
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

75

Manuscript received December 5, 2009

Manuscript revised December 20, 2009

A Comparative Study of Spatial-Temporal Database Trends

Laila ElFangary
†
, Mahmoud Ahmed

†
, and Shaimaa Bakr

††

†
 Information Systems Department, Faculty of Computers and Information, Helwan University, Cairo, Egypt

†† Computer Science Dept., Cairo Higher Institute for Eng., Computer Science and Management, Cairo, Egypt

Summary
A comparative study is presented on the most known k-nearest

neighbor search methods used by spatial-temporal database

systems in order to provide the advantages and limitations of

each algorithm used in system simulations. The scope is limited

to the development of the grid indexing searching technique in

terms of three different algorithms, including the well-known

CPM, SEA-CNN, and CkNN algorithm. These algorithms don’t

make any assumptions about the movement of queries or objects.

There are a number of functions proposed, which is used in: 1)

partitioning the space around the query point in case of CPM and

CkNN algorithms and 2) computing minimum and maximum

distances between query and cell/level. All studied algorithms are

compared together according to the required number of nearest

neighbors, grid granularity, location update rate, speed, and

population. An accuracy comparison is done between these

algorithms to estimate the performance and determine the

searching region error during query processing.

Key words:
continuous queries; grid index; kNN; NN accuracy; SR error.

1. Introduction

Due to the importance of Location-aware services, real-

time spatial-temporal query processing algorithms that deal

with large numbers of handheld devices and queries are

needed [5,6]. These devices call for new spatial-temporal

applications, in order to update any moving objects

locations continuously over time [5, 7]. Spatial-temporal

databases are the main topic in the geo-spatial and

database communities [5, 10]. Due to rapid increase of

spatial-temporal applications, new query processing

techniques are taken into concideration to deal with both

the spatial and temporal domains. The k-nearest neighbor

[5, 8, 15] is a concept that is used to retrieve the k objects

in a dataset that lie closest to a given query point. Dealing

with continuous k-nearest neighbor (kNN) query over

moving objects in location-dependent application requires

real-time for updating moving objects and processing

CkNN queries [5, 11]. There are two types of the

Continuous k-nearest neighbor query: (i) a dynamic query

object with a static data objects (e.g., finding the nearest

gas station to a car), and (ii) both the query object and the

data objects are dynamic (e.g., find the nearest police car

to a moving vehicle) [2, 4, 5, 16].

There are many studies that deal with approximate kNN

algorithms in order to minimize the processing cost

(memory and time) [7, 17, 18, 19] which will affect the

NN set results performance. Therefore, an accuracy study

is done to stand on the performance of these approximate

methods compared with an exact one. The accuracy is

measured by comparing between the resulted and the exact

NNs set in order to quantify the quality of results [7, 17,

18]. Nowadays, data indexing using grid index technique is

taken into consideration in most of the existing algorithms

in spatial database in order to reduce the processing time

[1, 3, 5, 11, 12, 14]. Several researches are presented for

answering continuously a collection of continuous CkNN

queries through grid indexing [3, 5, 11, 12, 14]. In practice,

construction of grid indexes enables allocation of different

objects to their position or positions on the grid (static or

dynamic objects respectively), then creating an index of

object identifiers vs. grid cell identifiers for rapid access[5].

Fig. 1 Grid Space Fig. 2 Cell location w.r.t. query

For each cell cI,J has size δ*δ as shown in figure 1, at

column I and row J starting from low left corner of the grid

space c0,0 containing all objects and queries with x

coordinate  [I. δ , (I +1). δ] and y coordinate  [J. δ ,

(J +1). δ] where the low left corner of the cell is denoted

by (I, J) and the top right corner is denoted by (I +1, J +1)

All objects and queries belong to the cell cI,J can be

determined by [3, 5]:




x

I (1)




y
J (2)

The space around the cell cI,J can be divided into levels Li

where the zero level contains only the cell cI,J as shown in

figure 2 [5]. There are two functions used by kNN

algorithms, which are minimum and maximum distances

between query point and cell boundary, which determine

that the cell is affected by the query searching region

(visited cells) or not in case of many algorithms like [3, 11,

14] and the cell is fully covered by the query searching

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

76

region or not to obtain the bounded cells in case of CkNN

algorithm [11] respectively.

1.1 Minimum query distance to a cell boundary

In order to compute the minimum distance min_dc between

a query point q and the nearest point of a certain cell cI,J,

the query coordinates (qx , qy),cell width  and cell location

(I,J) have to be known. As shown in figure 2, there are

three types of cell cI,J (i) cell has the same row J as query

cell cq, (ii) cell has the same column I as query cell cq, (iii)

and cell have row J and column I differ from query cell cq.

The algorithm used to compute min_dc is illustrated below:

Algorithm 1. min_Distance_Cell(c)

1. If (c.I = q.cell.I)

2. x_Dist = 0

3. Else If (c.I < q.cell.I)

4. x_Dist = q.X – c.Right

5. Else

6. x_Dist = c.X – q.X

7. If (c.J = q.cell.J)

8. y_Dist = 0

9. Else If (c.J < q.cell.J)

10. y_Dist = q.Y – c.Top

11. Else

12. y_Dist = c.Y – q.Y

13. min_dc = Square_Root(x_Dist * x_Dist + y_Dist * y_Dist)

1.2 Maximum query distance to a cell boundary

For all cell loctions shown in figure 2, the maximum cell

distance max_dc equals to the distance between the query

point q and the farthest corner of the cell cI,J w.r.t. q . The

algorithm used to compute max_dc is illustrated below:

Algorithm 2. maxDistance_Cell(c)

1. If (c.I > q.cell.I)

2. x_Dist = c.Right – q.loc.X

3. Else If (c.I < q.cell.I)

4. x_Dist = q.loc.X – c.X

5. Else

6. If (q.loc.X – q.cell.X < d/2)

7. x_Dist = c.Right – q.loc.X

8. Else

9. x_Dist = q.loc.X – c.X

10. If (c.J > q.cell.J)

11. y_Dist = c.Top – q.loc.Y

12. Else If (c.J < q.cell.J)

13. y_Dist = q.loc.Y – c.Y

14. Else

15. If (q.loc.Y – q.cell.Y < d/2)

16. y_Dist = c.Top – q.loc.Y

17. Else

18. y_Dist = q.loc.Y – c.Y

19. max_dc = Square_Root (x_Dist * x_Dist + y_Dist * y_Dist)

2. Shared execution algorithm

The SEA-CNN is an algorithm [5, 13, 14] which is used to

answer continuously a group of CkNN queries. The main

idea of SEA-CNN algorithm is minimizing redundent I/O

operations by utilizing a Shared Execution paradigm. It

has two main features which are: 1) Incremental

Evaluation which is achieved by evaluating only the

queries that their answers are affected by the movement of

objects, 2) Scalability which is achieved by using a shared

execution paradigm on concurrently running queries which

is reducing repeated I/O operations. Then, evaluating a set

of CkNN queries is reduced by a spatial join between the

moving objects and query table as shown in figure 3.

