taken into consideration
when designing cryptographic shufflers is the fact that
MUX’s are an essential design primitive in all FPGA
families. Therefore, in this case, the designer would expect
optimum implementation.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

245

Fig. 8 A Shuffler using MUX’s

2.3 The Hash Function MDP-192

The sub-keys and the select inputs, used in the selective
addition modules, are obtained from a PRG that is
constructed by using a specially designed hash function.
This hash is called MDP-192 and is explained next. The
design of new hashes should follow, we believe, an
evolutionary rather than a revolutionary paradigm.
Consequently, changes to the original structure are kept to
a minimum to utilize the confidence previously gained
with SHA-1 and its predecessors MD4 and MD5.
However, the main improvements included in MDP-192
[SAEB09a], as shown in Figure 9, are:

The increased size of the hash; that is 192 bits compared
to 128 and 160 bits for the other two schemes. That is the
security bits have been increased from 64 and 80 to 96 bits.
The message block size is increased to 1024 bits providing
faster execution times. The message words in the different
rounds are not only permuted but computed by xor and
addition with the previous message words. This renders it
harder for local changes to be confined to a few bits. In
other words, individual message bits influence the
computations at a large number of places. This,
successively, provides faster avalanche effect. Moreover,
adding two nonlinear functions and one of the variables to
compute another variable, not only eliminates the
possibility of certain attacks but also provides faster data
diffusion. The fifth improvement is based on processing
the message blocks employing six variables rather than
four or five variables. This contributes, we believe, to
better security and faster avalanche effect. The deliberate
introduction of asymmetry in the procedure structure may
help impede potential future attacks. The variables are not
only permuted but also computed iteratively using data-
dependent xor operation. On the other hand, the xor and
addition operations do not cause appreciable execution
delays for today’s processors. Nevertheless, the number of

rotation operations, in each branch, has been optimized to
provide fast avalanche with minimum overall execution
delays. The MDP-192 hash function was implemented
using Cyclone II device and Altera integrated design
environment. The hash is used to generate the sub-keys as
discussed in [SAEB09] and the random selective input for
the nonlinear filters.

Fig. 9 Operation of MDP-192 hash function [SAEB09a]

3. Discussion of the Algorithm

Given the cipher text c and a part of the message m ∈ M,
the attacker objectives [ZENR04] are:

1. To find the set of all probable message M- ∈ M
where m- ∈ M if ∃ k ∈ K ⏐ E(k, m) = c. The two
functions E: K x M→C and D: K x C→M are
satisfying D (k, E (k, m)) = m, ∀ m ∈ M and k ∈
K.

2. To find the set K- ⊆ K if k- ∈ K ⇔ ∃ m- ∈ M : E
(k-, m-) = c.

To design a semantically-secured cipher, two major
building blocks are required; a pseudo random number
generator PRG and an encryption function. The PRG is a
function G :{ 0, 1} l→ {0, 1}* that expands a short seed
into a bit sequence of arbitrary length. This function has
inner state Si ∈ {0,1}l and an update function f: {0,1}l
→ {0,1}l and an output function g: {0,1}n → {0,1},
n ≤ l . The update function f modifies the inner state
between two outputs. The output function g computes the
next output bit from the current inner state or part of it.
This canonic structure was implemented in Chameleon by
using a specially–designed hash function acting as the
function G. This PRG is secure if and only if a pseudo
One-Time-Pad using G is secure. Consequently, for a
bounded number of the inner states of G, the
encryption process had to be refined by adding two other
sources of nonlinearities:

1. Nonlinearity-associated filters,
2. Irregular data encryption intervals.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

246

The essential design elements of the Chameleon Cipher,
as explained in detail in [SAEB09], are:

• Algorithm polymorphism based on the notion of
a key-driven encryption rather than only using
the user key to generate the sub-keys in
conventional ciphers,

• The structure of the cipher is based on the
simultaneous use of block and stream cipher
approaches to conform with the concept of
Universal Secure Encryption USE,

• The utilization of a simple nonlinearity-
associated filters to refine the enciphered
sequence by interrupting the data scrambling at
random, however, recoverable intervals,

• A separate specially-designed hash function is
used to generate the sub-keys. In case of a valid
attack on the sub-keys this hash can be changed
easily. In addition, if the user requires more
security a hash cascade can be used,

• In the software version, a rotation operation is
used to shuffle the data. However, in the
hardware version this operation was replaced by
a MUX-based shuffler that is purely
combinational logic to appreciably reduce the
number of cycles required to complete the
shuffling.

