
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

256

Manuscript received November 5, 2009
Manuscript revised November 20, 2009

Potential Effect of Creeping User Requirements on Project
Management: A Simulation Approach

P. K. Suri1, Rachna Soni2, Ashish Jolly3

1Department of Computer Science & Applications, Kurukshetra University, Kurukshetra (Haryana), India.

2Department of Computer Science, DAV Girls College, Yamuna Nagar (Haryana), India.
3Department of Computer Science & Applications, Shri Atmanand Jain Institute of Management & Technology, Ambala

City (Haryana), India.

Abstract
Requirements management has been discussed for at least fifteen
years. As a discipline and as a practice, it has become more and
more complex. In software projects new requirements are
continuously issued and the objective of the requirement
management is to elicit, manage and prioritize requirements. In
the present study, a specific requirement management process is
simulated. The stochastic parameters of the proposed system
with specific system boundaries under a given environment have
been estimated using event to event simulation. The present
study will yield realistic results which are very near to the
functioning of the live system. Based on results from simulation,
conditions that result in an overload situation are identified.
Simulation is also used to find process change proposals.
Keywords:
Requirement volatility, Requirement management, Project
management, Risk factors

1. Introduction

Requirements are those externally observable
characteristics of a system that a user, buyer, customer, or
other stakeholder desires to have present in the system.
Requirements management is the set of activities
encompassing the collection, control, analysis, filtering,
and documentation of a system’s requirements.
Requirements management consists of three activities:
Requirements Elicitation: The art of understanding the
needs of Stakeholder and collecting them in a repository
for future analysis.
The needs can be expressed quite abstractly and in terms
of a problem, e.g., “I want to reduce my billing error rates
by at least 35%.” The needs can be expressed quite
specifically and in terms of a solution, e.g., “I want there
to be a large red button on the operator’s console.” In all
cases, these needs are called features.

Requirements Triage: The art of deciding which features
are the appropriate features to include in the product.
Rarely is it possible to satisfy every requested feature
gathered from every stakeholder

during the elicitation activity. Disparate priorities, limited
resources, time-to-market demands, and risk intolerance
are but a few of the reasons for this. Triage takes into
considerations all the painful realities of the marketplace
and makes the decision of which features will we build
now, which will be built in the next release, and which
will be deferred until even later.

Requirements Specification: The art of detailing the
exact external behavior of a system that will address the
features selected during the triage process. The level of
detail of these requirements depends greatly on the
situation. For example, if specifying a handheld remote
mouse, it might be sufficient to state “The system shall
contain three programmable buttons, corresponding to the
three buttons on a standard three-button mouse.” However,
if the device is to be mounted in a holster and controlled
by robotic fingers instead of being hand-held, then the
statement of requirements for the buttons would need to
be considerably more detailed. Seventy-one percent of all
software development projects result in complete failure
(i.e., premature cancellation or shelf ware upon
completion).
Poor requirements management is generally considered
one of the major causes for product failure [2, 3]. After all,
if we do a poor job of understanding our customers’ needs,
if we do a poor job of deciding the right features to build,
and if we do a poor job of writing down what we think we
want out of a system, how can we possibly expect a
successful project? All the software development
techniques and tools and whatever level of CMM maturity
you have achieved will be of no use to you if you are not
building the “right” product.
This paper is organized into three main sections, each
addressing the techniques, tools, and common wisdom of
each of the three aspects of requirements management.

The High Cost of Requirement Errors
There is strong evidence that effective requirements
management leads to overall project cost savings. The
three primary reasons for this are:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

257

1. Requirement errors typically cost well over ten times
more to repair than other errors.
2. Requirement errors typically comprise over 40% of all
errors in a software project.
3. Small reductions in the number of requirement errors
pay big dividends in avoiding rework costs and schedule
delays.
Studies performed at GTE, TRW, and IBM measured and
assigned costs to errors occurring at various phases of the
project life-cycle2. Although these studies were run
independently, they all reached roughly the same
conclusion: If a unit cost of one is assigned to the effort
required to detect and repair an error during the coding
stage, then the cost to detect and repair an error during the
requirements stage is between five to ten times less.
Furthermore, the cost to detect and repair an error during
the maintenance stage is twenty times more.