Fig. 3 Shared plan for two

CkNN queries [5, 13, 14]

Fig. 4 Grid Conceptual

Partitioning [3, 5]

3. Conceptual partitioning monitoring

CPM is an algorithm [3, 5] based on a conceptual

partitioning of the space around the cell cq which contains

the query q into rectangles as shown in figure 4, in order to

avoid unnecessary computations. Each rectangle is defined

by a direction and a level number. The direction could be

U, D, L, or R (for up, down, left and right) depending on

the relative position of rectangle with respect to q. The

level number indicates the number of rectangles between

rectangle and cq. The core of CPM is its NN Computation

module, which retrieves the first-time results of incoming

queries, and the new results of existing queries that change

its location. This module produces and stores book-

keeping information to facilitate fast Update Handling. If

the new NN set of a query can be determined solely by the

previous result and the set of updates, then access to the

object grid G is avoided. Otherwise, CPM invokes the NN

re-computation module, which uses the book-keeping

information stored in the system to reduce the running time

(compared to NN Computation).

3.1 Direction generator algorithm

In order to generate directions (U, D, R, and L) that bounds

the current query searching region as shown in fig. 4, an

algorithm is used which is illustrated below:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

77

Algorithm 3. DirGenerator(heapEntry)

1. sign = 1

2. If (heapEntry.dir = Up or Down)

3. If (heapEntry.dir = Down)

4. sign = – 1

5. If (heapEntry.cells.Right < GridSize * d)

6. newEntry.cells.I = max(heapEntry.cells.I – 1 , 0)

7. newEntry.cells.J = heapEntry.cells.J + sign

8. newEntry.cells.Width = min(heapEntry.cells.Width

 +2*d , heapEntry.cells.Right + d)

9. newEntry.cells.Height = d

10. Else If (heapEntry.cells.X > 0)

11. newEntry.cells.I = heapEntry.cells.I – 1

12. newEntry.cells.J = heapEntry.cells.J + sign

13. newEntry.cells.Width = heapEntry.cells.Width + d

14. newEntry.cells.Height = d

15. Else

16. newEntry.cells.I = heapEntry.cells.I – 1

17. newEntry.cells.J = heapEntry.cells.J + sign

18. newEntry.cells.Width = heapEntry.cells.Width + d

19. newEntry.cells.Height = d

20. If (heapEntry.dir = Right or Left)

21. If (heapEntry.dir = Left)

22. sign = – 1

23. If (heapEntry.cells.Top < GridSize * d)

24. newEntry.cells.I = heapEntry.cells.I + sign

25. newEntry.cells.J = max(heapEntry.cells.J – 1 , 0)

26. newEntry.cells.Width = d

27. newEntry.cells.Height = min(heapEntry.cells.Height

 + 2*d , heapEntry.cells.Top + d)

28. Else If (heapEntry.cells.Y > 0)

29. newEntry.cells.I = heapEntry.cells.I + sign

30. newEntry.cells.J = heapEntry.cells.J – 1

31. newEntry.cells.Width = d

32. newEntry.cells.Height = heapEntry.cells.Height + d

33. Else

34. newEntry.cells.I = heapEntry.cells.I + sign

35. newEntry.cells.J = heapEntry.cells.J

36. newEntry.cells.Width = d

37. newEntry.cells.Height = heapEntry.cells.Height

38. newEntry.dist= heapEntry.dist + d

39. newEntry.cells.IsCellEntry = false

40. newEntry.cells.dir = heapEntry.dir

41. newEntry.cells.lvl = heapEntry.lvl + 1

42. Add newEntry into q.heap

3.2 Rectangle splitter generator algorithm

In order to split directions into cells to be sorted in a heap

according to its minimum distance, an algorithm is used

which is illustrated below:

Algorithm 4. rectG(heapEntry)

1. Delete heapEntry form q.heap

2. If (heapEntry.dir = Up or Down)

3. cell_no = heapEntry.cells.Width / d

4. for i = 0 to cell_no do

5. I = heapEntry.cells.I + i

6. J = heapEntry.cells..J

7. Add the cell with I , J and minDist(c, q) into q.heap

8. If (heapEntry.dir = Right or Left)
9. cell_no = heapEntry.cells.Height / d

10. for i = 0 to cell_no do

11. I = heapEntry.cells.I

12. J = heapEntry.cells..J + i

13. Add the cell c with I , J and minDist(c, q) into q.heap

14. DirGenerator(Dir , lvl)

4. Processing continuous k-NN queries in

main memory grid index

CkNN [5, 11] processes new searching technique by kNN

search algorithm. It searches for nearest neighbors of

queries by partitioning grid space into levels. Figure 5

shows the mechanism with which the algorithm is

implemented, the cells around the query are divided into

levels L, where the level with index zero is the cell cq

containing the query point q, and during searching

procedure, the cells of each level are visited in a clockwise

direction, starting from the left bottom cell. And this gives

the ability to obtain the result by checking few objects as

possible. The kNN search algorithm has two phases: The

first phase, if the number of objects in the current level and

the total number of objects retrieved is not greater than k,

and then the algorithm retrieves the objects from current

level. During second phase, all cells in a cell level are

sorted according to their minimum distance to the query.

During query processing, CkNN tries to minimize the cost

of CkNN query processing by reducing most unnecessary

checking on queries / moving objects. For static CkNN

queries, incremental update algorithm is processed. The

incremental update algorithm makes the most of results

obtained in last query processing, and attempts to reuse the

data produced in query processing as more as possible.

