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Abstract 
Recently, several authors have proposed models based on power-

laws to characterize Internet topologies. Most of these works use 

the BGP (Border Gateway Protocol) tables published by Oregon 

Route Views. The adjacency matrix containing AS (autonomous 

system) connectivity is built from a BGP table. Having access to 

BGP routing tables from several geographical sites gives a 

broader vision of ASs connectivity, since several ASs and links 

may be hidden for an AS due to routing processes policies, while 

they may be visible to other ASs. We compare BGP tables of 

different sizes and enrich the adjacency matrix with the union of 

them. This comparison is based on the AS degree connectivity, 

clustering coefficient and path length.  

Key Points 

Power-laws, BGP, Autonomous Systems. 

1. Introduction 

An autonomous system (AS) is a set of routers under a 

single technical administration, using one or various  IGPs 

(Interior Gateway Protocol, i.e., RIP, OSPF, etc.) and 

common metrics to route packets inside the AS and using 

an EGP (Exterior Gateway Protocol, i.e., BGPv4) to route 

packets to other ASs. BGP comes from Border Gateway 

Protocol and is an inter-autonomous system routing 

protocol. BGPv4 is extensively used to connect ISPs 

(Internet Service Providers) and to interconnect enterprises 

to ISPs. ISPs usually are providers (provide connectivity) 

of other ISPs that at the same time are providers of smaller 

ISPs. In the periphery of the Internet there are end ISPs that 

usually give services to enterprises that are not ISPs. ISPs 

can be classified as transit ISPs when they offer transit of 

traffic, multihomed ISPs when they are connected to more 

than one ISP and do not offer transit of traffic, and stub 

ISPs when they are connected to other ISPs only. An ISP 

can have more than one AS number assigned and give 

services to other ISPs on large geographical areas. We will 

consider for simplicity that ISPs are single autonomous 

systems, and we will study topologies based on BGP 

interconnectivity. These assumptions are not far from 

reality since the Internet topology is based on inter-domain 

interconnectivity and routing policies handled by BGP. 

The primary function of BGP is to exchange network 

reachability information with other BGP peers on 

neighbour ASs. ASs can apply different policies to the way 

they import/export routes when using BGP. Routing 

policies define how routing decisions are taken in the 

Internet. If we have two networks separated by two outers 

belonging to different ASs, the policy comes into play 

when one AS decides to announce networks (prefix routes) 

to the other AS. Import policies allow an AS to transform 

incoming route updates. For example, denying or allowing 

an update, assigning a local preference attribute to an 

incoming route depending on the AS origin, AS path, etc. 

ASs only send their best route to their neighbours. Export 

policies allow an AS to determine whether to send this 

route to a neighbour and, if it does, to send the route with 

or without hints such as the community attribute or the 

MED (Multi Exit Discriminator). A route is expressed as a 

prefix, i.e., a group of one or more networks. Routing 

policies are not applied to each prefix separately but to a 

group of prefixes defined at the AS. BGP allows 

reachability information exchange among BGP peers of the 

same AS or of different ASs. This information will allow us 

to construct a graph of ASs connectivity, this is to say, the 

Internet topology at autonomous systems level. A BGP 

peer builds a routing table database consisting of the set of 

all feasible aths and the list of networks (prefixes) 

reachable through each feasible path or AS path. An 

example of a BGP table isshown in Table 1, where the 

symbol ‘‘>’’ expresses the ‘‘best path’’. As BGP routers 

only send their best path to BGP peers, a BGP router will 

have a particular view of the Internet topology depending 

on where it is placed. In order to have a wider perspective 

of the Internet topology, it is necessary to study the union 

of several BGP tables of different places, as we do in this 

work. Oregon Route Views, is a repository that saves every 

two hours the BGP tables of ASs connected to the BGP 

route repository. Oregon Route Views uses AS6447 and it 

is currently connected to 60 neighbors. 