Requirements Management
Requirements engineering plays an important role in the
software development. As said by [8], a requirement is the
condition or capacity that a system that is being developed
must satisfy. Therefore, the compliance with requirements
determines the success or the failure of a project. The
requirements are identified, registered, organized and
verified during the project development and that is what it
called requirements management, a process that
establishes and keeps the agreements firmed between the
project team, users and customers related to the changes
of requirements in a specific system. The literature states
that the problems related with requirements engineering
are one of the main reasons for software projects failures.
This means that the final product does not have all the
requirements gathering from users and customers [12].
Research identified that 70% of the requirements were
difficult to identify and 54% were not clear and well
organized. Also, it can be identified that [8] requirements
are not easy to be described in words. There are different
types of requirements in different levels of details. It can
be impossible to manage the requirements if they cannot
be controlled. Most requirements change during the
project time.
Therefore, it is not difficult to find errors in the
requirement specifications, and they can have a large
impact in the project costs. An estimative shows that 40%
of the requirements generate rework during the project life
cycle [12]. It is evident that the earlier a problem is
detected and solved (especially during the requirements
phase), many other problems are minimized in the
following project phases. But in contrast, what it is
observed is a short time for the requirements phase in a
project, not considering the project type or environment
where this phase occurs.

Global Software Development (GSD)
As said by [9], software process is defined by a set of
activities, methods, practices and technologies that people
and companies use to develop and to keep related
software and products. The interest in the software
process is based on the following premises: The software
quality is strongly dependent on the quality of the process
used in its preparation; The software process can be 　
defined, managed, measured and improved. However, it is
not a simple task to develop software using a well-defined
development process. Such process has become
increasingly more complex, whereas the software
demands of companies increase according to the strategic
importance for its operations. As part of the globalization
efforts currently pervading society, software project teams
have also become geographically distributed on a
worldwide scale. This characterizes Global Software
Development (GSD). Tools and technological
environments have been developed over the last few years
to help in the control and coordination of the development
teams working in distributed environments. Many of these
tools are focused in supporting procedures of formal
communication such as automated document elaboration,
processes and other non-interactive communication
channels. Moreover, [3], [4], [5] and [10] point out that
GSD is one of the biggest business-oriented challenges
that the current environment presents under the software
development process point of view. Many companies are
distributing its software development process in countries
such as India, Russia and Brazil. Frequently this process
occurs in only one country, particularly in regions with tax
incentives or critical mass in some skill or resource areas.
Organizations search for competitive advantages in terms
of cost, quality and flexibility in the area of software
development [10], looking for productivity increases as
well as risk dilution [7]. Many times the search for these
competitive advantages forces organizations to search for
external solutions in other countries (offshore
outsourcing). This epitomizes the traditional problems and
the existing challenges in GSD.

Key Benefits of better Requirements Management
Even in light of the above information, some will still
argue, why waste time with this unnecessary step; why not
proceed directly to implementation? Experience has
shown that the benefits of effective requirements
management include:

Better control of complex projects Lack of
knowledge of the intended behavior of the system, as well
as requirements creep, are common factors in out-of-
control projects. Requirements management provides the
development team with a clear understanding of what is to
be delivered, when and why. Resources can be allocated
based on customer-driven priorities and relative

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

258

implementation effort. And the impact of changes are
better understood and managed.

Improved software quality and customer satisfaction
The fundamental measure of software quality is “does this
software do what it is supposed to do?” Higher quality can
result only when developers and test personnel have a
concise understanding of what must be built and tested.

Reduced project costs and delays Research
demonstrates that errors in requirements are the most
pervasive and most expensive errors to fix. Decreasing
these errors early in the development cycle lowers the
total number of errors and cuts project costs and time-to-
market.

Improved team communications
Requirements management facilitates early involvement
of customers to ensure the application meets their needs.
A central repository builds a common understanding
between the user community, management, analysts,
developers and test personnel of project needs and
commitments.