In conventional ciphers, the transposition operation is
performed on the character level. This results in
information leakage and invites the attacker to reposition
the cipher text characters to find some intelligible
plaintext. However, if the transposition is performed on
the bit-level, a very large number of wrong messages can
be formed that hide the only correct one. In other words,
an agglomerated large number of bits will replace a
relatively small bundle of characters. Moreover, if
conventional transposition is used on the same set of
identical characters, no permutation will change this data
block. This is quite clear in multimedia files. In
Chameleon Polymorphic Cipher, these permutations are
performed on the bit-level preserving the bit balance
condition in the output cipher. Thus, the cipher is
emulating communication white noise. This is a clear
requirement in semantic security or what is known as USE
discussed in [BLGO85], [GOMI82] [ZENR07] and
[ZENR04]. The efficient substitutions performed by
Chameleon provide a huge number of different
transpositions with almost equal probability. This requires
a large PRG with a relatively large number of internal
states. In conventional ciphers, on the other hand, a
relatively diminutive number of all possible keyed
permutation tables can be produced. A major constraint
that is facing the cryptographer is to generate a cipher with
equal probability of generating 1’s and 0’s. This was

achieved by proper design of the utilized mentioned filters.
However, as we have pointed out before, some data blocks
may not be bit-balanced. In this case, one can resort to
artificially bit-balance these blocks by appending
balancing values to plaintext. The other option is to rely
on the indirect randomization obtained by multiple rounds
of encryption. The first option may be more time-
consuming when compared to an increase in the number
of rounds. However, we have to concede that this point
requires more investigation on different types of
multimedia files. We have used the second option by
applying an increased key-dependent number of rounds.
Testing has showed conformity with the cipher bit-
balanced requirement as shown in [SAEB09]. The bit-
level selective substitution high computational cost is
partially offset by today’s multi-execution unit superscalar
processors. Opposed to the complex proofs of
computational security of conventional ciphers,
Chameleon Polymorphic Cipher is based on simple
combinatorics as shown in [SAEB09]. It was shown that
the attacker has a diminutive probability of figuring out
the correct algorithm used and at the same time a
negligible probability of key collision. In this respect, if
the hash function was successfully attacked, one can
change it or even use a hash cascade to generate the sub-
keys.

4. FPGA Implementation

The simplicity of the hardware building blocks of the
Encryptor lends itself to straight forward implementations.
Either using TTL conventional technology or even
advanced FGPA technology can be used to implement the
design. The circuit diagram for a demonstrative four-bit
encryption module is shown in Figure 10. In this Figure,
the four stages are clearly shown. The first stage is the one
selective addition. The second and third stages are the
shuffler using four MUX’s and the zero selective addition
stage. The last operation is the xor operation. To obtain
minimum pin-to-pin delay and accordingly high
throughput, we have not used any sequential logic in the
construction of the encryption module. The sequential
logic, omitted here for simplicity, is used to only store the
data block before and after encryption. The expected delay
of the circuit is 10 cycles per byte. The circuit, shown in
Figure 10, was implemented using Verilog, [BRVR08],
[WAKE01], [ASICWRLD] and Quartus II 6.1 Web
Edition [ALTRA], Altera design environment.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

