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Summary 
A comparative study is presented on the most known k-nearest 

neighbor search methods used by spatial-temporal database 

systems in order to provide the advantages and limitations of 

each algorithm used in system simulations. The scope is limited 

to the development of the grid indexing searching technique in 

terms of three different algorithms, including the well-known 

CPM, SEA-CNN, and CkNN algorithm. These algorithms don’t 

make any assumptions about the movement of queries or objects. 

There are a number of functions proposed, which is used in: 1) 

partitioning the space around the query point in case of CPM and 

CkNN algorithms and 2) computing minimum and maximum 

distances between query and cell/level. All studied algorithms are 

compared together according to the required number of nearest 

neighbors, grid granularity, location update rate, speed, and 

population. An accuracy comparison is done between these 

algorithms to estimate the performance and determine the 

searching region error during query processing. 

Key words: 
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1. Introduction 

Due to the importance of Location-aware services, real-

time spatial-temporal query processing algorithms that deal 

with large numbers of handheld devices and queries are 

needed [5,6]. These devices call for new spatial-temporal 

applications, in order to update any moving objects 

locations continuously over time [5, 7]. Spatial-temporal 

databases are the main topic in the geo-spatial and 

database communities [5, 10]. Due to rapid increase of 

spatial-temporal applications, new query processing 

techniques are taken into concideration to deal with both 

the spatial and temporal domains. The k-nearest neighbor 

[5, 8, 15] is a concept that is used to retrieve the k objects 

in a dataset that lie closest to a given query point. Dealing 

with continuous k-nearest neighbor (kNN) query over 

moving objects in location-dependent application requires 

real-time for updating moving objects and processing 

CkNN queries [5, 11]. There are two types of the 

Continuous k-nearest neighbor query: (i) a dynamic query 

object with a static data objects (e.g., finding the nearest 

gas station to a car), and (ii) both the query object and the 

data objects are dynamic (e.g., find the nearest police car 

to a moving vehicle) [2, 4, 5, 16].  

There are many studies that deal with approximate kNN 

algorithms in order to minimize the processing cost 

(memory and time) [7, 17, 18, 19] which will affect the 

NN set results performance. Therefore, an accuracy study 

is done to stand on the performance of these approximate 

methods compared with an exact one.  The accuracy is 

measured by comparing between the resulted and the exact 

NNs set in order to quantify the quality of results [7, 17, 

18]. Nowadays, data indexing using grid index technique is 

taken into consideration in most of the existing algorithms 

in spatial database in order to reduce the processing time 

[1, 3, 5, 11, 12, 14]. Several researches are presented for 

answering continuously a collection of continuous CkNN 

queries through grid indexing [3, 5, 11, 12, 14]. In practice, 

construction of grid indexes enables allocation of different 

objects to their position or positions on the grid (static or 

dynamic objects respectively), then creating an index of 

object identifiers vs. grid cell identifiers for rapid access[5].  

  

Fig. 1 Grid Space Fig. 2 Cell location w.r.t. query  

For each cell cI,J has size δ*δ as shown in figure 1, at 

column I and row J starting from low left corner of the grid 

space c0,0 containing all objects and queries with x 

coordinate  [I. δ , (I +1). δ] and y coordinate  [J. δ ,  

(J +1). δ] where the  low left corner of the cell is denoted 

by (I, J) and the top right corner is denoted by (I +1, J +1) 

All objects and queries belong to the cell cI,J can be 

determined by [3, 5]: 
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J     (2)  

The space around the cell cI,J can be divided into levels Li 

where the zero level contains only the cell cI,J as shown in 

figure 2 [5]. There are two functions used by kNN 

algorithms, which are minimum and maximum distances 

between query point and cell boundary, which determine 

that the cell is affected by the query searching region 

(visited cells) or not in case of many algorithms like [3, 11, 

14] and the cell is fully covered by the query searching 
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region or not to obtain the bounded cells in case of CkNN 

algorithm [11] respectively. 

1.1 Minimum query distance to a cell boundary 

In order to compute the minimum distance min_dc between 

a query point q and the nearest point of a certain cell cI,J, 

the query coordinates (qx , qy),cell width  and cell location 

(I,J) have to be known. As shown in figure 2, there are 

three types of cell cI,J (i) cell has the same row J as query 

cell cq, (ii) cell has the same column I as query cell cq, (iii) 

and cell have row J and  column I differ from query cell cq. 

