
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

101

Manuscript received December 5, 2009
Manuscript revised December 20, 2009

A Highly Scalable and Efficient Distributed File Storage System

 Fawad Riasat Raja† Dr. Adeel Akram††

Faculty of Telecommunication & Information Engineering
University of Engineering & Technology Taxila, Pakistan

ABSTRACT

The need and use of large scale distributed storage has rapidly
increased in last few years. Organizations need Terabytes of
storage for their operational data and backups. Large storage
systems are the ultimate solution, but they are very expensive and
require higher degree of skills for their operation and
maintenance e.g. Storage Area Network (SAN). We propose “A
Highly Scalable and Efficient Distributed File Storage System”
that is reliable, inexpensive and easy to maintain. Our system is
based on peer-to-peer network architecture. To ensure the
reliability of the system we use a technique of erasure codes
known as Luby Transform (LT). The System is designed for
deployment in Local Area Networks (LAN) but with minimal
changes it can be extended for Wide Area Networks (WAN) and
Internet.

Key words:
Distributed Storage Systems, Peer-to-Peer Networks, Consistent
Hashing, Data Blocks.

1. INTRODUCTION

With the passage of time, storage space requirements of
small businesses to large enterprises increased by many
folds for archival of their operational data and backups.
Information in the form of e-mails, documents,
presentations, databases, images and multimedia contents
etc., require Terabytes of storage space. Storing
information and managing its storage in a limited budget is
a critical issue for small businesses as well as for large
enterprises.

Vendors come up with different solutions day by day but
these solutions are very expensive and hard to maintain.
Some organizations uses file servers to overcome their
storage requirements and when the need of storage grows,
they add more hard disks or tape drives in their storage
servers' farm to increase their storage capacity. For
reliability, replication is used between the dedicated
servers while their disk drives are organized in the form of
RAID arrays e.g. RAID 1+0 or RAID 5. These types of
storage solutions are not scalable and their management is
another

important issue [1]. Some of the storage systems use
clustering technology [2] [3].
 .
In Cluster technology, many computers or storage nodes
are connected together using a SAN. But storage nodes
connected in a cluster can share same account information
with each other that may results in obvious security issues.
Another problem with this solution is its cost and
management.

We come up with a solution that addresses the above
mentioned problems. Nowadays, a standard desktop PC
has enormous computing and storage capacity. Usually a
standard PC contains more than 100 GB Hard Disk Drive
(HDD), 1 GB RAM and 2GHz or higher processor. A
typical installation of an operating system and other
required application software do not consume more than
20 to 30 GB of HDD storage. This leaves on the average
about 70% of the storage space to be unused, especially in
case of computers used in Laboratories and office
environment. A small organization has more than 20 PCs.
A University LAB for example, may contain on average
around 30 PCs with above mentioned specifications. If the
available storage capacity of these PCs is combined
together, then a single LAB can provide 30 x 70 = 2100
GB of storage capacity. This surplus multi-Terabytes
storage capacity remains unused in most of these LABs
and can be utilized if combined to form a Large Virtual
Storage Space to store huge amount of data. This
motivation guided us in developing a Large Distributed
File Storage System based on available storage capacities
of existing PCs.

Our proposed system utilizes unused storage capacity of
desktop machines (PCs) operating in small businesses,
large enterprises or universities. Our design is based on
completely decentralized (peer-to-peer) architecture. Main
reasons behind using the peer-to peer architecture instead
of client server architecture are:

• Resilience to failure
• Load Balancing
• Higher availability of resources

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

102

This solution is also very cost effective because any
organization whether small or large, can utilize this system
over their existing resources (desktop machines) without
purchasing any extra hardware or software components.
We intend to make our system Open Source for Public use.
The reliability of the system is achieved by using erasure
codes for encoding and decoding of data blocks.

2. OVERVIEW

To ensure the data integrity and reliability we use a
technique of erasure coding known as Luby Transform
codes. Because of this encoding and decoding scheme our
system can work even when some nodes (PCs) are offline.
Section 3 describes the system architecture in detail.
Section 4 states the system implementation. Section 5
compares our system with other Distributed Storage
Systems. Section 6 concludes our work with discussion of
future directions.