247

U1A

7408J

U2A

7408J

U4A

74136N

U3A

7406N

U5A

7402N

U6A

7404N

U9A

7408J

U10A

7408J

U11A

74136N

U12A

7406N

U13A

7402N

U14A

7404N

U15A

7408J

U16A

7408J

U17A

74136N

U18A

7406N

U19A

7402N

U20A

7404N

U21A

7408J

U22A

7408J

U23A

74136N

U24A

7406N

U25A

7402N

U26A

7404N

U7

74153N

2Y 92C010
2C111
2C212
2C313

A14
B2

~1G1

1Y 71C06
1C15
1C24
1C33

~2G15

U8

74153N

2Y 92C010
2C111
2C212
2C313

A14
B2

~1G1

1Y 71C06
1C15
1C24
1C33

~2G15

U27A

7408J

U28A

7408J

U29A

7406N

U30A

7402N

U31A

7404N

U32A

74136N

U33A

7408J

U34A

7408J

U35A

7406N

U36A

7402N

U37A

7404N

U38A

74136N

U39A

7408J

U40A

7408J

U41A

7406N

U42A

7402N

U43A

7404N

U44A

74136N

U45A

7408J

U46A

7408J

U47A

7406N

U48A

7402N

U49A

7404N

U50A

74136N

U51A

74136N

U52A

74136N

U53A

74136N

U54A

74136N

Fig. 10 The details of the circuit diagram for a 4-bit module using TTL
family of logic gates

The implementation was performed on a EP2C5T144C6,
Cyclone II family device. All results shown are for a
simplified four-bit version of the Encryptor to convey the
basic concepts of the design. The worst case pin-to-pin
delay was 9.643 ns. The minimum delay was 8.550 ns and
the average delay was calculated to be approximately
9.1173 ns. The system frequency is 100 MHz. A series of
screen-captures of the different design software outputs
are shown in Figures 11 to 17. Figures 11, 12, 13, and 14
provide indication of successful compilation, the nonlinear
filter module RTL, the shuffler module RTL and the
encryption module RTL respectively. Figure 15 displays
the Encryptor simulation results where output pins 15, 16,
17, and 20 are the encrypted data. Figure16 and 17
demonstrate the timing report and the floor plan
respectively. Figure 18 displays the schematic block
diagram for the implementation of hash function.

Fig. 11 Compiler tool screen

Fig. 12 RTL screen for the nonlinear filter module

Fig. 13 RTL screen for part of the shuffler module

Fig. 14 RTL screen for the Encryption module

Fig. 15: Simulator screen showing the output encrypted data

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

248

Fig.16 Timing report

Fig.17 Floor plan

Fig.18 Schematic diagram of the MDP-192
hash function

5. Summary & Conclusion

We have given a brief discussion of the following
hardware building blocks for the Chameleon Cipher (CC-
192):

1. The nonlinearity-associated filters are based on
irregular, however recoverable, interruption of
the encryption process. One can view this
approach as hiding encrypted bits in some

plaintext bits using two keys; one key for
encryption and one for hiding.

2. The FPGA-hardware implementation of these
filters was discussed based on a computational
model and a lookup table.

3. A pure combinational logic multiplexer-based
shuffler, with minimum expected delay, is
proposed and implemented.

4. The encryptor part of Chameleon was
implemented using simple Verilog modules that
were integrated using the schematic editor.

5. The PRG utilized is a specially-designed hash
function that was implemented using simple
Verilog code and a schematic editor.

6. The design of the cipher, the filters and the hash
function are, in general, based on the notion that
the cryptographic low level operations, which are
bit-balanced are: xor, complement (invert) and
rotate. All encryption processes are based on
these three operations or their equivalents.

In this work, we have provided a hardware-
implementation proof of concept. The estimated 10 cycles
per byte delay was verified by the timing reports
providing, at 100 MHz operating frequency, an average
and maximum pin-to-pin delays of 9.1173 and 9.643 ns
respectively. The total interconnect delay is 5.713 and the
total cell delay is 3.930. However, at this stage of
development, no area or timing optimization were
performed. A comparison with other implementations is
not applicable since this is the first time the cipher is
FPGA-implemented. This and other related issues will be
dealt with in future development of the device.

References
[ALTRA]

www.altera.com/support/examples/verilog/veri
log.html

[ASICWRLD] www.asic-orld.com/verilog/verilinks.html
[BLGO84] M. Blum, S. Goldwasser, “An Efficient

Probabilistic Public key Encryption Scheme
which Hides All Partial Information,”
Proceedings of Advances in Cryptology-
CRYPTO’84, pp.289-299, Springer Verlag,
1985.