Based on the work and making use of the Oregon Route 

Views BGP table, many researchers have recently 

investigated the Internet topology. These studies are 

relevant to the development of Internet topology generators, 

the deployment of content networks, the placing of web 

servers or in the development of inter-domain traffic 

engineering models, etc. 
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Authors of argue that tables taken from only one point such 

as the Oregon Route Views give a poor vision of the 

Internet and they propose to use more than one point of 

vantage. Authors from CAIDA, propose to generate active 

probes to complete the AS interconnectivity. Bu and 

Towsley, propose using the CCDF (complementary 

cumulative distribution function) to better fit the power-law 

behaviour described by Faloutsos et al. Finally, Lakhina et 

al, describe sampling biases in IP topology measurements 

using traceroutes.     Here, we compare several BGP tables 

from different geographical sites and their union, using 

classical network topology measures: AS path distribution, 

clustering coefficient and degree distribution together with 

information about the number of ASs and the number of 

edges seen in the different perspectives. We will compare 

tables of different sizes and from ASs with different 

interconnectivity and we will join the repository of Route 

Views with these BGP tables.Other authors have centred 

their study on the novel definition of complex networks. A 

complex network shows certain organization principles that 

are encoded in its topology. These works study      €three 

main topology models: the classical Erdos -Renyi model 

for random graphs, the small-world model motivated by 

small paths between two nodes and high clustering 

coefficients and the scale-free model that presents power-

law degree distributions. 

We will discuss the use of scale-free models to generate 

Internet topologies. In particular we study the application 

of scale-free models to the whole BGP table and to part of 

the BGP table. Using well-known heuristics proposed by 

Gao in, we infer peering relationships between ASs and 

take away end customers and small ISPs from the BGP 

table. In this way we can analyze the use of scale-free 

models applied to the core of the Internet and identify the 

kind of peering of any AS. 

In Section 2 we define the metrics selected to compare the 

BGP tables. Section 3 is devoted to the explication of the 

methodology used. Section 4 shows the obtained results 

applied to the whole BGP table. Sections 5 shows the 

results applied to parts of the BGP table. Section 6 finalizes 

with the conclusions of the work. 

2. Metrics 

In this section we define the metrics selected to compare 

our sources of data. For that purpose we consider the AS 

level topology as the graph G=(N,E), where N is the 

number of vertices or ASs and E the number of edges or 

links that connect the vertices. We define the adjacency 

matrix A as a symmetric matrix of size NxN with 

components aij =1 if node i has an edge joining node j and 

0 otherwise. At each of the different BGP tables we will 

investigate the AS degree rank, the AS degree CCDF 

(complementary cumulative distribution function), the AS 

path length and the clustering coefficient. 

2.1. Rank degree 

This metric ranges ASs in decreasing order of degree d and 

plots the pair degree d versus rank r in log–log scale. The 
degree, di , of node i is the number of neighbours directly 

connected with it, of so di =∑aij for all j. This metric was 

introduced by M. Faloutsos, P. Faloutsos, C. Faloutsos with 

the name of Power-Law 1 (rank exponent) and establishes 

that the degree, di , of AS i is proportional to the rank of 

this AS, ri , to the power of a constant η:di α rηi, where the 

symbol  α means proportional. 
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2.2. Degree CCDF 

Faloutsos et al,introduced the metric fd as the fraction of 

nodes with degree d and demonstrated that it  follows a 

power-law of the type: fd α  d
ξ
, the exponent ξ is obtained 

using a linear regression. Bu and Towsley, define the 

empirical complementary distribution(ecd) as the CCDF of 

the degree distribution. This metric plots the fraction of 

nodes with degree greater than or equal to d versus the 

degree of the AS. In a probabilistic sense the ecd is defined 

as Fd= Prob{D ≥d}=∑ fi for d≤i<∞, where D is a random 

variable that indicates the number of incident neighbours 

upon an AS, i.e., its degree. Fd also follows a power-law 

with exponent α,Fd α d
α
 . Note that rank degree 

distributions emphasize the degree of the largest ASs while 

the degree CCDF emphasizes the degree of the smallest 

ASs. 