3. SYSTEM ARCHITECTURE

Our system is divided into the five modules as shown in
[Figure.1].

• Graphical User Interface (GUI)
• Directory Manager
• Forward Error Correcting (FEC)
• Block Manager
• Node Look-up Service

Figure.1 System Architecture

Before getting into the details of the system, let's have a
brief overview of the high level working of our system.
GUI module provides an interface for end users to interact
with the system e.g. to upload, download and delete files
etc. Directory Manager is responsible to split each file into
smaller chunks also known as data blocks and forward
these data blocks to FEC module for encoding and
decoding. Directory Manager is also responsible for
maintaining and updating the directory information. FEC

module is responsible for receiving these data blocks from
Directory Manager and encoding or decoding them for
uploading and downloading as files respectively. FEC
module replicates the data blocks to ensure the data
reliability. Block Manager is responsible to receive the
data blocks from Directory Manager and computes content
hash of each data block to generate 160 bit hash key for
each block. Each Data block is identified by this 160 bit
hash key. Node Look-Up Service interacts with Block
Manager and receives 160 bit hash key of each data block.
On the basis of hash key, Node Look-Up Service identifies
a node in the network that is responsible for
storage/retrieval of that particular data block.

3.1 Graphical User Interface (GUI)

GUI gives the visual appearance of the virtual file system
to the end user. GUI color schemes, layout, working and
behavior are quite similar to Windows Explorer. Windows
XP style task pane provides easy access to common
operations and gives appealing look. Standard Toolbars,
popup menus and shortcut keys make operation of
software easy for all type of users. Easy to Use, Easy
accessibility to functions and Appealing appearance are the
main features of GUI.

3.2 Directory Manager

Directory Manager communicates with FEC and Block
Manager Modules. Using the primitive functions provided
by these modules Directory Manager provides more
required features. Directory Manager also handles the
virtual movements (move) and replication (copy paste)
functions. This module also performs necessary
transformations on data to make it understandable for a
user or another module that uses it. Two major functions of
Directory Manager are File Operations and Directory
Navigation as shown in [Figure. 2].

Figure.2 Basic Functions of Directory Manager

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

103

3.2.1 File Operations

Files and directories creation are core functions of any
storage system. File and directory creation process is a bit
complicated in our system as compared to a local real file
system. We handled the complexity in the way so that for
the users, it is similar to creating files/directories on local
file system.
File Operations consists of File Creation/Uploading, File
Downloading and Deletion of a File.

File Uploading is performed by reading the file from local
file system. Then file is split into number of smaller
chunks and these chunks are passed to FEC module to
encode them. Encoded chunks are forwarded to Block
Manager for saving them on the nodes connected through
a peer to peer network. On success file information is
added to XML File that provides storage file and directory
manager for all users. Finally GUI is updated to reflect
current changes.

Downloading a file is achieved by reading the file
information from XML File and passing the information to
Block Manager by calling the download function. Block
Manager returns encoded file chunks those are then
decoded by FEC module. On success, Directory Manager
assembles the decoded chunks into a complete file and
then save the file on local File system.

To delete a file, the file information is read from XML File
and this information (Hash key of INODE block) is passed
to Block Manager by calling the delete function. On
success, file information is deleted from XML File and
update GUI to reflect current changes.

3.2.2 Directory Navigation

Directory Navigation contains methods to perform
navigation within the directory structure of a user.
Navigation is visually same as in Windows explorer.
Technically it is quite different from usual navigation
operations as there is no real file system available and no
built in methods could be used. Information for Directory
structure of each user is maintained in an XML File.
Directory navigation provides methods to navigate through
this XML File and provides required data structures.

3.3 Forward Error Correcting (FEC Module)

FEC module interacts with Directory Manager Module.
Core functionality of this module is to perform encoding
and decoding of data blocks (file chunks) provided by the
Directory Manager Module, to ensure the availability and
reliability of the system.

As in Distributed Storage Systems, a file is stored in the
form of chunks over different nodes so it may possible that

some nodes are unavailable while retrieving the file, which
may results in corruption of original file. This is the major
problem in distributed storage systems those are based on
peer to peer networks. To overcome this Problem, FEC
module is based on Luby Transform codes.