The algorithm used to compute min_dc is illustrated below: 

Algorithm 1. min_Distance_Cell(c) 

1. If (c.I = q.cell.I) 

2.     x_Dist = 0 

3. Else If (c.I < q.cell.I) 

4.     x_Dist = q.X – c.Right 

5. Else 

6.     x_Dist = c.X – q.X 

7. If (c.J = q.cell.J) 

8.     y_Dist = 0 

9. Else If (c.J < q.cell.J) 

10.   y_Dist = q.Y – c.Top 

11. Else 

12.   y_Dist = c.Y – q.Y 

13. min_dc =  Square_Root(x_Dist * x_Dist + y_Dist * y_Dist) 

1.2 Maximum query distance to a cell boundary 

For all cell loctions shown in figure 2, the maximum cell 

distance max_dc equals to the distance between the query 

point q and the farthest corner of the cell cI,J w.r.t. q . The 

algorithm used to compute max_dc is illustrated below: 

Algorithm 2. maxDistance_Cell(c) 

1. If (c.I > q.cell.I) 

2.     x_Dist = c.Right –  q.loc.X  

3. Else If (c.I < q.cell.I) 

4.     x_Dist = q.loc.X – c.X 

5. Else 

6.     If (q.loc.X –  q.cell.X < d/2) 

7.  x_Dist = c.Right –  q.loc.X  

8.     Else 

9.  x_Dist = q.loc.X – c.X  

10. If (c.J > q.cell.J) 

11.    y_Dist = c.Top –  q.loc.Y 

12. Else If (c.J < q.cell.J) 

13.    y_Dist  = q.loc.Y – c.Y 

14. Else   

15.    If (q.loc.Y –  q.cell.Y < d/2) 

16.  y_Dist = c.Top –  q.loc.Y  

17.    Else 

18.  y_Dist  = q.loc.Y – c.Y 

19. max_dc =  Square_Root (x_Dist * x_Dist + y_Dist * y_Dist) 

2. Shared execution algorithm  

The SEA-CNN is an algorithm [5, 13, 14] which is used to 

answer continuously a group of CkNN queries. The main 

idea of SEA-CNN algorithm  is minimizing redundent I/O 

operations by utilizing a Shared Execution paradigm. It 

has two main features which are: 1) Incremental 

Evaluation which is achieved by evaluating only the 

queries that their answers are affected by the movement of 

objects, 2) Scalability which is achieved by using a shared 

execution paradigm on concurrently running queries which 

is reducing repeated I/O operations. Then, evaluating a set 

of CkNN queries is reduced by a spatial join between the 

moving objects and query table as shown in figure 3. 

  

Fig. 3 Shared plan for two 

CkNN queries [5, 13, 14] 

Fig. 4 Grid Conceptual 

Partitioning [3, 5] 

3. Conceptual partitioning monitoring 

CPM  is an algorithm [3, 5] based on a conceptual 

partitioning of the space around the cell cq which contains 

the query q into rectangles as shown in figure 4, in order to 

avoid unnecessary computations. Each rectangle is defined 

by a direction and a level number. The direction could be 

U, D, L, or R (for up, down, left and right) depending on 

the relative position of rectangle with respect to q. The 

level number indicates the number of rectangles between 

rectangle and cq. The core of CPM is its NN Computation 

module, which retrieves the first-time results of incoming 

queries, and the new results of existing queries that change 

its location. This module produces and stores book-

keeping information to facilitate fast Update Handling. If 

the new NN set of a query can be determined solely by the 

previous result and the set of updates, then access to the 

object grid G is avoided. Otherwise, CPM invokes the NN 

re-computation module, which uses the book-keeping 

information stored in the system to reduce the running time 

(compared to NN Computation). 

3.1 Direction generator algorithm 

In order to generate directions (U, D, R, and L) that bounds 

the current query searching region as shown in fig. 4, an 

algorithm is used which is illustrated below: 
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Algorithm 3. DirGenerator(heapEntry) 

1. sign = 1 

2. If (heapEntry.dir = Up or Down) 

3.      If (heapEntry.dir = Down) 

4.  sign = – 1 

5.      If (heapEntry.cells.Right < GridSize * d) 

6.  newEntry.cells.I = max(heapEntry.cells.I – 1 , 0) 

7. newEntry.cells.J = heapEntry.cells.J + sign  

8.        newEntry.cells.Width = min(heapEntry.cells.Width 

                                              +2*d , heapEntry.cells.Right + d) 

9.  newEntry.cells.Height = d 

10.    Else If (heapEntry.cells.X > 0) 

11.  newEntry.cells.I = heapEntry.cells.I – 1  

12. newEntry.cells.J = heapEntry.cells.J + sign  

13.      newEntry.cells.Width = heapEntry.cells.Width + d 

14.  newEntry.cells.Height = d 

15.     Else  

16.  newEntry.cells.I = heapEntry.cells.I – 1  

17. newEntry.cells.J = heapEntry.cells.J + sign  

18.      newEntry.cells.Width = heapEntry.cells.Width + d 

19.  newEntry.cells.Height = d 

20. If (heapEntry.dir = Right or Left) 

21.     If (heapEntry.dir = Left) 

22.  sign = – 1 

23.     If (heapEntry.cells.Top < GridSize * d) 

24.  newEntry.cells.I = heapEntry.cells.I + sign 

25. newEntry.cells.J = max(heapEntry.cells.J – 1 , 0)  