1

3 2

4

q

min_dist

m
ax

_d
is
t

i_direction

x_coordinate

j_
d

ir
e
c
ti

o
n

y
_

c
o

o
r
d

in
a

te

Fig. 5 Partition of Cell Levels Fig. 6 Level distances to query

4.1 Level generator algorithm

In order to generate levels needed as shown in figure 5, an

algorithm is used which is illustrated below:

Algorithm 5. lvl_Gen(lvl)

1. Read query entry q form QT and lvl;

2. Initialize an empty list cells;

3. If (lvl = 0)

4. Add the cell contains q in cells list

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

78

5. Else

6. Add the cell contains q in cells list

7. row = q.I – lvl

8. column = q.J – lvl

9. If (row ≥ 0)

10. for i = 0 to 2*lvl do

11. If (0 ≤ column < GridSize)

12. Add the cell with row & column in cells list

13. column = column + 1

14. If (column < GridSize)

15. Add the cell with row & column in cells list

16. row = q.I – lvl + 1

17. column = q.J + lvl

18. If (column < GridSize)

19. for i = 0 to 2*lvl do

20. If (0 ≤ row < GridSize)

21. Add the cell with row & column in cells list

22. row = row + 1

23. If (row < GridSize)

24. Add the cell with row & column in cells list

25. row = q.I + lvl

26. column = q.J + lvl – 1

27. If (row < GridSize)

28. for i = 0 to 2*lvl do

29. If (0 ≤ column < GridSize)

30. Add the cell with row & column in cells list

31. column = column – 1

32. If (column ≥ GridSize)

33. Add the cell with row & column in cells list

34. row = q.I + lvl – 1

35. column = q.J – lvl

36. If (column ≥ 0)

37. for i = 0 to 2*lvl do

38. If (0 ≤ row < GridSize)

39. Add the cell with row & column in cells list

40. row = row – 1

4.2 Minimum Level distance of the query

In order to check the consistence/intersection of a level

inside/with a query influence region, a minimum distance

must be defined to compare it with the query best distance

as shown in figure 6. The algorithm computes this distance

is illustrated below:

Algorithm 6. minDist_lvl(lvl)

1. If (lvl = 0)

2. minDist_lvl = 0

3. Else

4. If (q.loc.X – q.cell.X > d/2)

5. minDist_lvl = q.cell.Right – q.loc.X + (lvl – 1)* d

6. Else

7. minDist_lvl = q.loc.X – q.cell.X + (lvl – 1)* d

8. If (q.cell.Top – q.loc.Y < dist)

9. minDist_lvl = q.cell.Top – q.loc.Y + (lvl – 1)* d

10. Else If (q.loc.Y – q.cell.Y < minDist_lvl)

11. minDist_lvl = q.loc.Y – q.cell.Y + (lvl – 1)* d

4.3 Maximum Level distance of the query

In order to check the consistence of a whole level inside a

query influence region, a maximum distance must be

defined to compare it with the query best distance as

shown in figure 6. The algorithm computes this distance is

illustrated below:

Algorithm 7. maxDist_lvl(lvl)

1. If (q.loc.X – q.cell.X < d/2)

2. max_x = (q.cell.I + lvl + 1) * d – q.loc.X

3. Else

4. max_x = q.loc.X – (q.cell.I – lvl) * d

5. If (q.loc.Y – q.cell.Y < d/2)

6. max_y =(q.cell.J + lvl + 1) * d – q.loc.Y

7. Else

8. max_y = q.loc.Y – (q.cell.J – lvl) * d

9. maxDist_lvl = Square-Root of (max_x ^ 2 + max_y ^ 2)

5. Experimental evaluation

An experimental evaluation has been implemented using

C# programming language for all algorithms mentioned

previously which are CkNN, CPM and SEA algorithms.

Figures 7, 8 and 9 show the UML diagrams of classes used

by SEA, CPM and CkNN respectively. These class

diagrams are the backbone of the C# simulation program,

which describe the static structure of the used system.

+q_list

sea_ARG

+o_list

sea_OT

+Distance() : float

+minDist_cell() : float

+loc : main_Point

+id : int

+AR : float

+SR : float

+bestNN

+cell : sea_CellRange

sea_QB

+I : int

+J : int

+X : float

+Y : float

+Right : float

+Top : float

sea_CellRange

+id : int

+coord : main_Point

-cell : sea_CellRange

sea_objPoint
+cell : c_CellRange

+dist : float

CkNN_HeapEntry

+X : float

+Y : float

main_Point

+GetElapsedTime() : int

+startTime

+stopTime

main_StopWatch

1

0..*
+flushing_query() : void

+flushing_object() : void

+Updating_SR() : void

-QT2 : CkNN_query

-sea_oT : sea_objPoint

-ARG : sea_ARG

-o_buffer : sea_objPoint

-q_buffer : sea_QB

-Total_time : main_StopWatch

SEA

1

1

1

1

1..*
1

1

1..*

1

1 1

1

1..*

1

1

1

1

1

11..*

+Run_Click()

«interface»

Form1

Form1

Fig. 7 UML diagram of classes used by SEA algorithm

All datasets used in this experimental study are created

with the spatial-temporal generator mentioned in [9]. This

generator is using the database of the road map of

Oldenburg (a city in Germany) to obtain a set of

objects/queries located on this map, where each

object/query is represented by its identifier and coordinates

at each timestamp. The velocity value of the generated

object/query is slow, medium, and fast as mentioned in [9].

The queries are evaluated at every timestamp. The NN

computation algorithm of CPM is used to compute the

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

79

initial results of the queries in the implementation of SEA

and CkNN, Table 1 shows the default values and ranges of

the investigated parameters.

+I : int

+J : int

+Width : float

+Height : float

+X : float

+Y : float

+Right : float

+Top : float

c_CellRange

+dir : int

+IsCellEntry : bool

+cells : c_CellRange

+dist : float

+lvl : int

CPM_HeapEntry

+X : float

+Y : float

main_Point

+o_list

+q_list

c_Grid

+id : int

+dist : float

c_pair

+id : int

+coord : main_Point

+cell : c_CellRange

c_objPoint

+ContainsKey() : bool

+IndexofKey() : int

c_List

+Distance_Points() : float

+min_Distance_Cell() : float

+DirGenerator() : void

+rectG() : void

+q : main_Point

+id : int

+cell : c_CellRange

+bestD : float

+outCount : int

+inList : c_List

+Heap

+VisitedCells

+bestNN

CPM_Query

+GetElapsedTime() : int

+startTime

+stopTime

main_StopWatch

1

0..*

+NN_computation() : void

+NN_recomputation() : void

+Update_Handling() : void

+IHeap() : void

-QT : CPM_Query

-oT : c_objPoint

-G : c_Grid

-staticList_q

-updateList_q

-Total_time : main_StopWatch

-UpdateHandling_time : main_StopWatch

-movingQuery_time : main_StopWatch

CPM

1 1

1

0..*

1

1

1

1

1..*

1
11..*

1

1 1

1

1..*
1

1

1

1

1

+Run_Click()