Luby Transform (LT) codes are a class of erasure codes,
called universal erasure codes. Length of symbol can be
arbitrary for the codes, from one-bit binary symbols to
general l-bit symbols. If the original data consists of n
input symbols then each encoding symbol can be
generated, independently of all other encoding symbols, on
average by O(ln(n/δ)) symbol operations, and the k
original input symbols can be recovered from any n+O(√n
ln2(n/δ)) of the encoding symbols with probability 1 − δ
by on average O(n . ln(n/δ)) symbol operations [4].

If encoded blocks are lost then entire file must be
reconstructed or re-encoded to the network and because of
this, all the previous encoded blocks are useless. The
reason behind this is that most of the erasure codes have a
set rate (see E.q. 1).

Rate= fk / (k+l) (1)

Where k is number of original data blocks and l is number
of encoded data blocks [5].

Reed-Solomon and traditional LDPC codes have a set rate.
Because of this they have same major drawback as
mentioned above. This is the reason to choose Luby
Transform Codes, a type of erasure codes but rate-less.

LT codes are rate-less in the sense that the number of
encoding symbols that can be generated from the data is
potentially immeasurable. Encoding symbols can be
generated as many as needed. Decoder can recover an
exact copy of the data from any set of the generated
encoding symbols that are only slightly longer in length
than the data. Decoder can recover the data from minimum
number of encoding symbols. Encoding and decoding
times of LT codes are asymptotically very efficient as a
function of the data length. LT codes are referred as
universal codes in the sense that they are simultaneously
near optimal for every erasure channel and they are very
efficient as the data length grows [4].

3.4 Block Manager

Block Manager provides functionality for reliably
uploading, downloading and deleting of files. The basic
storage unit is a data block (file chunk), which is any kind
of binary data represented by variable length, byte
sequence. Each block is identified by Hash Key which is a
160 bit key. The Hash Key is computed by using SHA-1
hashing algorithm. [Figure.3] represents three basic
functions of Block Manager.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

104

Figure.3 Basic Functions of Block Manager

Block Manager interacts with “Node Look-Up Service”
Module by providing it 160 bit hash key of each block
(chunk) of a file that is to be uploaded. In return “Node
Look-Up Service” module provides addresses (IP
Addresses) of all nodes connected in peer to peer network,
those are responsible for storing these blocks (chunks).
Block Manager creates a TCP connection with each node
and store the particular data block (file chunk) over that
node. TCP Protocol is used for these connections with
each node to ensure the reliability. After successfully
storing/uploading all data blocks of a file over particular
nodes, Block Manager generates an INODE Block which
contains keys of each data block and addresses of all nodes
over which these blocks are stored. Block Manager then
computes hash key of this INODE Block and forward this
key to “Node Look-Up Service”. Node look-Up Service
returns the address of a node in the network that is
responsible for storing this INODE Block. Block Manager
then creates TCP Connection with this node and stores the
INODE Block over it. Block Manager then sends this key
to Directory Manager Module. Directory Manager
maintains this key for downloading or deletion of the file.
For downloading or deletion of the file directory Manager
sends INODE key to Block Manager. Block Manager then
retrieves INODE Block that contains keys of all data
blocks and addresses al all nodes on which these blocks
are stored. Block Manager creates connections with these
nodes to download or delete these data blocks of a file.

Block Manager uses the concept of computing the
contents’ hash of data blocks. Owner count is embedded in
each data block to maintain the information, if there are
more than one owners of a single file. Because of this, a
file with same contents cannot be stored more than once. If
a user tries to upload a file that already exists then owner
count is incremented instead of uploading the file once
more and a message is returned to user that your file is
successfully uploaded. This concept helps in saving the
valuable storage space.

3.4.1 Upload blocks

[Figure.4] represents the functionality of Block Manager in
uploading the data blocks of a file.

Figure.4 Flow chart of Uploading Data Blocks

3.4.2 Download Blocks

[Figure.5] represents the functionality of Block Manager in
downloading the data blocks of a file.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

105

Figure.5 Flow chart of Downloading Data Blocks

3.4.3 Delete Blocks

[Figure.6] represents the functionality of Block Manager in
deleting the data blocks of a file.