26.  newEntry.cells.Width = d 

27.       newEntry.cells.Height = min(heapEntry.cells.Height  

                                                 + 2*d , heapEntry.cells.Top + d) 

28.     Else If (heapEntry.cells.Y > 0) 

29.  newEntry.cells.I = heapEntry.cells.I + sign 

30. newEntry.cells.J = heapEntry.cells.J – 1  

31.      newEntry.cells.Width = d 

32.  newEntry.cells.Height = heapEntry.cells.Height + d  

33.     Else  

34.  newEntry.cells.I = heapEntry.cells.I + sign  

35.  newEntry.cells.J = heapEntry.cells.J 

36.     newEntry.cells.Width = d 

37.  newEntry.cells.Height = heapEntry.cells.Height  

38. newEntry.dist= heapEntry.dist + d 

39. newEntry.cells.IsCellEntry = false 

40. newEntry.cells.dir = heapEntry.dir 

41. newEntry.cells.lvl = heapEntry.lvl + 1 

42. Add newEntry into q.heap  

3.2 Rectangle splitter generator algorithm 

In order to split directions into cells to be sorted in a heap 

according to its minimum distance, an algorithm is used 

which is illustrated below: 

Algorithm 4. rectG(heapEntry) 

1. Delete heapEntry form q.heap 

2. If (heapEntry.dir = Up or Down) 

3.     cell_no = heapEntry.cells.Width / d 

4.     for i = 0 to cell_no  do 

5. I = heapEntry.cells.I + i 

6.  J = heapEntry.cells..J 

7. Add the cell with I , J and minDist(c, q) into q.heap  

8. If (heapEntry.dir = Right or Left) 
9.     cell_no = heapEntry.cells.Height / d 

10.     for i = 0 to cell_no  do 

11. I = heapEntry.cells.I  

12.  J = heapEntry.cells..J + i 

13. Add the cell c with I , J and minDist(c, q) into q.heap  

14. DirGenerator(Dir , lvl) 

4. Processing continuous k-NN queries in 

main memory grid index  

CkNN [5, 11] processes new searching technique by kNN 

search algorithm. It searches for nearest neighbors of 

queries by partitioning grid space into levels. Figure 5 

shows the mechanism with which the algorithm is 

implemented, the cells around the query are divided into 

levels L, where the level with index zero is the cell cq 

containing the query point q, and during searching 

procedure, the cells of each level are visited in a clockwise 

direction, starting from the left bottom cell. And this gives 

the ability to obtain the result by checking few objects as 

possible. The kNN search algorithm has two phases: The 

first phase, if the number of objects in the current level and 

the total number of objects retrieved is not greater than k, 

and then the algorithm retrieves the objects from current 

level. During second phase, all cells in a cell level are 

sorted according to their minimum distance to the query. 

During query processing, CkNN tries to minimize the cost 

of CkNN query processing by reducing most unnecessary 

checking on queries / moving objects. For static CkNN 

queries, incremental update algorithm is processed. The 

incremental update algorithm makes the most of results 

obtained in last query processing, and attempts to reuse the 

data produced in query processing as more as possible. 
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Fig. 5 Partition of Cell Levels  Fig. 6 Level distances to query 

4.1 Level generator algorithm 

In order to generate levels needed as shown in figure 5, an 

algorithm is used which is illustrated below: 

Algorithm 5. lvl_Gen(lvl) 