Easing compliance with standards and regulations
Most major standards bodies and regulatory agencies
involved with software compliance and process
improvement have a keen understanding of the
requirements management problem. For example, the
Software Engineering Institute’s Capability Maturity
Model (CMM) addresses requirements management as
one of the first steps in improving software quality. DOD,
FDA, and ISO 9000 standards and regulations also require
companies to demonstrate maturity and control of this
process. It is clear that doing a better job of the above will
save considerable time and money, not to mention
reducing the career challenges that result from
unsuccessful or partially successful software
implementations.

2. Simulation Model

The simulation accepts a set of input parameters which
specify the simulated situation. These input parameters
include the number of requirements entering the process
each day, the number of available servers (employees) for
each phase and average time spent on requirement on each
phase.

Model with Poisson Input Constant Service Time
The requirements are modeled to have an exponentially
distributed intensity of arrival, i.e. they arrive according to
Poisson process.
We assume

(a) S servers (employees)
(b) Each server provides service at the same constant
average rate µ.
(c) The average arrival rate is constant; for all n
(d) μλ S<
where
Lambda = arrival rate
L = average number of requirements in the system
Lq = average number of requirements in the queue
Lw = average number of requirements in
the nonempty queues
W = average time a requirement spends in the system
Wq = average time a requirement spends
in the queue
Ww = average time a requirement
spends in the queue if it must wait

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=>
μ
λ

1k

knP = probability of more than k

requirements in the system.

() ()e
t

tTp μλμ −=> − 1
 = probability the time in

the system is greater than t

With these assumptions (a),(b),(c) and (d),we have

1,......,1,0 −= sn

pp
n

snn ss 0!
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

μ
λ

sn ≥

() =≥ snp probability an arrival has to wait for service

 = probability of at least s requirements in the
system

()
()ss

ps

μλ
μλ
−

=
1!

0

p
n

n n
p

0!
1 ⎟

⎠

⎞
⎜
⎝

⎛
=

μ
λ

∑
∞

=

=
sn

np

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

259

()
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥

⎦

⎤
=

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

=

1

0

0

1!
1

!
1

1

s

n

sn

ssn

p

μ
λ

μ
λ

μλ

()s

p
L

ss

s

q μλ
μ
λ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
1 2

0

1

!.

μ
λ

+= LqL

λ
LW =

λ
Lw q

q =

()
()

()()
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−−

⎥⎦
⎤

⎢⎣
⎡ −

+=>

⎟
⎠
⎞⎜

⎝
⎛ −−−

−

μλμλ

μλ μ
λμ

μ

11!

1/
1

1

0

sss
tTP

eP
e

sts

t

3. Results and Discussion
Results of the simulation model stated above, (where
arrival rate is generated through Poisson distribution) are
as given below:

Case 1: mu=6, S=3 and T=10 days

LAMBDA 5.00000 10.00000 15.00000
L .85553 2.04137 6.01124
LQ .02220 .37470 3.51124
W .17111 .20414 .40075
WQ .00444 .03747 .23408
PT .14141 .19459 .46198
PN .36011 .28777 .11236
PZERO .43213 .17266 .04494
PS .05771 .29976 .70225

Table 1

For higher values of Lambda, queueing system not valid
because Lambda < s*mu.

Arrival rate chart

0
1
2
3
4
5
6
7

5 10 15

arrival rate

No
. o

f r
eq

ui
re

m
en

ts

L
LQ

Fig 1: Arrival rate chart

Waiting time of requirements in the
system

0

0.1

0.2
0.3

0.4

0.5

5 10 15

arrival rate

A
ve

ra
ge

 T
im

e
W
WQ

Fig 2: Waiting time of requirements in the system

Probabilistic Modeling

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

5 10 15

requirement arrival rate

Pr
ob

ab
ili

ty PT
PN
PZERO
PS

Fig 3: Probability Graph

From the table it is observed that average no of
requirements waiting in the queue increases with increase
in the arrival rate of the requirements, so the average time
a requirement spends in the system(w) and queue (both)
increasing and the probability that no requirement is in the
queue is decreasing. The probability of at least s
requirements in the system is increasing. Case 2 of the
study deals with the problem of high waiting time in the
queue.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