Figure.6 Flow chart of Deleting Data Blocks

3.5 Node Look-Up Service

Node Look-Up Service plays a vital role in our system and
performs a routing mechanism. This module interacts with
Block Manager module for receiving the hash key of each
data block of a file that is to be uploaded. On the basis of
this 160 bit hash key Node Look-Up Service depicts a
particular node that is responsible for storing the entire
data block.

There are number of routing protocols available including
Pastry [6], Tapestry [7] and Chord [8]. These are self
organizing and completely decentralized systems. The
functionality of these systems is to map key of a give data
block (file chunk) to a particular node in the network and
provides efficient routing scheme as well as endure node
failures. Our system uses Chord, described and evaluated
in [8], as a routing protocol under Node Look-Up Service
Module. Here we present a brief description of Chord.

Chord is a scalable, fault resilient and efficient peer-to-
peer lookup protocol. Chord addresses the basic problem
of peer to peer applications i.e. the efficient location of the
node that stores a preferred data block. The Chord Protocol
map a given key onto a node and that node is responsible
for storing the value associated with that key. Chord uses
consistent hashing [9] to assign keys to chord nodes.
Consistent Hashing provides load balancing, since each
node receives same number of keys and requires relatively
little movement of keys when nodes join and leave the
system.

A Chord node requires information about O(logN) other
nodes for efficient routing but performance degrades when
that information is out of date. Because nodes join and
leave arbitrarily, the consistency of O(logN) sate may be
hard to maintain. Chord has a simple algorithm to maintain
information about other O(logN) nodes. Simplicity,
correctness and Efficiency are the most important features
of Chord those distinguish it from many other peer-to-peer
lookup protocols that’s why we choose Chord as routing
protocols in our system.

4. IMPLEMENTATION

We design this system to run over Windows Platform
therefore we chose .NET framework and VB.NET was
selected as a programming language. [Figure.1] shows the
detailed system architecture and described in Section 3.
The system is based on completely decentralized
architecture i.e. peer-to-peer architecture to ensure fault
tolerance, load balancing and higher availability. To
reduce the complexity of the system it is divided into five
different sub modules.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

106

5. COMPARISON

For architectural comparison, we compared our system
with various other distributed storage systems available in
literature e.g. LANStore [1] is designed only for Local
Area Network and to ensure data reliability it used Reed-
Solomon codes. Because of overhead of Reed-Solomon
Codes they are not much efficient. Distributed Storage
Systems must be used to store and retrieve real time data
and should not act just as a backup system. Distributed
storage system should be much efficient to access real time
data but LANStore is designed just as a backup system
instead of storage system.

OceanStore [10] is a global scale storage system on a
multicast over relay network. It uses Tapestry [7] for
locating nodes responsible for storage/retrieval of data
blocks. To achieve data redundancy OceanStore use both
erasure coding and mirroring. Data nodes in OceanStore
serves different responsibility e.g. inner ring nodes are
used for handling data redundancy. But this solution is not
possible for Laboratories where data nodes are desktop
machines and they are unable to handle much processing
load.

FAB [11] defines a storage system with a block level
interface. This system is designed on the basis of thin
client and thick server model. Client uses SCSI command
for data handling. But this solution is not suitable for small
offices and laboratories.

GFS [3] is much more successful than the systems listed
above. But it is not available to anyone to actually use and
test it. Therefore it is not a feasible solution for companies
that need an in house storage solution.

To overcome all the problems in existing distributed
storage systems we present a much better and inexpensive
solution. Scalability of our system increases because we
use Chord as a routing protocol. Chord is designed for
millions of nodes that’s why our system can work
efficiently for both LAN and WAN. Chord maintains the
system stable when data nodes joins and leaves the
network arbitrarily. To ensure data reliability we use Luby
Transform codes, a technique of erasure codes. LT codes
are rate-less and universal so they don’t require a specific
data block to recover a file from the network. Another
important aspect of our system design is that we compute
the contents’ hash of all data blocks of a file and in each
data block we embed an owner count. Because of this, a
file with same content cannot be stored twice in our system.
This concept helps in saving the valuable storage space
and also increases the efficiency of the system.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a robust storage solution i.e.
highly scalable, efficient, reliable and inexpensive. As the
system is designed for desktop machines, with the passage
of time Processing Power, RAM, and Storage Space of
these machines will increase significantly. Consequently,
with the introduction of newer PCs with higher capacities,
the performance and storage of our System will
automatically increase to cater for backup and archive
requirements of new users and PCs. In future these types
of solutions will be widely used.