1. Read query entry q form QT and lvl; 

2. Initialize an empty list cells; 

3. If (lvl = 0) 

4.    Add the cell contains q in cells list 
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5. Else 

6.    Add the cell contains q in cells list 

7.    row = q.I – lvl 

8.    column = q.J – lvl 

9.    If (row ≥ 0) 

10. for i = 0 to 2*lvl  do 

11.     If (0 ≤ column < GridSize) 

12.  Add the cell with row & column in cells list 

13.  column = column + 1 

14.     If (column < GridSize) 

15.  Add the cell with row & column in cells list 

16. row = q.I – lvl + 1 

17. column = q.J + lvl 

18. If (column < GridSize) 

19.    for i = 0 to 2*lvl  do 

20. If (0 ≤ row < GridSize) 

21.     Add the cell with row & column in cells list 

22. row = row + 1 

23.    If (row < GridSize) 

24. Add the cell with row & column in cells list 

25. row = q.I + lvl 

26. column = q.J + lvl – 1 

27. If (row < GridSize) 

28.    for i = 0 to 2*lvl  do 

29. If (0 ≤ column < GridSize) 

30.     Add the cell with row & column in cells list 

31. column = column  –  1 

32.    If (column ≥ GridSize) 

33. Add the cell with row & column in cells list 

34. row = q.I + lvl – 1 

35. column = q.J – lvl 

36. If (column ≥ 0) 

37.    for i = 0 to 2*lvl  do 

38. If (0 ≤ row < GridSize) 

39.     Add the cell with row & column in cells list 

40. row = row – 1 

4.2 Minimum Level distance of the query  

In order to check the consistence/intersection of a level 

inside/with a query influence region, a minimum distance 

must be defined to compare it with the query best distance 

as shown in figure 6. The algorithm computes this distance 

is illustrated below: 

Algorithm 6. minDist_lvl(lvl) 

1. If (lvl = 0) 

2.    minDist_lvl = 0 

3. Else 

4.    If (q.loc.X –  q.cell.X > d/2) 

5.  minDist_lvl = q.cell.Right – q.loc.X + (lvl – 1)* d 

6.    Else 

7.  minDist_lvl = q.loc.X – q.cell.X + (lvl – 1)* d 

8.    If (q.cell.Top – q.loc.Y < dist) 

9.  minDist_lvl = q.cell.Top – q.loc.Y + (lvl – 1)* d 

10.  Else If (q.loc.Y – q.cell.Y < minDist_lvl) 

11.  minDist_lvl = q.loc.Y – q.cell.Y + (lvl – 1)* d 

4.3 Maximum Level distance of the query 

In order to check the consistence of a whole level inside a 

query influence region, a maximum distance must be 

defined to compare it with the query best distance as 

shown in figure 6. The algorithm computes this distance is 

illustrated below: 

Algorithm 7. maxDist_lvl(lvl) 

1. If (q.loc.X –  q.cell.X < d/2) 

2.    max_x = (q.cell.I + lvl + 1) * d – q.loc.X  

3. Else  

4.    max_x = q.loc.X  – (q.cell.I – lvl) * d 

5. If (q.loc.Y –  q.cell.Y < d/2) 

6.    max_y =(q.cell.J + lvl + 1) * d – q.loc.Y 

7. Else 

8.    max_y = q.loc.Y  – (q.cell.J – lvl) * d 

9. maxDist_lvl = Square-Root of (max_x ^ 2 + max_y ^ 2) 

5. Experimental evaluation 

An experimental evaluation has been implemented using 

C# programming language for all algorithms mentioned 

previously which are CkNN, CPM and SEA algorithms.  

Figures 7, 8 and 9 show the UML diagrams of classes used 

by SEA, CPM and CkNN respectively. These class 

diagrams are the backbone of the C# simulation program, 

which describe the static structure of the used system. 
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Fig. 7 UML diagram of classes used by SEA algorithm 

All datasets used in this experimental study are created 

with the spatial-temporal generator mentioned in [9]. This 

generator is using the database of the road map of 

Oldenburg (a city in Germany) to obtain a set of 

objects/queries located on this map, where each 

object/query is represented by its identifier and coordinates 

at each timestamp. The velocity value of the generated 

object/query is slow, medium, and fast as mentioned in [9]. 

The queries are evaluated at every timestamp. The NN 

computation algorithm of CPM is used to compute the 
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initial results of the queries in the implementation of SEA 

and CkNN, Table 1 shows the default values and ranges of 

the investigated parameters. 
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Fig. 8 UML diagram of classes used by CPM algorithm 
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Fig. 9 UML diagram of classes used by CkNN algorithm 

The used NN time is the time consumed to compute the 

NNs of dynamic queries from scratch, and UH time is the 

time consumed to update moving objects locations and 

updating the NNs of static queries. In each experiment a 

single parameter is varied, while setting the remaining ones 

to their default values. For all simulations we use an Intel 

2GHz CPU with 1 GB memory. 

Table 1 Experiments parameters (values ranges and defaults) 

Value range 
Default 

value 
Parameter 

322, 642, 1282, 2562, 5122 322 Number of Grid cells. 

2, 16, 32, 48, 64 32 Number of NN. 

10, 30, 50k 10k Number of objects. 

1, 5, 10k 5k Number of queries. 

10, 30, 50% 50% Update rate of objects. 

10, 30, 50% 30% Update rate of queries. 

small, medium, fast medium Speed of objects/queries. 