2.3. AS path-length 

To measure the AS path-length, l, we will obtain the CCDF 

of the AS path length, Fl . This metric plots the cumulative 

fraction of path-lengths greater than or equal to l versus l. 

In a probabilistic   P sense Fl could be seen as Fl= Prob{L 

≥l}=∑ fi for l≤i<∞. L is a random variable, limited by 1 ≤ L 

≤ Lm , where Lm is the longest AS path found in the BGP 

table, fl is the fraction of paths with length l and l is the 

number of ASs traversed to reach the target. 

2.4. Clustering coefficient 

The clustering coefficient, C, is a concept used in the theory 

of small-world networks and is a metric that indicates the 

grade of connectivity of any node, by definition 0 ≤ C ≤ 1. 

The clustering coefficient Ci for any   node i in the graph is 

defined as the ratio between the number of connections 

among the di neighbours of a given node i and its 

maximum possible value,di (di-1)/2where di is the degree 

of node i. Ci is the fraction of the edges that actually exists, 

and C(G) is the average value of Ci : 

 

                             

 

 
In the above equations Gi is the subgraph of node i, and is 

defined by taking only the neighbours of node i   into 

account. Ci is only defined for ASs with degree di ≥2. This 

is because for di =1, Ci is undetermined. N
≥2
 is the set of 

ASs with degree di ≥ 2 and N
=1
 is the set of ASs with di =1 

and N =N
≥2
+N

=1
. The clustering coefficient provides a 

measure of how well the neighbours of a node are 

interconnected. Fully connected networks have a clustering 

coefficient C=1. A network of isolated nodes has C= 0. 

3. Methodology 

In this work, we use besides the data of Route Views six 
public available BGP table. In order to get the adjacency 

matrix, {aij}, we need to analyze BGP routing tables, which 

provide us with AS paths and links contained in them. It is 

important to note that BGP is a protocol of peering 

relationships and not of physical connections. For that 

reason the local view of an AS located in Europe could be 

(and is) different of an AS located in Asia and so on. This 

fact motivated us to investigate the differences and 

similarities of the distinct BGP tables. We capture 6 BGP 

tables, 2 located in the USA, 3 in Europe and 1 in Asia. 

Table 2 shows these data sources and their parameters. All 

BGP tables were collected over the same period of time 

and the difference in collection times between the first and 

the last one was 1 week. Of these tables Oregon and Ripe-

rcc are remote route collectors, which have a repository 

where the complete data can be obtained via an anonymous 

ftp. Ripe-rcc is a set of 9 remote route collectors, 7 

deployed in   Europe, 1 in Japan and 1 in the USA. The rest 

of the data sources were downloaded using the CISCO or 

Zebra ‘‘sh ip bgp’’ command via telnet to the site. Swinog 

is a medium size AS with 41 neighbours and Exodus 

Comm. Europe, Exodus Comm. Asia and Opentransit are 

leaf ASs with only one neighbour. See Table 2.  
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From Table 2, we can see also that Swinog, Ripe-rcc and 

Oregon are numerically (around 14000 ASs seen) very 

similar in spite of the difference of neighbours. The three 

leaf ASs capture less AS connectivity, where Opentransit is 

the weakest with only 9413 ASs seen. Another interesting 

fact is the column AVG degree (average degree), that is the 

ratio between the number of links (doubled) and nodes in 

the graph. For small ASs the average degree is around 2.8 

while for Swinog and the repository tables, the average 

degree is 4.08. We can observe that a repository table has 

almost the same average degree like a medium AS such as 

Swinog. 

4. The whole BGP table 

In this section we will investigate the AS connectivity. 

We analyze each of the BGP Tables and their union. 