We deployed this system over 5 LABs in our university
with desktop machines connected on LAN. In future we
intend to configure it for use over geographically diverse
locations connected via internet and measure its
performance with respect to its scalability, efficiency and
reliability. We would also like to address the security
issues related to the safety of users data from malicious
attacks.

Acknowledgments

We would like to acknowledge Mr. Naveed, Mr. Khurram,
Mr. Imran, Mr. Arsalan, Mr. Tasawer, Mr. Arham and Mr.
Basir for their valuable contribution and support.

References

[1] Bilickiv,V.: LanStore: a highly distributed reliable file
storage system, The 3rd International Conference on .Net
Technologies, University of West Bohemia, Plzen, Czech
Republic, May 30 – June 1, 2006.

[2] M. Abd-El-Malek, W.V. Courtright, C.Cranor, Etal.Ursa

Minor: Versatile Cluster-Based Storage. Proc. Of the 4th
USENIX Conference on FAST.2005.

[3] S. Ghernawat, H. Gobioff, S-T. Leung. The Google File

System. Proc. Of the 19th ACM SOSP. 2003.

[4] Michael Luby. LT codes. In The 43rd Annual IEEE

Symposium on Foundations of Computer Science, 2002.
http://citeseer.ist.psu.edu/luby02lt.html.

[5] www.cs.uc.edu/~annexste/Courses/cs728-008/.../WBVYS8-

MimirPaper.pdf

[6] A. Rowstron and P. Druschel, "Pastry: Scalable,

decentralized object location and routing for large-scale
peer-to-peer systems". IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Heidelberg,
Germany, pages 329-350, November, 2001.

[7] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph," Tapestry:

An infrastructure for faulttolerant widearea location and
routing," UC Berkeley, Tech. Rep. UCB/CSD-01-1141,
April 2001.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

107

[8] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M.
F., AND BALAKRISHNAN, H. Chord: A scalable peer-to-
peer lookup service for internet applications. Tech. Rep. TR-
819, MIT, Cambridge, MA, March 2001.

[9] D.R. Karger, E. Lehrnan, F. Leighton, M. Levine, D. Lewin

and R. Panigrahy, “Consistent Hashing and random trees:
Distributed cashing Protocols for relieving hot spot on the
World Wide Web”, in Proc. 29th Annual. ACM Symp.
Theory of computing, El Paso, TX, May 1997, pp.654663.

[10] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao and

J. Kubiatowicz. Pond: The OceanStore Prototype. In
Proceedings of the Conference on File and Storage
Technology (FAST) 2003.

[11] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.

FAB: Enterprise Storage Systems on a Shoestring. In 8th
Workshop on Hot Topics in Operating Systems
(HOTOSVIII), Kauai, HI, USA, May 2003.

Fawad Riasat Raja received his B.Sc.
degree in Software Engineering from
University of Engineering &
Technology Taxila, Pakistan in 2006.
Currently he is enrolled in M.Sc
degree of Computer Engineering and
also serving as Lecturer in the same
University in the department of

Software Engineering. His areas of interests are Computer
Networks, Software Design & Architecture and Software Testing.

Prof. Dr. Adeel Akram did his
Bachelors in Electrical Engineering
from UET Lahore and MS in Computer
Engineering from National University
of Sciences and Technology,
Rawalpindi, Pakistan in 1995 and 2000
respectively. He completed his PhD in
the area of Ad hoc Wireless Networks
from University of Engineering and

Technology, Taxila, Pakistan in 2007. Dr. Adeel has over 12
years of industrial experience and has worked for Expert Systems
(Pvt) Limited and University of Engineering and Technology
Taxila. He has worked in different domains of technology
including Computer Networks, Wireless Security, Digital
communications, Cryptography, Embedded System Development,
VoIP, and quality assurance.