260

Case 2: Lambda=15, T=10 days and mu=6

LAMB
DA

15.00 15.00 15.0
0

15.00 15.00

MU 6.00 6.00 6.00 6.000
00

6.00

N 1.00 1.00 1.00 1.000
00

1.00

S 3.00 5.00 7.00 9.000
00

11.00

T .33330 .3333
0

.333
30

.3333
0

.33330

L 6.01 2.630
37

2.50 2.500
46

2.5000
2

LQ 3.511 .1303
7

.008
58

.0004
6

.00002

W .40075 .1753
6

.167
24

.1667
0

.16667

WQ .23408 .0086
9

.000
57

.0000
3

.00000

PT .46198 .1465
4

.135
96

.1353
9

.13536

PN .11236 .2002
5

.204
95

.2052
0

.20521

PZER
O

.04494 .0801
0

.081
98

.0820
8

.08208

PS .70225 .1303
7

.015
44

.0011
9

.00006

Table 2

No of employees Vs average no of
requirements in the system

0

2

4

6

8

3 5 7 9 11

no of employees

av
er

ag
e

no
 o

f
re

qu
ire

m
en

ts

L
LQ

Fig 4: No of employees Vs average no of requirements

in the system

No of employees Vs Average waiting
time of requirements

0

0.1

0.2

0.3

0.4

0.5

3 5 7 9 11

No. of employees

A
ve

ra
ge

 w
ai

tin
g

tim
e

W
WQ

Fig 5: No of employees Vs average waiting time of the

system

Critical probabilitis

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

3 5 7 9 11

No of employees

Pr
ob

ab
ili

ty PT
PN
PZERO
PS

Fig 6: Probability Chart

The above graph reveals that by adding two employees in
the system the requirement creep can be stabilized. It will
reduce the average time a requirement spends in the
system and queue.

4. Conclusion

In the above work a simulation technique has been used to
know the potential effect of creeping user requirements on
the project. The substantial progress has been achieved in
the areas of requirement elicitation, analysis and
specification. The present simulator will be an asset in IT
industry in order to optimize the software development
process and to release the software product in an
estimated scheduled time. The future research lies in the
holistic view and system vide solutions to the entire
management process.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.11, November 2009

261

References
[1] 1] The Merlin-project web site. (2005-07-12) URL:

http://virtual.vtt.fi/merlin/
[2] Jones, C., “Patterns of Software Systems Failure and

Success”, International Thomson Press, 1996.
[3] Parviainen P., Vierimaa M., Tihinen M., Kääriäinen J.,

Takalo J. “Industrial Inventory Summary (Merlin-project
deliverable D1.1.3.)”, pp. 37, 2004.

[4] McConnell, S., Rapid Development, Microsoft Press, 1996,
p. 86.

[5] Guidelines for Requirements Management United States
Department of Energy, Software Quality Assurance
Subcommittee, pp. 31, 2000.

[6] Bosworth M., “Solution Selling”, New York, McGraw Hill,
1995.

[7] Lormans M., vanDijk H., van Deursen A., Nöcker E.,
deZeeuw A. “Managing Evolving Requirements in an
Outsourcing Context: An Industrial Experience Report” in
Principles of Software Evolution, 7th International
Workshop on (IWPSE’04), pp. 149-158, 2004

[8] Gause, D., and G. Weinberg, “Exploring Requirements”,
New York, NY, Dorset House, 1989.

[9] Kotonya G., & Sommerville I. “Requirements Engineering:
Process and Techniques”, John Wiley & Sons, pp. 282,
1998.

[10] Goguen, J., and M. Jirotka, “Requirements Engineering”,
Boston, MA, Academic Press, 1994.

[11] Parviainen P., Hulkko H., Kääriäinen J., Takalo J., Tihinen
M. “Requirements engineering, Inventory of technologies”,
VTT Publications 508, pp. 106, 2003.

[12] Leffingwell, D., and D. Widrig, “Managing Software
Requirements”, New York, Addison Wesley, 2000.

[13] Spurr K., et al., “Computer Support for Cooperative Work”,
New York, John Wiley, 1994.