4.1. Rank degree and degree CCDF 

Fig. 1 shows the rank degree in a log–log plot for the BGP 

Tables of Opentransit and Oregon, that is the strongest and 

the weakest in a numerically sense, respectively.    The 

parameters of the Power-Law 1 for every one of the data 

sources are shown in Table 3, where η is the pendent of the 

curve, c is a constant calculated as di=cr
η
 when η=0 and R

2
 

is the correlation coefficient. 

We observe from Fig. 1, that the curve shape of 

Opentransit is similar to Oregon, and this behaviour is 

followed by the other four data sources (for the sake of 

clarity, the other curves are not shown in the figure). 

Repositories such Oregon or RIPE-rcc and Swinog have 

more neighbours and therefore more complete BGP tables 

than leaf ASs. This fact makes that the degree of the larger 

nodes in Oregon and RIPE-rcc BGP tables is higher than 

the degree of the larger nodes in the leaf ASs BGP tables.  

In other words, the adjacency matrix, A, is denser for BGP 

tables that contain more paths.  

 

 

 
 

This observation allows us to conclude that the union of all 

the BGP tables may offer better samples than individual 

ones. With respect to the correlation coefficient, R
2
 , we can 

say that this is a low value for each table and that the  

regression line does not fit very well with the data except 

for high degree ranks. These high ranks correspond with 

the long tail of the data, that is, ASs with degrees lower 

than 10 for the Opentransit table and lower than 40 for the 

Oregon table. More than 80% of the ASs have a low degree. 

Furthermore, the denser the adjacency matrix A is, the 

better the power-law fits with higher degrees. As a 

conclusion, we can say that the rank (and therefore fd ) does 

not fit a power-law well due to the deviation of the low 

ranks (high degrees) with respect to the regression line. 

The degree CCDF, Fd , seems to better fit a power-law than 

the rank degree or the density fd . Fig. 2 plots the degree 

CCDF of Oregon and Opentransit. As in Fig. 1, the curve 

shape of Opentransit is similar to Oregon.  This behaviour 

is followed by the other four data sources (not shown in the 

figure). 

The parameters of the power-law are shown in Table 4. 

The power-law is calculated as Fd=cd
α
 with α and c being 

constants and R
2
 is the correlation coefficient. We notice 

that the correlation coefficients, R
2
, are higher than the ones 

obtained with power-law 1 indicating a better fitting.     We 

observe that Ripe-rcc has the highest coefficient of 

correlation producing an exponent α=-1.197. Again 

repositories or ASs such Swinog have good correlation 

coefficients, however the repository ones have parameters 

that are not much better than those of a medium size AS 

such as Swinog. 
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4.2. Rank degree and CCDF of the Union 

Fig. 3 shows the Power-Law 1 of the union of the six data 

sources. The parameters of its regression line are c =1735.2, 

η=0.7838 and R
2
 =0.9402. The more complete the 

adjacency matrix A is, the better the power-law fits. That is, 

the correlation coefficient R
2
 of the union is higher than 

that of any single source of data. 

The last statement about the adjacency matrix is confirmed 

with the degree CCDF, when all the adjacency matrices of 

all the data sources are aggregated. Fig. 4 shows the degree 

CCDF of the union of the six data sources. The parameters 

of its regression line are c =2.1929 α= -1.3287 and R
2=
 

0.9769.  

The evolution of the union of the data sources is shown in 

Table 5. We observe an increment with respect to Oregon 

of 16.11% on the number of links (edges) with only an 

increment of 0.71% of ASs. This is an important 

observation, because due to the nature of BGP some ASs 

remain hidden from others, while some links do not appear 

due to the fact that only best paths are exported to other 

ASs. If we had more sources of data located in different 

sites we would have had a very much complete picture of 

the Internet topology at the AS level. Unfortunately there 

are few web sites where a complete BGP table is freely 

available. 