«interface»

Form1

Form1

Fig. 8 UML diagram of classes used by CPM algorithm

+cell : c_CellRange

+dist : float

CkNN_HeapEntry

+Distance_Points() : float

+minDist_Cell() : float

+lvl_Gen() : <unspecified>

+maxDist_lvl() : float

+minDist_lvl() : float

+maxDist_Cell() : float

+Merge2list() : void

+q : main_Point

+inf_reg

+id : int

+cell : c_CellRange

+bestD : float

+bestNN

+Heap : CkNN_HeapEntry

+tlist : c_List

CkNN_query

+I : int

+J : int

+Width : float

+Height : float

+X : float

+Y : float

+Right : float

+Top : float

c_CellRange

+X : float

+Y : float

main_Point

+o_list

+q_list

c_Grid

+id : int

+dist : float

c_pair

+id : int

+coord : main_Point

+cell : c_CellRange

c_objPoint

+ContainsKey() : bool

+IndexofKey() : int

c_List

+GetElapsedTime() : int

+startTime

+stopTime

main_StopWatch

1

0..*
+kNN_Search() : void

+kNN_recomputation() : void

+Incremental_Update() : void

+Count_obj() : int

+c_notFully() : <unspecified>

-QT2 : CkNN_query

-oT : c_objPoint

-G : c_Grid

-staticList_q

-updateList_q

-Total_time : main_StopWatch

-UpdateHandling_time : main_StopWatch

-movingQuery_time : main_StopWatch

CkNN

1 1

1

0..*

1

1

1

1

1..*

1
1

1..*

1

1 1

1

1..*
1

1

1

1

1

+Run_Click()

«interface»

Form1

Form1

Fig. 9 UML diagram of classes used by CkNN algorithm

The used NN time is the time consumed to compute the

NNs of dynamic queries from scratch, and UH time is the

time consumed to update moving objects locations and

updating the NNs of static queries. In each experiment a

single parameter is varied, while setting the remaining ones

to their default values. For all simulations we use an Intel

2GHz CPU with 1 GB memory.

Table 1 Experiments parameters (values ranges and defaults)

Value range
Default

value
Parameter

322, 642, 1282, 2562, 5122 322 Number of Grid cells.

2, 16, 32, 48, 64 32 Number of NN.

10, 30, 50k 10k Number of objects.

1, 5, 10k 5k Number of queries.

10, 30, 50% 50% Update rate of objects.

10, 30, 50% 30% Update rate of queries.

small, medium, fast medium Speed of objects/queries.

5.1 Effect of grid granularity

A comparison between the overall running time for CkNN

and CPM algorithms by varying the grid cell size is shown

in figures 10, 11 and 12 for objects population equal to

10k, 30k, and 50k respectively, where the number of cells

of the grid space is ranging between 32
2
 and 512

2
. CkNN

clearly consumes less CPU time than CPM for all grid

sizes. CPM consumes more memory for query processing

than CkNN due to unnecessary sorting of cells in case of

dynamic and static queries. It is shown that the 128
2
 grid

(i.e., δ = Space width / 128) has the minimum cost for

CkNN algorithm as mentioned in [11]. But in case of CPM,

figure 10 shows that the 64
2
 grid has the minimum cost and

figures 11 and 12 show that the 128
2
 grid has the minimum

cost as mentioned in [3].

0

200

400

600

800

1000

1200

1400

1600

1800

2000

32^2 64^2 128^2 256^2 512^2

Number of cells

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

Fig. 10 CPU time versus number of grid space cells

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

32^2 64^2 128^2 256^2 512^2

Number of cells

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

Fig. 11 CPU time versus number of grid space cells (objects = 30k)

As shown in figure 13, there are 4 cases used to show the

effect of grid size in case of SEA algorithm which are:

 Case1 is using all default values in table 1.

 Case2, same as case1 but with 50,000 objects.

 Case3, same as case1 but only with 10% objects

location update rate.

 Case4, same as case 2 but only with 10% objects

location update rate.

For each case, there is an optimum value for best

performance depending on the objects agility and

population. Where decreasing object agility will decrease

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

80

the overall processing time and also decrease its grid size

optimum value as shown in cases (1, 3) and (2, 4). And

increasing object population will increase the overall

processing time and also increase its grid size optimum

value as shown in cases (1, 2) and (3, 4).

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

32^2 64^2 128^2 256^2 512^2

Number of cells

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

Fig. 12 CPU time versus number of grid space cells (objects = 50k)

0

5000

10000

15000

20000

25000

10^2 14^2 18^2 22^2 26^2 30^2 34^2 38^2

Number of cells

C
P

U
 t

im
e
 [

m
s]

Case 1

Case 2

Case 3

Case 4

Fig. 13 Effect of grid size in case of SEA

Figures 10 and 13 show that SEA algorithm consumes

more time than CkNN and CPM in all cases as mentioned

in [3, 11], where both static and dynamic queries NNs

answers are computed from scratch, and the searching

process starting from far cells then getting closer until

reaching the query cell and then getting far again, which

will make unnecessary checking for more objects not in the

final NNs set than in CkNN & CPM.

5.2 Effect of number of nearest neighbors

Figure 14 shows the CPU time on processing continuous

k-NN queries which require various number of nearest

neighbors (k = 2, 16, 32, 64) where all other parameters

are the default values in table 1. It shows that the CPU time

is increasing as a linear function with k as mentioned in [3,

11]. The reason is that when more NNs are required, the

checked region extends (increasing the visited cells),

where visiting cell is a complete scan over all objects

inside cell bounds. This parameter is affected mainly by

the object population around each query because if the

population is high, the searching region will be smaller and

vice versa. For SEA, cell accesses occur whenever some

updates affect the answer region of a query (due to objects

move away) and/or when the query moves. So the

probability of increasing the query searching region due to

these moving objects increases with increasing required k.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 16 32 48 64

Number of nearest-neighbors

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

SEA

Fig. 14 CPU time versus number of nearest-neighbors

0

100

200

300

400

500

600

2 16 32 48 64

Number of nearest-neighbors

N
N

 t
im

e
[m

s]
CkNN

CPM

Fig. 15 NN computation time versus number of NNs

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 16 32 48 64

Number of nearest-neighbors

U
H

 t
im

e
[m

s]

CkNN

CPM

Fig. 16 UH computation time versus number of NNs

It is clear that CkNN outperforms CPM and SEA as k

increases as mentioned in [3, 11], due to: (1) as shown in

figure 15, CPM sorts all cells before checking objects in

them (sorted heap), while CkNN directly retrieves objects

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

81

from current level cells (if the number of objects is less

than the required NNs) to build initial k-NN candidate and

sorts fewer filtered cells to refine the query results; (2) as

shown in figure 16, the incremental update algorithm of

CkNN is more efficient than that of CPM, where the

performance of k-NN re-computation algorithm of CkNN

outperforms that of CPM, since CkNN reuses the

remaining objects in NNs set (after objects updates) and

complete this set by checking cells that are not completely

inside the searching region for objects not in the NN set.