5.1 Effect of grid granularity 

A comparison between the overall running time for CkNN 

and CPM algorithms by varying the grid cell size is shown 

in figures 10, 11 and 12 for objects population equal to 

10k, 30k, and 50k respectively, where the number of cells 

of the grid space is ranging between 32
2
 and 512

2
. CkNN 

clearly consumes less CPU time than CPM for all grid 

sizes. CPM consumes more memory for query processing 

than CkNN due to unnecessary sorting of cells in case of 

dynamic and static queries. It is shown that the 128
2
 grid 

(i.e., δ = Space width / 128) has the minimum cost for 

CkNN algorithm as mentioned in [11]. But in case of CPM, 

figure 10 shows that the 64
2
 grid has the minimum cost and 

figures 11 and 12 show that the 128
2
 grid has the minimum 

cost as mentioned in [3].  
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Fig. 10 CPU time versus number of grid space cells 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

32^2 64^2 128^2 256^2 512^2

Number of cells

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

 

Fig. 11 CPU time versus number of grid space cells (objects = 30k) 

As shown in figure 13, there are 4 cases used to show the 

effect of grid size in case of SEA algorithm which are:  

 Case1 is using all default values in table 1. 

 Case2, same as case1 but with 50,000 objects. 

 Case3, same as case1 but only with 10% objects 

location update rate. 

 Case4, same as case 2 but only with 10% objects 

location update rate.   

For each case, there is an optimum value for best 

performance depending on the objects agility and 

population. Where decreasing object agility will decrease 
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the overall processing time and also decrease its grid size 

optimum value as shown in cases (1, 3) and (2, 4). And 

increasing object population will increase the overall 

processing time and also increase its grid size optimum 

value as shown in cases (1, 2) and (3, 4).  
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Fig. 12 CPU time versus number of grid space cells (objects = 50k) 
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Fig. 13 Effect of grid size in case of SEA 

Figures 10 and 13 show that SEA algorithm consumes 

more time than CkNN and CPM in all cases as mentioned 

in [3, 11], where both static and dynamic queries NNs 

answers are computed from scratch, and the searching 

process starting from far cells then getting closer until 

reaching the query cell and then getting far again, which 

will make unnecessary checking for more objects not in the 

final NNs set than in CkNN & CPM.  

5.2 Effect of number of nearest neighbors 

Figure 14 shows the CPU time on processing continuous  

k-NN queries which require various number of nearest 

neighbors (k = 2, 16, 32, 64) where all other parameters 

are the default values in table 1. It shows that the CPU time 

is increasing as a linear function with k as mentioned in [3, 

11]. The reason is that when more NNs are required, the 

checked region extends (increasing the visited cells), 

where visiting cell is a complete scan over all objects 

inside cell bounds. This parameter is affected mainly by 

the object population around each query because if the 

population is high, the searching region will be smaller and 

vice versa. For SEA, cell accesses occur whenever some 

updates affect the answer region of a query (due to objects 

move away) and/or when the query moves. So the 

probability of increasing the query searching region due to 

these moving objects increases with increasing required k. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 16 32 48 64

Number of nearest-neighbors

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

SEA

 

Fig. 14 CPU time versus number of nearest-neighbors 
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Fig. 15 NN computation time versus number of NNs 
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Fig. 16 UH computation time versus number of NNs 

It is clear that CkNN outperforms CPM and SEA as k 

increases as mentioned in [3, 11], due to: (1) as shown in 

figure 15, CPM sorts all cells before checking objects in 

them (sorted heap), while CkNN directly retrieves objects 
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from current level cells (if the number of objects is less 

than the required NNs) to build initial k-NN candidate and 

sorts fewer filtered cells to refine the query results; (2) as 

shown in figure 16, the incremental update algorithm of 

CkNN is more efficient than that of CPM, where the 

performance of k-NN re-computation algorithm of CkNN 

outperforms that of CPM, since CkNN reuses the 

remaining objects in NNs set (after objects updates) and 

complete this set by checking cells that are not completely 

inside the searching region for objects not in the NN set. 

5.3 Effect of scalability 

In order to quantify the effect of the scalability in terms of 

total number of objects/queries (i.e., population) on the 

performance of CkNN, CPM and SEA, where the number 

of objects ranged from 10,000 to 50,000 and the number of 

queries ranged from 1,000 to 10,000 respectively, while all 

other parameters are using default values from table 1. 
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Fig. 17 CPU time versus number of objects 

As the total number of objects/queries increase, the static 

and dynamic objects/queries increase. As shown in figures 

17 and 18, the overall CPU time of CkNN, CPM and SEA 

increase linearly to the total number of objects /queries 

respectively as mentioned in [3, 11, 14], where the 

performance of CkNN is better than that of CPM and SEA. 