 

 

 

 

4.3. AS path length 

AS path length measures the separation between two ASs. 

The AS path length is the number of nodes traversed to 

reach the target AS. In practice BGP only considers the 

‘‘best path’’, which is signalled with the symbol ‘‘>’’ in 

the BGP table, like we observe in Table 1. 

In Fig. 5, we show the CCDF, Fl , of the path length for the 

Opentransit BGP table and the union of all the tables. We 

notice that the probability of having small paths is greater 

than the probability of having long paths. All individual 

tables have similar AS path length distributions. We also 

show in the figure the regression line of the union of the 

tables. The curves fit an exponential-law: y= 3.5359e
-0:7335x
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and a correlation coefficient  R
2
 =0.9911. This high value 

of R
2
 confirms the validity of the exponential-law to model 

the AS path length. 

4.4. Clustering coefficient 

Table 6 shows the clustering coefficient for each data 

source and the union of all ones. In this table we note that 

leaf ASs have the highest number of ASs with degree 1. 

Oregon has the lowest number, 4812, of ASs with degree 

equal to 1. If we aggregate the tables, the adjacency matrix 

A is denser and the number of ASs with degree 1 decreases 

to 4506. That means, 6.35% less with respect to Oregon, 

11.43% less with respect to Swinog and 27.84% less with 

respect to Opentransit. 

 
74.88% of the ASs have degree 1 or degree 2. These are the 

leaf ASs that provide services to enterprises. Normally, 

leave AS are connected to two ISPs in order to obtain 

redundancy in case one ISP connection fails. Intuitively, 

one can imagine that the average AS path length has to be 

small, since one leaf AS will traverse a few number of 

medium or big AS to reach another leaf AS.     
If we compare Opentransit with Exodus Comm Europe, 

two leaf ASs, we can note than Exodus sees a higher 

number of ASs, 13801 (see Table 2) than Opentransit, 9413 

ASs. However, the clustering coefficient is higher for 

Opentransit. This observation is accentuated if we compare 

Exodus Comm Europe (13801 ASs and C = 0.179) with 

Exodus Comm Asia (11264 ASs and C=0.305). This means 

that a leaf AS that has a higher number of ASs in its BGP 

table sees less AS interconnectivity than a leaf AS with a 

lower number of ASs in its BGP table. Furthermore, a 

medium AS such as Swinog has a clustering coefficient 

similar to Oregon, a repository of 61 ASs. Joining tables 

from different geographical locations, even if they are of 

different sizes, improves the inter connectivity picture. 

Finally, following the results we can talk about the duality 

of the topology of the Internet at the AS level, in which the 

Internet can be seen as a small-world network and a scale-

free network. A small-world network is one in which the 

AS path length is small and the clustering coefficient is 

high (compared with a random graph). We can observe 

from Table 6 and Fig. 5 that the AS connectivity behaves 

as a small-world network with high clustering coefficients 

and small AS path lengths. However, a small-world 

network is not an indication of some type of organization 

principle (scale-free networks). This property is given for 

the presence of degree power-laws. From Fig. 2, we can 

observe that the degree CCDF follows a power-law, 

indicating scale-free behaviours. 

Barabasi and Albert (AB model), propose a topological 

model that exhibits ‘‘preferential attachments’’ and 

‘‘constant growth’’. A network exhibits a ‘‘preferential 

attachment’’ if the probability of connecting to a node 

epends on the node’s degree. That means that a new AS in 

the Internet or an AS that wants to rewire a link would 

choose an AS with high degree. 

This model predicts a clustering coefficient following 
approximately a power-law C ~ N 

-0.75
 , while for a random 

graph, C is expected to be C <d>/N , where <d> is the 

average degree. With N =14256 nodes, and <d>=4.71, see 

Table 5, the AB model predicts C=7.66X10
-4
 and a random 

graph C=3.3X10
-4
 . The clustering coefficient obtained 

from the whole BGP table is C =0.46, much higher than 

predicted by the AB model or a random graph. A possible 

reason for this high clustering coefficient is that in the 

Internet around 75% of the nodes are end customers with a 

degree of 1 and 2. These nodes are not interconnected. The 

rest of the nodes are small ISPs and nodes that form the 

Internet core. These nodes are the ones that contribute to 

the clustering coefficient. 