5.3 Effect of scalability

In order to quantify the effect of the scalability in terms of

total number of objects/queries (i.e., population) on the

performance of CkNN, CPM and SEA, where the number

of objects ranged from 10,000 to 50,000 and the number of

queries ranged from 1,000 to 10,000 respectively, while all

other parameters are using default values from table 1.

0

1000

2000

3000

4000

5000

6000

7000

10 30 50

Number of objects [*1000]

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

SEA

Fig. 17 CPU time versus number of objects

As the total number of objects/queries increase, the static

and dynamic objects/queries increase. As shown in figures

17 and 18, the overall CPU time of CkNN, CPM and SEA

increase linearly to the total number of objects /queries

respectively as mentioned in [3, 11, 14], where the

performance of CkNN is better than that of CPM and SEA.

The change in overall CPU time in case of changing

queries population is more sensitive than changing objects

population (0.035 ms/object and 0.14825 ms/query).

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 10

Number of queries [*1000]

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

SEA

Fig. 18 CPU time versus number of queries

As shown in figure 19, as the objects population increases,

the processing time for dynamic queries increases due to

increasing the number of accessed objects inside visited

cells. As shown in figure 20, the line slope between 10k

and 30k is higher than the line between 30k and 50k,

where the percentage of incoming objects increases (equals

to or more than outgoing) avoiding re-computation

processing. As shown in figures 21 and 22, the processing

time increases with increasing the number of moving and

static queries respectively.

0

100

200

300

400

500

600

10 30 50

Number of objects [*1000]

N
N

 t
im

e
[m

s]

CkNN

CPM

Figure 19 NN computation time versus number of objects

0

500

1000

1500

2000

2500

3000

10 30 50

Number of objects [*1000]

U
H

 t
im

e
[m

s]

CkNN

CPM

Figure 20 UH computation time versus number of objects

0

100

200

300

400

500

600

1 5 10

Number of queries [*1000]

N
N

 t
im

e
[m

s]

CkNN

CPM

Figure 21 NN computation time versus number of queries

5.4 Effect of location update rate

In order to quantify the effect of the probability that

objects/queries move within a timestamp (i.e., object/query

agility) on the performance of CkNN, CPM and SEA,

object/query agility vary from 10% to 50% and keep the

remaining parameters fixed to their default values

respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

82

0

500

1000

1500

2000

2500

3000

3500

10% 30% 50%

Object agility

C
P

U
 t

im
e

[m
s]

CkNN

CPM

SEA

Figure 23 CPU time versus location update rate of objects

As shown in figures 23 and 24, the running time of CkNN,

CPM and SEA are increasing linearly with increasing

object and query agility respectively as mentioned in [3, 11,

14]. The performance of CkNN still outperforms CPM and

SEA under all settings.

0

500

1000

1500

2000

2500

3000

3500

10% 30% 50%

Query agility

C
P

U
 t

im
e

[m
s] CkNN

CPM

SEA

Figure 24 CPU time versus location update rate of queries

0

50

100

150

200

250

300

10% 30% 50%

Object agility

C
P

U
 t

im
e
 [

m
s]

CkNN

CPM

Figure 25 NN computation time versus object agility

Figure 25 illustrates the performance of moving queries

processing over moving objects which is slightly increased

due to: 1) computing NN set for those queries from scratch,

2) the object population around each query (if objects

population increases, the number of accessed objects is

increased and vice versa). Figure 26 shows that as object

agility increases, the number of moving objects increases

the time consumed in updating objects location and re-

evaluating stationary queries. As shown in Figure 27, time

consumed in evaluating NNs for moving queries in CkNN

and CPM increases linearly due to increasing the number

of moving queries. But from figure 28, the time consumed

in re-evaluating NNs for static queries in CkNN and CPM

is insensitive to the query agility.

0

100

200

300

400

500

600

700

800

900

1000

10% 30% 50%

Object agility

U
H

 t
im

e
[m

s]

CkNN

CPM

Figure 26 UH computation time versus object agility

0

50

100

150

200

250

300

350

400

450

10% 30% 50%

Query agility

N
N

 t
im

e
[m

s]

CkNN

CPM

Figure 27 NN computation time versus query agility

0

100

200

300

400

500

600

700

800

900

1000

10% 30% 50%

Query agility

U
H

 t
im

e
[m

s]

CkNN

CPM

Figure 28 UH computation time versus query agility

5.5 Effect of object/query speed

The speed of the moving object / query is classified to

three types in the used generator [9], slow, medium, and

fast which are mentioned before.

Figures 29 and 30 compare the overall CPU time of CkNN,

CPM and SEA with respect to the object/query speed

respectively. The faster objects speed is, the farther they

move. This will make more in/out objects inside NN set for

static queries searching region, to check more objects by

these queries. Therefore, the query processing cost

increases as shown in figures 29 and 32. In case of SEA

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

83

algorithm, as the object or query moves farther, the

searching radius increases which will increase the CPU

time as shown in figures 29 and 30.

0

500

1000

1500

2000

2500

3000

3500

4000

small medium fast

Object speed

C
P

U
 t

im
e

[m
s]

CkNN

CPM

SEA

Figure 29 CPU time versus objects speed

0

500

1000

1500

2000

2500

3000

3500

small medium fast

Query speed

C
P

U
 t

im
e

[m
s]

CkNN

CPM

SEA

Figure 30 CPU time versus queries speed

0

50

100

150

200

250

300

small medium fast

Object speed

N
N

 t
im

e
[m

s]

CkNN

CPM

Figure 31 NN computation time versus object speed

In case of computing NNs of moving queries as shown in

figure 31, the processing cost is not influenced by object

speed, since CkNN and CPM compute NNs from scratch.