The change in overall CPU time in case of changing 

queries population is more sensitive than changing objects 

population (0.035 ms/object and 0.14825 ms/query).  
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Fig. 18 CPU time versus number of queries 

As shown in figure 19, as the objects population increases, 

the processing time for dynamic queries increases due to 

increasing the number of accessed objects inside visited 

cells. As shown in figure 20, the line slope between 10k 

and 30k is higher than the line between 30k and 50k, 

where the percentage of incoming objects increases (equals 

to or more than outgoing) avoiding re-computation 

processing. As shown in figures 21 and 22, the processing 

time increases with increasing the number of moving and 

static queries respectively.  
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Figure 19 NN computation time versus number of objects 
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Figure 20 UH computation time versus number of objects 
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Figure 21 NN computation time versus number of queries 

5.4 Effect of location update rate 

In order to quantify the effect of the probability that 

objects/queries move within a timestamp (i.e., object/query 

agility) on the performance of CkNN, CPM and SEA, 

object/query agility vary from 10% to 50% and keep the 

remaining parameters fixed to their default values 

respectively. 
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Figure 23 CPU time versus location update rate of objects 

As shown in figures 23 and 24, the running time of CkNN, 

CPM and SEA are increasing linearly with increasing 

object and query agility respectively as mentioned in [3, 11, 

14]. The performance of CkNN still outperforms CPM and 

SEA under all settings. 
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Figure 24 CPU time versus location update rate of queries 
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Figure 25 NN computation time versus object agility 

Figure 25 illustrates the performance of moving queries 

processing over moving objects which is slightly increased 

due to: 1) computing NN set for those queries from scratch, 

2) the object population around each query (if objects 

population increases, the number of accessed objects is 

increased and vice versa). Figure 26 shows that as object 

agility increases, the number of moving objects increases 

the time consumed in updating objects location and re-

evaluating stationary queries. As shown in Figure 27, time 

consumed in evaluating NNs for moving queries in CkNN 

and CPM increases linearly due to increasing the number 

of moving queries. But from figure 28, the time consumed 

in re-evaluating NNs for static queries in CkNN and CPM 

is insensitive to the query agility. 
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Figure 26 UH computation time versus object agility 
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Figure 27 NN computation time versus query agility 
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Figure 28 UH computation time versus query agility 

5.5 Effect of object/query speed 

The speed of the moving object / query is classified to 

three types in the used generator [9], slow, medium, and 

fast which are mentioned before.  

Figures 29 and 30 compare the overall CPU time of CkNN, 

CPM and SEA with respect to the object/query speed 

respectively. The faster objects speed is, the farther they 

move. This will make more in/out objects inside NN set for 

static queries searching region, to check more objects by 

these queries. Therefore, the query processing cost 

increases as shown in figures 29 and 32. In case of SEA 
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algorithm, as the object or query moves farther, the 

searching radius increases which will increase the CPU 

time as shown in figures 29 and 30. 
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Figure 29 CPU time versus objects speed 
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Figure 30 CPU time versus queries speed 
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Figure 31 NN computation time versus object speed 

In case of computing NNs of moving queries as shown in 

figure 31, the processing cost is not influenced by object 

speed, since CkNN and CPM compute NNs from scratch. 

On the contrary, as showed in figure 30, the performance 

of CkNN and CPM is not influenced by query speed, since 

these two methods compute k-NN of moved queries from 

scratch. These figures illustrate that CkNN outperforms 

CPM and SEA under all object/query speeds as mentioned 

in [3, 11]. 
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Figure 32 UH computation time versus object speed 

6. Accuracy analysis during query processing 

In this study, all proposed algorithms are exact. But the 

NN set results differ for CkNN, CPM and SEA algorithms 

during query processing depending on the average objects 

population in query cell and levels and the grid granularity. 

So an analysis will be done to determine the accuracy of 

the instantaneous NN set with respect to the final result 

and the current searching radius error with the final one to 

demonstrate well how these algorithms behave as 

searching process in-work. In order to investigate the 

accuracy during query processing, it has to be known that 

as the grid cell size increases, the average objects 

population for each cell decrease and as the required k 

objects increase, the visited cells increase too. Therefore, 

two different cases for two moving query point using the 

default values in table 1 with the same time-stamp will be 

investigated bellow: 

6.1 Case 1  

This case represents a query point with a high objects 

population inside its cell (for G = 32, cq contains 54 

objects but for G = 128, cq contains 8 objects and lvl-1 

contains 30 objects). 

6.1.1 For G = 32 

Figures 33, 34 show the incoming NN objects, where all 

objects distances are divided by the final query best 

distance, objects above 1 are not included in the final NN 

set (false NN objects) and objects on and below 1 are the 

final NN set (true NN objects).  