5. Splitting the BGP table in three regions 

Recently, some works have questioned the application of 

the AB model to Internet topologies. The major criticism 

made to the AB model is that the model does not take into 

account the dynamics of the BGP routing in the Internet 

and the business and geographic preferences. Some of 

these aspects could be studied identifying the end 

customers from the small provider ISPs and the core-transit 

ISPs and knowing whether ASs with low degree are 

connected with nodes with large degree. We also are 

interested in knowing whether power-laws arise in indegree 

and out degree adjacency matrices. This fact would allow 

us to create topology generators taking into account 

relationships. For that purpose, we need to classify the AS 

peering relationships in order to identify the kind of 

neighbours a node has. Source data used in this section is 

the union of the several BGP tables. 
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Gao and Rexford, give a heuristic to infer AS relationships 

into provider-to-customer (P2C), peer-to-peer (P2P), and 

sibling (SIB) relationships. A customer exports to a 

provider its routes and its customer routes. A provider 

exports to a customer its routes, its customer routes, its 

provider routes and its peer routes. A peer exports to a peer 

its routes and its customer routes but not its provider or 

peer routes. A sibling exports to a sibling its routes, its 

customer routes, its provider routes and its peer routes and 

thus allows transit. Using ao’s heuristic we can obtain a 

directed provider-to-customer graph from which we define 

two more adjacency matrices: the indegree adjacency 

matrix A
I
 and the outdegree adjacency matrix A

O
 . The 

indegree adjacency matrix A
I
 has components {a

I
IJ}=1 

when node i is a customer of node j or node i is a peer or 

sibling of node j and {a
I
IJ }=0 otherwise. The outdegree 

adjacency matrix A
O
 has components {a

O
IJ}=1 when node i 

is a provider of node j or node i is a peer or sibling of node 

j and {a
O
IJ }=0 otherwise. Fig. 6 shows anij example of 

peering relationships. 

The indegree, di
I
 , of node i is the number of   providers 

directly connected with it, so di
I
 =∑a

I
ij  O for all j. The 

outdegree, d
O
i , of node i is the number of customers 

directly connected with it, so d
O
I =∑a

O
ijfor all j. We can 

note that a node such as AS1 has degree di = 2, indegree d
i
I 

=2 and outdegree di
O
 =0. Knowing the peeringship will 

allow us to obtain the core-transit nodes. 

 

 
Removing ASs with outdegree di

O
 =0, end customers that 

do not participate in the routing process are eliminated. 

Iterating this process, the Internet AS topology can be split 

in an end customer area, a small regional ISP area and a 

core area.   Figs. 7 and 8 show the indegree and outdegree 

CCDF of the total BGP table. We can see that both follow 

a power-law with high correlation coefficients. However it 

is interesting to observe that the maximum indegree is nine 

times higher than the maximum outdegree. 

Table 7 shows a classification of the relationships inferred 

from the union of data sources. The table shows the total 

number of ASs and link relationships and its distribution as 

end customers, small ISPs and the core of the Internet. 

From this table we can see that around 79.7% of the ASs 

are end customers with 61.6% of the links. These ASs may 

have degree higher than 1 but they do not participate in the 

routing process. 9% of the ASs are small provider ISPs 

with 8% of the relationships. These ASs act as transit 

between the end customers and the core of the Internet but 

they do not have any peer- to-peer relationships among 

themselves. 