[14] Bosworth, M., “Solution Selling”, New York, McGraw Hill,
1995.

[15] Rinne J., Kohti hajautettua ohjelmistokehitystä. Pro gradu –
tutkielma. Tampereen yliopisto, Tietojenkäsittelytieteiden
laitos, Tampere, pp. 54, 2001.

[16] Paasivaara M. & Lassenius C., “Collaboration Practices in
Global Interorganizational Software Develop-ment
Projects”, in Software Process Improvement and Practice, 8,
pp. 183-199, 2004.

[17] Ohrwall Rönnbäck A, “Interorganizational IT Support for
Collaborative Product Development”, Dissertation from the
International Graduate School of Management and
Industrial Engineering, IMIE. No. 59, Doctoral Dissertation,
pp. 83, 2002.

[18] Teppola S., Takalo J., Kääriäinen J. Tool chain. (Merlin-
project deliverable D1.3.3.), pp. 18, 2005.

[19] Davis, A., “Software Requirements”, Englewood Cliffs, NJ:
Prentice Hall, 1993.

[20] Hoffmann M., Kühn N., Weber M., Bittner M.
“Requirements for Requirements Management Tools”, in
12th IEEE International Requirements Engineering
Conference (RE´04) pp. 301-308, 2004.

[21] Davis, A., et al., “Identifying and Measuring Quality in
Software Requirements Specification,” IEEE International
Software Metrics Symposium, Los Alamitos, CA, IEEE
Computer Society Press, pp. 164-175, 1997.

[22] Jäälinoja J. “Requirements implementation in embedded
software development”, University of Oulu, Department of
Information Processing Science, Master’s Thesis, pp. 85,
2004.

[23] Cleland-Huang J., Zemont G., and Lukasik W. “A
Heterogeneous Solution for Improving the Return on
Investment of Requirements Traceability” in 12th IEEE
International Requirements Engineering Conference
(RE’04) pp. 230 – 239, 2004.

Dr. P.K. Suri received his Ph.D degree
from Faculty of Engineering, Kurukshetra
University, Kurukshetra, India and
master’s degree from Indian Institute of
Technology, Roorkee (formerly known as
Roorkee University), India. He is working
as Professor in the Department of
Computer Science & Applications,

Kurukshetra University, Kurukshetra - 136119 (Haryana), India
since Oct. 1993. He has earlier worked as Reader, Computer Sc.
& Applications, at Bhopal University, Bhopal from 1985-90. He
has supervised eleven Ph.D.’s in Computer Science and thirteen
students are working under his supervision. He has more than
125 publications in International / National Journals and
Conferences. He is recipient of 'THE GEORGE OOMAN
MEMORIAL PRIZE' for the year 1991-92 and a RESEARCH
AWARD –“The Certificate of Merit – 2000” for the paper
entitled ESMD – An Expert System for Medical Diagnosis from
INSTITUTION OF ENGINEERS, INDIA. His teaching and
research activities include Simulation and Modeling, SQA,
Software Reliability, Software testing & Software Engineering
processes, Temporal Databases, Ad hoc Networks, Grid
Computing and Biomechanics.

Dr Rachna Soni is Associate Professor
and Head, Deptt of Computer Science &
Applications, did her M.Phil from IIT,
Roorkee and Ph.D from Kururukshetra
University, Kurukshetra. She has more
than eighteen years teaching experience in
the institution of repute. She has published

eight papers in International/national journal /conferences. Her
area of interest includes Software Risk Management, Project
Management, Requirement Engineering, Component based
Software Engineering, Simulation etc.

Ashish Jolly received his MCA degree
from University of Madras, Chennai in the
year 1999. Currently he is pursuing Ph.D
in Computer Science from Department of
Computer Science & Applications,
Kurukshetra University, Kurukshetra,
India. He is working as a Asstt Professor
and Head in the Department of Computer
Science & Applications, Shri Atmanand

Jain Institute of Management & Technology (affiliated to
Kurukshetra University, Kurukshetra), Ambala City, Haryana,
India. He has more than nine years of teaching experience. He
has published four research papers in referred International
journals of repute. His research area includes Simulation,
Software Engineering and Software Project Management.