Using SEA algorithm, all queries searching radius are 

computed before computing NN set. Then these queries 

are processed depending on the checked cell starting from 

far cells then getting closer until reaching the query cell 

and then getting far again. As in figure 33, all first 35 

objects inserted into NN set are not in the final NN result 

having 0% NN accuracy, then the NN accuracy is 
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increased as true NN objects are inserted till 100% as 

shown in figure 35 (false NN objects = 57). 
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Fig. 33 Incoming NN objects for SEA (case-1: G = 32) 
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Fig. 34 Incoming NN objects for CkNN & CPM (case-1: G = 32) 
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Figure 35 Searching radius error and NN accuracy (case-1: G = 32) 

In this case, CPM and CkNN algorithms have the same 

mechanism, where cq (level 0) is checked first (en-heaped 

into and de-heaped from SH only in case of CPM). The 

searching radius is set first to the maximum distance 

between the query cell and point. Hence this cell contains 

54 objects in this case, a true NN objects are inserted as 

shown in figure 34 to increase the NN accuracy linearly 

with the number of inserted objects till 100% as shown in 

figure 35 (where false NN objects = 24). The searching 

radius error as shown in figure 35 is reduced after inserting 

first 32 objects, where in case of CkNN and CPM, the 

error suddenly decreases from 180% to  115% (NN 

accuracy  45%) but in case of SEA the error decreases 

from 120% to 105% (NN accuracy = 0%).  

6.1.2 For G = 128 

Using SEA algorithm, as shown in figure 36, the searching 

radius initially set as in case of G = 32 because it only 

depends on the displacement of the query and the 

movement of the last NN set candidates, all first 26 objects 

inserted into NN set are not in the final NN result having 

0% NN accuracy, then the NN accuracy is increased as 

true NN objects are inserted till 100% as shown in figure 

38 (where false NN objects = 36).  
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Fig. 36 Incoming NN objects for SEA (case-1: G = 128) 
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Fig. 37 Incoming NN objects for CkNN & CPM (case-1: G = 128) 
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Fig. 38 Searching radius error and NN accuracy (case-1: G = 128) 
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Using CkNN algorithm, while the query cell contains 8 

objects then all these objects are inserted directly in NN set. 

But for level 1 that contain 30 objects (more than 24), this 

level will be partitioned to 8 cells and sorted in heap in an 

ascending manner to be processed as CPM algorithm as 

shown in figure 37 where true NN objects are inserted to 

increase the NN accuracy linearly with the number of 

inserted objects till 100% as shown in figure 38 (where 

false NN objects = 8). The searching radius error as shown 

in figure 38 is reduced after inserting first 32 objects, 

where in case of CkNN and CPM the error decreases from 

45% to  20% (NN accuracy  80%) but in case of SEA the 

error decrease from 120% to 100% (NN accuracy = 18%). 

6.2 Case 2  

This case represents a query point with low objects 

population inside its cell and levels (for G = 32, cq contains 

2 objects, lvl-1 = 21 objects and lvl-2 = 66 objects but for 

G = 128, cq contains no objects, lvl-1 = 2 objects, lvl-2 = 0, 

lvl-3 = 9, lvl-4 = 1, lvl-5 = 10, lvl-6 = 8, lvl-7 = 17). 

6.2.1 For G = 32 

Using SEA algorithm, as shown in figure 39, all first 9 

objects inserted into NN set are outside the final NN result 

having 0% NN accuracy, then the NN accuracy is 

increased as true NN objects are inserted till 100% as 

shown in figure 42 (where false NN objects = 25).  
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Fig. 39 Incoming NN objects for SEA (case-2: G = 32) 

Using CPM algorithm, there are 12 cells de-heaped from 

SH (cq, lvl-1 contains 8 cells and 3 cells from lvl-2), where 

only 8 cells have objects as shown in figure 40 (4 empty 

cells en-heaped and de-heaped). As true NN objects are 

inserted, the NN accuracy increases linearly with the 

number of inserted objects till 100% as shown in figure 42 

(where false NN objects = 10). Using CkNN algorithm, 23 

objects inside cq and level 1 are inserted directly in NN set 

(less than 32). But for level 2 that contain 66 objects (more 

than 9), this level will be partitioned to 16 cells and sorted 

in heap in an ascending manner to be processed as CPM 

algorithm (only 3 cells de-heaped) as shown in figure 41 

where true NN objects are inserted to increase the NN 

accuracy linearly with the number of inserted objects till 

100% as shown in figure 42 (false NN = 10). 
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Fig. 40 Incoming NN objects for CPM (case-2: G = 32) 
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Fig. 41 Incoming NN objects for CkNN (case-2: G = 32) 
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Fig. 42 NN accuracy during query processing (case-2: G = 32) 
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Fig. 43 Searching radius error during query processing (case-2: G=32) 
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The searching radius error as shown in figure 43 is reduced 

after inserting the first 32 objects, where in case of CkNN 

and CPM, the error decreases from 40% to  15% (NN 

accuracy  75%) but in case of SEA the error decreases 

from 16% to 15% (NN accuracy = 28%). 