Finally, the core of the Internet has 11.18% of the ASs and 

30.29% of the links. These AS are well interconnected 

among them forming a mesh topology. The Internet core 

can further be divided in more sets. However, it is not the 

purpose of this work to reproduce the same data. Our 

interest here is to know whether we can use the concept of 

scale-free networks in the core of the Internet. 
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Fig. 9 shows the degree CCDF of the coretransit ISPs. We 

can see that the degree CCDF does not fit a power-law. 

Using a power-law, the correlation coefficient is R
2
 =0.851, 

while using an exponential the correlation coefficient is R
2
 

= 0.935. 

Table 8 shows some parameters obtained for the core-

transit ISPs. The core-transit Internet has a clustering 

coefficient C = 0.48. This high clustering coefficient is due 

to the high connectivity of the 1817 nodes of the core-

transit Internet. End customers and small ISPs with a total 

of 14427 ASs do not contribute to this clustering coefficient. 

Furthermore, the highest degree corresponds to an AS with 

516 core-transit neighbours. The average degree of the core 

is 14.5 in comparison with average degrees around 4 for 

the whole BGP table. 

All this data indicates a highly interconnected core-transit 

that should be modelled with different distributions than 

power-laws. 
 

 
 

 

 

 

 

 
Furthermore it is interesting to point out that nodes with 

very high degrees have a high component of end customers. 

Fig. 10 plots the degree of the top 30
0
 ASs. The three 

curves show the degree of each AS with all their 

neighbours, the degree after removing end customers, and 

the degree after removing end customers and small ISPs. 
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We can see for instance that the node with the highest 

degree in the core with a degree of 512 (19%) nodes has a 

total degree of 2762 from which 1989 (72%) are end 

customers and 261 (9%) are small ISPs. That indicates that 

end customers and small ISPs could be added using a 

preferential attachment algorithm based on power-laws. 

 

 

6. Conclusion 

In this paper, we compare BGP tables from different sites 

and of different sizes. We have chosen six complete BGP 

tables. We have obtained the adjacency matrix A of these 

tables and of the union of all the tables. Since the degree 

rank and the degree density function do not fit a power-law 

1 very well, we have chosen the degree CCDF. We have 

shown that the degree CCDF follows a power-law Fd α d
-α
 

that fits better than the degree density function and that the 

more complete the data sources are, the better the 

regression line fits the model. We have taken into account 

the union of more than a hundred ASs. We have also 

compared BGP tables of different sizes. The results show 

that repository collectors capture more of the AS 

connectivity. However, medium ASs also capture most of 

the AS connectivity since they are also connected to 

several ASs. Taking the union of the BGP tables means 

seeing a denser adjacency matrix and therefore improves 

the observed AS interconnectivity. Also remark that the 

number of leaf ASs practically remains invariant, around a 

75% of the ASs. Our result shows that to get a more 

complete picture of the AS connectivity, it is necessary to 

have access at more BGP tables. Having more tables means 

an increment in the number of links seen although the 

number of ASs seen remains practically invariant. Since 

the degree CCDF confirms a power-law degree distribution, 

this means that the AS topology can be seen as a scale-free 

network. Any network to be considered as a small-world 

network must comply two conditions: a high value of 

clustering coefficient and a small path length. Our results 

show that the AS connectivity of the Internet covers these 

considerations. Specially with respect to the clustering 

coefficient we can say that the more complete the data, the 

more the number of ASs with degree 1 tends to decrease 

and with this the coefficient tends to augment, which 

means an improvement in the connectivity of the Internet  

at the AS level. Furthermore, models such as the AB model 

do not model very well the AS connectivity using the 

whole BGP table. Splitting the BGP table in end customers, 

small ISPs and coretransit Internet nodes, allows us to see 

that the core-transit nodes are highly  interconnected, 

contribute to the clustering coefficient and do not follow a 

power-law. However, the end customers and small ISPs 

that do not contribute to the clustering coefficient could be 

added according to a power-law. These results can help to 

produce better Internet topology generators that could take 

into account peering relationships.  
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