On the contrary, as showed in figure 30, the performance

of CkNN and CPM is not influenced by query speed, since

these two methods compute k-NN of moved queries from

scratch. These figures illustrate that CkNN outperforms

CPM and SEA under all object/query speeds as mentioned

in [3, 11].

0

100

200

300

400

500

600

700

800

900

1000

small medium fast

Object speed

U
H

 t
im

e
[m

s]

CkNN

CPM

Figure 32 UH computation time versus object speed

6. Accuracy analysis during query processing

In this study, all proposed algorithms are exact. But the

NN set results differ for CkNN, CPM and SEA algorithms

during query processing depending on the average objects

population in query cell and levels and the grid granularity.

So an analysis will be done to determine the accuracy of

the instantaneous NN set with respect to the final result

and the current searching radius error with the final one to

demonstrate well how these algorithms behave as

searching process in-work. In order to investigate the

accuracy during query processing, it has to be known that

as the grid cell size increases, the average objects

population for each cell decrease and as the required k

objects increase, the visited cells increase too. Therefore,

two different cases for two moving query point using the

default values in table 1 with the same time-stamp will be

investigated bellow:

6.1 Case 1

This case represents a query point with a high objects

population inside its cell (for G = 32, cq contains 54

objects but for G = 128, cq contains 8 objects and lvl-1

contains 30 objects).

6.1.1 For G = 32

Figures 33, 34 show the incoming NN objects, where all

objects distances are divided by the final query best

distance, objects above 1 are not included in the final NN

set (false NN objects) and objects on and below 1 are the

final NN set (true NN objects).

Using SEA algorithm, all queries searching radius are

computed before computing NN set. Then these queries

are processed depending on the checked cell starting from

far cells then getting closer until reaching the query cell

and then getting far again. As in figure 33, all first 35

objects inserted into NN set are not in the final NN result

having 0% NN accuracy, then the NN accuracy is

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

84

increased as true NN objects are inserted till 100% as

shown in figure 35 (false NN objects = 57).

0

0.5

1

1.5

2

2.5

0 20 40 60 80
Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

] Objects

Searching radius

Fig. 33 Incoming NN objects for SEA (case-1: G = 32)

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

] Objects

Searching
radius

Fig. 34 Incoming NN objects for CkNN & CPM (case-1: G = 32)

0

40

80

120

160

200

240

0 30 60 90

Number of processed objects

S
R

 E
rr

o
r
 [

%
]

0

20

40

60

80

100

120

N
N

 A
cc

u
ra

cy
 [

%
]

CkNN_SR CPM_SR SEA_SR

CkNN_NN CPM_NN SEA_NN

Figure 35 Searching radius error and NN accuracy (case-1: G = 32)

In this case, CPM and CkNN algorithms have the same

mechanism, where cq (level 0) is checked first (en-heaped

into and de-heaped from SH only in case of CPM). The

searching radius is set first to the maximum distance

between the query cell and point. Hence this cell contains

54 objects in this case, a true NN objects are inserted as

shown in figure 34 to increase the NN accuracy linearly

with the number of inserted objects till 100% as shown in

figure 35 (where false NN objects = 24). The searching

radius error as shown in figure 35 is reduced after inserting

first 32 objects, where in case of CkNN and CPM, the

error suddenly decreases from 180% to 115% (NN

accuracy  45%) but in case of SEA the error decreases

from 120% to 105% (NN accuracy = 0%).

6.1.2 For G = 128

Using SEA algorithm, as shown in figure 36, the searching

radius initially set as in case of G = 32 because it only

depends on the displacement of the query and the

movement of the last NN set candidates, all first 26 objects

inserted into NN set are not in the final NN result having

0% NN accuracy, then the NN accuracy is increased as

true NN objects are inserted till 100% as shown in figure

38 (where false NN objects = 36).

0

0.5

1

1.5

2

2.5

0 20 40 60 80

Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

] Objects

Searching radius

Fig. 36 Incoming NN objects for SEA (case-1: G = 128)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40
Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

] Objects

Searching radius

Fig. 37 Incoming NN objects for CkNN & CPM (case-1: G = 128)

-80

-40

0

40

80

120

160

0 10 20 30 40 50 60 70

Number of processed objects

S
R

 E
rr

o
r

[%
]

0

20

40

60

80

100

120

N
N

 A
cc

u
ra

cy
 [

%
]

CkNN_SR CPM_SR SEA_SR

CKNN_NN CPM_NN SEA_NN

Fig. 38 Searching radius error and NN accuracy (case-1: G = 128)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

85

Using CkNN algorithm, while the query cell contains 8

objects then all these objects are inserted directly in NN set.

But for level 1 that contain 30 objects (more than 24), this

level will be partitioned to 8 cells and sorted in heap in an

ascending manner to be processed as CPM algorithm as

shown in figure 37 where true NN objects are inserted to

increase the NN accuracy linearly with the number of

inserted objects till 100% as shown in figure 38 (where

false NN objects = 8). The searching radius error as shown

in figure 38 is reduced after inserting first 32 objects,

where in case of CkNN and CPM the error decreases from

45% to 20% (NN accuracy  80%) but in case of SEA the

error decrease from 120% to 100% (NN accuracy = 18%).

6.2 Case 2

This case represents a query point with low objects

population inside its cell and levels (for G = 32, cq contains

2 objects, lvl-1 = 21 objects and lvl-2 = 66 objects but for

G = 128, cq contains no objects, lvl-1 = 2 objects, lvl-2 = 0,

lvl-3 = 9, lvl-4 = 1, lvl-5 = 10, lvl-6 = 8, lvl-7 = 17).

6.2.1 For G = 32

Using SEA algorithm, as shown in figure 39, all first 9

objects inserted into NN set are outside the final NN result

having 0% NN accuracy, then the NN accuracy is

increased as true NN objects are inserted till 100% as

shown in figure 42 (where false NN objects = 25).