6.2.2 For G = 128 

Using SEA algorithm, as shown in figure 44, all first 12 

objects inserted into NN set are outside the final NN result 

having 0% NN accuracy, then the NN accuracy is 

increased as true NN objects are inserted till 100% as 

shown in figure 47 (where false NN objects = 25).  
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Fig. 44 Incoming NN objects for SEA algorithm (case-2: G = 128) 
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Fig. 45 Incoming NN objects for CPM algorithm (case-2: G = 128) 

Using CPM algorithm, as shown in figure 45, there are 12 

cells de-heaped from SH (cq = 8, cells, lvl-1 = 16 cells, lvl-

2 = 24, lvl-3 = 32, lvl-4 = 40, lvl-5 = 48, lvl-6 = 56 and 2 

cells only from lvl-7), where only 20 cells have objects 

(207 empty cells en-heaped and de-heaped). As true NN 

objects are inserted, the NN accuracy increases linearly 

with the number of inserted objects till 100% as shown in 

figure 47 (where false NN objects = 2).  

Using CkNN algorithm, as shown in figure 46, 30 objects 

inside levels from 0 to 6 are inserted directly in NN set 

(less than 32). But for level 7 that contain 17 objects (more 

than 2), this level will be partitioned to 56 cells and sorted 

in heap in an ascending manner to be processed as CPM 

algorithm (2 cells de-heaped) where true NN objects are 

inserted to increase the NN accuracy linearly with the 

number of inserted objects till 100% as shown in figure 47 

(false NN objects = 5). The searching radius error as 

shown in figure 48 is reduced after inserting first 32 

objects, where in case of CkNN and CPM the error 

decreases from 22% and 12% respectively to  5% (NN 

accuracy  75% and 94%) but in case of SEA, the error 

decreases from 16% to 5% (NN accuracy = 28%). 
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Fig. 46 Incoming NN objects for CkNN algorithm (case-2: G = 128) 
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Fig. 47 NN accuracy during query processing (case-2: G = 128) 
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Fig. 48 Searching radius error during query processing (case-2: G = 128) 

 

7. Conclusion 

Three different algorithms, including the well-known CPM, 

SEA-CNN, and CkNN algorithm which are the most 

famous algorithms based on grid index technique are 

compared together. The implementation of these 

algorithms has been done using C# programming language. 

All simulations have been done on Intel 2 GHz CPU with 1 
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GB memory. The results of these simulations showed a 

good agreement with the theoretical comparison mentioned 

in [5]. In order to simulate these algorithms successfully, 

synthetic spatial-temporal data is generated using a well-

defined objects generator [9].  

A comprehensible performance evaluation between these 

algorithms has been done according to different parameters. 

These parameters are grid size, number of required nearest 

neighbors, total number of objects/queries, location update 

rate of objects/queries and object/query speed, where the 

performance of CkNN outperforms CPM and SEA under 

all conditions. SEA is the worst algorithm used compared 

with other algorithms, because for each query it visits all 

cells in its influence region (not using a sorted heap). CPM 

consumes more memory for query processing than CkNN 

algorithm, where CPM assigns each query a visit list and a 

sorted heap separately, but CkNN uses one sorted heap to 

process all queries. CPM re-computes query results from 

scratch for all moved queries. Although CPM utilizes a 

visit list as a cache of visited cells, all objects in those cells 

still need to be re-checked. This wastes the computation 

resource, since most of those objects are already checked 

in incremental update algorithm. On the contrary, CkNN 

keeps the objects in kNN-list and reuses them. Meanwhile, 

since the k-NN search algorithm of CkNN is more efficient, 

the overall running time of CkNN is less than that of CPM.  

For grid size parameter, there is an optimum value for best 

performance depending on the objects agility and 

population, Where decreasing object agility will decrease 

the overall processing time and also decrease its grid size 

optimum value, and increasing object population will 

increase the overall processing time and also increase its 

grid size optimum value. 

Finaly, an accuracy measure is done to evaluate the NN set 

results for proposed algorithms during query processing 

depending on the average objects population in each cell. 

This analysis determines the accuracy of the instantaneous 

NN set with respect to the final result and the current 

searching radius error with the final one to demonstrate 

how these algorithms behave as searching process in-work. 

Two different cases have been studied, for two moving 

queries points in high and low objects population region 

respectively. The SEA algorithm results show that for 

query with high objects population, as the grid size 

increases, the number of false objects decrease, but for 

queries with low objects population, as the grid size 

increases, the number of false objects increase. The CkNN 

and CPM algorithm results show that for both queries with 

high and low objects population, as the grid size increases, 

the number of false objects decrease. The CPM false 

objects is less than or equal to the CkNN false objects but 

CkNN consumes less  cost due to its faster searching than 

CPM as mentioned before. 
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