[BRVR08] S. Brown, Z. Vranesic, Fundamental of
Digital Logic with Verilog Design, McGraw-
Hill International Edition, 2008.

[GOMI82] S. Goldwasser, S. Micali, “Probabilistic
Encryption & How to Play Mental Poker
Keeping Secret all Partial Information,”
Annual ACM Symposium on Theory of
Computing, pp. 365-377, San Fran, US., 1982.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

249

[LING07] Wing-Kuen Ling, Nonlinear Digital Filters:
Analysis and Applications, Academic Press,
2007.

[SAEB09] Magdy Saeb, “The Chameleon Cipher-192
(CC192): A Polymorphic Cipher,”
SECRYPT2009, International Conference on
Security & Cryptography, Milan, Italy, 7-10
July, 2009.

[SAEB09a] Magdy Saeb, “Design &
Implementation of the Message Digest
Procedures MDP-192 and MDP-384,”
ICCCIS2009, International Conference on
Cryptography, Coding and Information
Security, Paris, June24-26, 2009.

[WAKE01] J. F. Wakerly, Digital Design Principles
& Practice, third edition, Prentice Hall, 2001.

[ZENR04] Erik Zenner, On Cryptographic Properties of
LFSR-based Pseudorandom Generators, Ph.D.
Dissertation, University of Mannheim,
Germany, 2004.

 [ZENR07] Erik Zenner, “Why IV Setup for Stream
Ciphers is Difficult,” Dagstuhl Seminar
Proceedings 07021, Symmetric Cryptography,
March14, 2007.

http://drops.dagstuhl.de/opus/volltexte/2007/1012

Appendix:
SAMPLE VERILOG CODE

module seladd_1(p1,k1,s1,c1);

 input p1,k1,s1;

 output c1;

 xor(a1,p1,k1);

 and(g1,~s1,a1);

 and(h1,p1,s1);

 or(c1,g1,h1);

endmodule

module mux4to1 (w0,w1,w2,w3,S,f);

 input w0,w1,w2,w3;

 input [1:0] S;

 output f;

assign f = S[1]? (S[0]? w3:w2):(S[0] ? w1:w0);

endmodule

module seladd_0(p0,k0,s0,c0);

 input p0,k0,s0;

 output c0;

 xor(a0,p0,k0);

 and(g0,s0,a0);

 and(h0,p0,~s0);

 or(c0,g0,h0);

endmodule

module phiJ (x, y, z, f);

 input [31:0] x , y, z;

 output [31:0] f;

 assign f = (x & y)|(~x & z);

endmodule

module fulladd1(carryin , X, Y, S, carryout);

 input carryin;

 input [31:0]X,Y;

 output[31:0]S;

 output carryout; wire [31:1] C;

 fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);

 fulladd stage1 (carryin, X[1], Y[1], S[1], C[2]);

 :

:

endmodule

module fulladd (Cin, x, y, s, Cout);

 input Cin, x, y;

 output s, Cout;

 assign s = x^ y^ Cin;

assign Cout = (x &y)|(x &Cin)|(y & Cin);

endmodule

Magdy Saeb received the BSEE.
School of Engineering, Cairo
University, in 1974; the MSEE. and
Ph.D. in Electrical & Computer
Engineering, University of California,
Irvine, in 1981 and 1985, respectively.
He was with Kaiser Aerospace and
Electronics, Irvine California, and The
Atomic Energy Establishment, Anshas,
Egypt. Currently, he is a professor in
the Department of Computer

Engineering, Arab Academy for Science, Technology &
Maritime Transport, Alexandria, Egypt, (on leave) to Malaysian
Institute of Microelectronic Systems (MIMOS), Kuala Lumpur,
Malaysia. His current research interests include Cryptography,
FPGA Implementations of Cryptography and Steganography
Data Security Techniques, Encryption Processors, Computer
Network Reliability, Mobile Agent Security.
www.magdysaeb.net.