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

]

Objects

Searching radius

Fig. 39 Incoming NN objects for SEA (case-2: G = 32)

Using CPM algorithm, there are 12 cells de-heaped from

SH (cq, lvl-1 contains 8 cells and 3 cells from lvl-2), where

only 8 cells have objects as shown in figure 40 (4 empty

cells en-heaped and de-heaped). As true NN objects are

inserted, the NN accuracy increases linearly with the

number of inserted objects till 100% as shown in figure 42

(where false NN objects = 10). Using CkNN algorithm, 23

objects inside cq and level 1 are inserted directly in NN set

(less than 32). But for level 2 that contain 66 objects (more

than 9), this level will be partitioned to 16 cells and sorted

in heap in an ascending manner to be processed as CPM

algorithm (only 3 cells de-heaped) as shown in figure 41

where true NN objects are inserted to increase the NN

accuracy linearly with the number of inserted objects till

100% as shown in figure 42 (false NN = 10).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50

Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

]

Objects

Searching radius

Fig. 40 Incoming NN objects for CPM (case-2: G = 32)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50

Number of processed objects

O
b

je
c
t

d
is

ta
n

ce
 [

*
b

es
tD

]

Objects

Searching radius

Fig. 41 Incoming NN objects for CkNN (case-2: G = 32)

0

20

40

60

80

100

0 20 40 60

Number of processed objects

N
N

 A
cc

u
ra

cy
 [

%
]

CkNN_NN

CPM_NN

SEA_NN

Fig. 42 NN accuracy during query processing (case-2: G = 32)

-60

-40

-20

0

20

40

0 20 40 60

Number of processed objects

S
R

 E
rr

o
r
 [

%
]

CkNN_SR
CPM_SR
SEA_SR

Fig. 43 Searching radius error during query processing (case-2: G=32)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

86

The searching radius error as shown in figure 43 is reduced

after inserting the first 32 objects, where in case of CkNN

and CPM, the error decreases from 40% to 15% (NN

accuracy  75%) but in case of SEA the error decreases

from 16% to 15% (NN accuracy = 28%).

6.2.2 For G = 128

Using SEA algorithm, as shown in figure 44, all first 12

objects inserted into NN set are outside the final NN result

having 0% NN accuracy, then the NN accuracy is

increased as true NN objects are inserted till 100% as

shown in figure 47 (where false NN objects = 25).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60

Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

]

Objects

Searching radius

Fig. 44 Incoming NN objects for SEA algorithm (case-2: G = 128)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

]

Objects
Searching radius

Fig. 45 Incoming NN objects for CPM algorithm (case-2: G = 128)

Using CPM algorithm, as shown in figure 45, there are 12

cells de-heaped from SH (cq = 8, cells, lvl-1 = 16 cells, lvl-

2 = 24, lvl-3 = 32, lvl-4 = 40, lvl-5 = 48, lvl-6 = 56 and 2

cells only from lvl-7), where only 20 cells have objects

(207 empty cells en-heaped and de-heaped). As true NN

objects are inserted, the NN accuracy increases linearly

with the number of inserted objects till 100% as shown in

figure 47 (where false NN objects = 2).

Using CkNN algorithm, as shown in figure 46, 30 objects

inside levels from 0 to 6 are inserted directly in NN set

(less than 32). But for level 7 that contain 17 objects (more

than 2), this level will be partitioned to 56 cells and sorted

in heap in an ascending manner to be processed as CPM

algorithm (2 cells de-heaped) where true NN objects are

inserted to increase the NN accuracy linearly with the

number of inserted objects till 100% as shown in figure 47

(false NN objects = 5). The searching radius error as

shown in figure 48 is reduced after inserting first 32

objects, where in case of CkNN and CPM the error

decreases from 22% and 12% respectively to 5% (NN

accuracy  75% and 94%) but in case of SEA, the error

decreases from 16% to 5% (NN accuracy = 28%).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40
Number of processed objects

O
b

je
ct

 d
is

ta
n

ce
 [

*
b

es
tD

]

Objects

Searching radius

Fig. 46 Incoming NN objects for CkNN algorithm (case-2: G = 128)

0

20

40

60

80

100

0 20 40 60

Number of processed objects

N
N

 A
cc

u
ra

cy
 [

%
]

CkNN_NN

CPM_NN

SEA_NN

Fig. 47 NN accuracy during query processing (case-2: G = 128)

-90

-60

-30

0

30

0 20 40 60

Number of processed objects

S
R

 E
rr

o
r

[%
]

CkNN_SR

CPM_SR

SEA_SR

Fig. 48 Searching radius error during query processing (case-2: G = 128)

7. Conclusion

Three different algorithms, including the well-known CPM,

SEA-CNN, and CkNN algorithm which are the most

famous algorithms based on grid index technique are

compared together. The implementation of these

algorithms has been done using C# programming language.

All simulations have been done on Intel 2 GHz CPU with 1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

87

GB memory. The results of these simulations showed a

good agreement with the theoretical comparison mentioned

in [5]. In order to simulate these algorithms successfully,

synthetic spatial-temporal data is generated using a well-

defined objects generator [9].

A comprehensible performance evaluation between these

algorithms has been done according to different parameters.

These parameters are grid size, number of required nearest

neighbors, total number of objects/queries, location update

rate of objects/queries and object/query speed, where the

performance of CkNN outperforms CPM and SEA under

all conditions. SEA is the worst algorithm used compared

with other algorithms, because for each query it visits all

cells in its influence region (not using a sorted heap). CPM

consumes more memory for query processing than CkNN

algorithm, where CPM assigns each query a visit list and a

sorted heap separately, but CkNN uses one sorted heap to

process all queries. CPM re-computes query results from

scratch for all moved queries. Although CPM utilizes a

visit list as a cache of visited cells, all objects in those cells

still need to be re-checked. This wastes the computation

resource, since most of those objects are already checked

in incremental update algorithm. On the contrary, CkNN

keeps the objects in kNN-list and reuses them. Meanwhile,

since the k-NN search algorithm of CkNN is more efficient,

the overall running time of CkNN is less than that of CPM.

For grid size parameter, there is an optimum value for best

performance depending on the objects agility and

population, Where decreasing object agility will decrease

the overall processing time and also decrease its grid size

optimum value, and increasing object population will

increase the overall processing time and also increase its

grid size optimum value.

Finaly, an accuracy measure is done to evaluate the NN set

results for proposed algorithms during query processing

depending on the average objects population in each cell.

This analysis determines the accuracy of the instantaneous

NN set with respect to the final result and the current

searching radius error with the final one to demonstrate

how these algorithms behave as searching process in-work.

Two different cases have been studied, for two moving

queries points in high and low objects population region

respectively. The SEA algorithm results show that for

query with high objects population, as the grid size

increases, the number of false objects decrease, but for

queries with low objects population, as the grid size

increases, the number of false objects increase. The CkNN

and CPM algorithm results show that for both queries with

high and low objects population, as the grid size increases,

the number of false objects decrease. The CPM false

objects is less than or equal to the CkNN false objects but

CkNN consumes less cost due to its faster searching than

CPM as mentioned before.

References
[1] D. Kalashnikov, S. Prabhakar, W. G.Aref, and

S. Hambrusch, ”Efficient Evaluation of Continuous Range

Queries on Moving Objects”, In proceeding of 13th

International Conference on Database and Expert systems

Applications (DEXA 2002), Lecture Notes In Computer

Science; Vol. 2453, pages 731-740, 2002.

[2] Hae Don Chon, Divyakant Agrawal, and Amr El Abbadi,

"Range and KNN Query Processing for Moving Objects in

Grid Model", Mobile Network and Applications (MONET),

Vol. 8, Issue No. 4, pages 401-412, August 2004.

[3] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris

Papadias. “Conceptual Partitioning: An Efficient Method

for Continuous Nearest Neighbor Monitoring”, In

proceeding of ACM SIGMOD, pages 634-645, Baltimore,

Maryland, USA, June 14–16, 2005.

[4] Kyriakos Mouratidis. “Research Statement”, School of

Information Systems, Singapore Management University,

February 2007.

[5] Laila ElFangary , Mahmoud Ahmed and Shaimaa Bakr ,

“Review of k-Nearest Neighbor Methods Based on Grid

indexing technique”, The 2009 World Congress in

Computer Science, Computer Engineering, and Applied

Computing (WORLDCOMP’09), Las Vegas, USA, July 13-

16, 2009.

[6] Mohamed F. Mokbel, Xiaopeng Xiong, Walid G. Aref,

Suzanne E. Hambrusch, Sunil Prabhakar, and Moustafa A.

Hammad., “PLACE: A Query Processor for Handling Real-

Time Spatial-Temporal Data Streams”, In proceedings of

the 30th International Conference on Very Large Data Bases

Conference (VLDB), pages 1377-1380, Toronto, Canada,

29th August - 3rd September, 2004.

[7] Mohamed F. Mokbel, "Scalable Continuous Query

Processing in Location-Aware Database Services", PhD

thesis, Purdue University, United States, August 2005.

[8] Uri Shaft and Raghu Ramakrishnan, "Theory of Nearest

Neighbors Indexability", In ACM Transactions on Database

Systems, Vol. 31, Issue No. 3, pages 814-838, September

2006.

[9] Thomas Brinkhoff, “A Framework for Generating Network-

Based Moving Objects”, In GeoInformatica, Vol. 6, Issue

No. 2, pp. 153-180, June 2002.

[10] Wang Huibing, Tang Xinming, Lei Bing, Yang Ping, and

Chu Haifeng, “Modeling spatial-temporal data in version-

difference model”, International Symposium on Spatio-

temporal Modeling, Spatial Reasoning, Analysis, Data

Mining and Data Fusion, Beijing, China, Aug 27- 29, 2005.

[11] Wei Zhang, Jianzhong Li, and Haiwei Pan,”Processing

Continuous K-Nearest Neighbor Queries in Location-

Dependent Applications”, International Journal of

Computer Science and Network Security, Vol. 6, Issue No.

3A, pages 1-9 , March 2006.

[12] Xiaohui Yu, Ken Q. Pu, and Nick Koudas, "Monitoring k-

Nearest Neighbor Queries over Moving Objects", 21st

International Conference on Data Engineering (ICDE 2005),

pages 631-642, Tokyo, Japan, April 5-8, 2005.

[13] Xiaopeng Xiong, Mohamed F. Mokbel, Walid G.Aref,

Susanne E.Hambrusch, and Sunil Prabhakar, "Scalable

Spatio-temporal Continuous Query Processing for Location-

aware Services", In 16th International Conference on

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

88

Scientific and Statistical Databases, pages 317-326,

Santorini Island, Greece, June 21-23, 2004.

[14] Xiaopeng Xiong, Mohamed F.Mokbel, and Walid G.Aref,

"SEA-CNN: Scalable Processing of Continuous K-Nearest

Neighbor Queries in Spatio-Temporal Database", In the

International Conference of Data Engineering (ICDE),

pages 643-654, Tokyo, Japan, April 5-8, 2005.

[15] Xuegang Huang, Christian S.jensen, and Simonas

Saltenis,"Multiple K-nearest Neighbor Query Processing in

Spatial Network databases", 10th East-European Conference

on Advancesin Databases and Information Systems(ADBIS

2006), pages 266-281, Hellas, September 3-7, 2006.

[16] Zhexuan Song and Nick Roussopoulos, "K-Nearest

Neighbor Search for Moving Query Point", In proceedings

of the 7th International Symposium on Advances in Spatial

and Temporal Databases, Lecture Notes In Computer

Science; Vol. 2121, pages 79-96, 2001.

[17] N. Koudas, B. Ooi, K. Tan, and R. Zhang, “Approximate

NN Queries on Streams with Guaranteed Error/Performance

Bounds” In proceeding of the 30th International Conference

for Very Large Data Bases (VLDB’04), Toronto,

Canada ,2004.

[18] Rimma V. Nehme," Continuous Query Processing on

Spatio-Temporal Data Streams", M.Sc thesis, Faculty of

Worcester Polytechnic Institute, June 2005.

[19] Yu-Ling Hsueh, Roger Zimmermann, and Meng-Han Yang.

“Approximate Continuous K Nearest Neighbor Queries for

Continuous Moving Objects with Pre-Defined Paths”, In

proceedings of the 2nd International Workshop on

Conceptual Modeling for Geographical Information

Systems (CoMoGIS 2005), LNCS 3770, pp. 270-279,

Klagenfurt, Austria, October 24-28, 2005.

Laila ElFangary is currently Associate Prof. in Information

Systems Department, Faculty of Computers and Information -

Helwan University, Cairo, Egypt.

Mahmoud Ahmed is currently a post doctoral fellow in

University of Waterloo, Ontario, Canada and Assistant Prof. in

Information Systems Department, Faculty of Computers and

Information - Helwan University, Cairo, Egypt.

Shaimaa Bakr received the B.S. degree in Information

Systems from Faculty of Computers and Information, Helwan

University, Egypt in 2001. She works as an instructor in

Computer Science Department, in Higher Institute of

Engineering, Computer Science and Management, Cairo, Egypt.

She is now finalizing her M.S. in Information Systems.

