
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

168

Manuscript received December 5, 2009
Manuscript revised December 20, 2009

Dynamic Alarm Correlation based on Cellular Learning
Automata in Telecommunication Networks

Mahnaz Imanazari Bonab†, Seyed Majid Noorhosseini††, Faezeh Akbari†††

† , †††Computer Engineering and Information Technology Department, Islamic Azad University,Qazvin, Iran
††Department of Computer Engineering and Information Technology , Amirkabir University of Technology,

Tehran, Iran

Summary
Powerful fault management systems are increasingly required to
ensure robustness and qualitative services. Though alarms are
usually useful for identifying faults in such systems, huge
numbers of alarms generated as a result of some major network
event require efficient management methods and algorithms in
order to discover the root cause in a timely manner. In this paper,
we propose a robust algorithm for recognizing root cause faults
in a reasonable time window by dynamically clustering alarms
and events. Our algorithm is composed of three stages and uses
cellular learning automaton in all stages. Simulations testify to
the high efficiency of this algorithm with different parameters.

Keywords: alarm correlation, dynamic correlation, learning
automata, event correlation, clustering

1. Introduction
Failure management has traditionally been performed by
human operators. Network managers are helped in their
duties by simple network status monitoring software. This
matter has less accuracy nowadays due to the complexity
of the new interconnected networks. Operators must be
assisted in their tasks by various tools other than a simple
monitoring system. By an alarm, we mean a signal which
indicates a failure or malfunction of some elements in the
network. An alarm is an unsolicited message from a
device, typically indicating a problem in the system that
requires repairmen. A single fault may produce a cascade
of alarm from the affected network elements. In fact, a
fault can lead to another one in a chain reaction fashion;
thus, it increases innumerous alarms and masks the really
important ones [1]. An event is a set of correlated alarms
according to a specific fault. But a fault can lead to the
global event composed of different alarms, or several
local events. An event can be composed of several
identical alarms. Moreover, a fault can also lead to other
faults. For each alarm there is one and only one associated
event. Alarms are created in three kinds: periodic alarms,
which are triggered at a regular period, aperiodic alarms,
or alarms which do not seem to be triggered with a
specific period, and finally, alarms which are triggered
only once. These alarms can either be classified as
periodic (with an unknown period) or aperiodic [2]. The
telecommunication network management system is

responsible for the recording of the alarms generated by
the nodes or components in the network, and appears
them to the operator. Operators of network can be
expected to see about millions of alarms in the
management centre.

Many algorithms and methods have been offered for
management of alarms. For example, Behavioral
Proximity (BP) algorithm [3] reduces the number of
alarms by clustering them to their behavior and the other
algorithm is Topographical Proximity (TP) [4] that
exploits topographical information in the alarm data.
CUFRES algorithm [1] and other algorithms have been
offered based on data mining [5][6] and probability[7][8].
Currently, many systems employ event correlation
engines to find fault. The problem of an automatic
identification of events for correlation purposes has been
tackled from various perspectives. Model traversal
approaches aim to represent the interrelations between the
components of the network or the causal relations
between the possible events in the network or a
combination of the two. Correlations are identified as
alarms propagate through the model. Rule-based [9] and
Code-based [10] systems also show the relations between
the events in the system, which specifies correlations
according to a rule-set or codebook. Other AI techniques,
such as neural networks [11], [12] or decision-trees, have
also been applied to the task. Generated Alarms in a
network can create events and clustering of events that
show faults in a system. Types of alarms vary from one
system to another and may be divided into four main
categories [6][2]:

1. Hardware failure

2. Software failure

3. Functional failure (perceived external fault or
feature)

4. Environmental failure (e.g. fire, temperature,
etc.)

In fact, most of alarms do not contain the information
about the root cause of a fault. When a fault occurs in the
networks, it may incur many alarms. So, some alarms are
redundant, which make fault processing more difficult
[13]. Here we offer two definitions for alarm [13]:

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

169

A. Definition 1. An alarm event

An alarm event is defined as Ei=<ei,tn>, i, n=1,2,3,., where
ei is an alarm type and tn is its time of occurance.

B. Definition2. An alarm type

An alarm type is defined as ei=<object_class,object-
instance,alarm-num,desc>, i=1,2,3,., where object-class is
the serial NO. of object class, object-instance is the serial
NO. of object instance, alarm-number is the NO. of alarm
type and desc is the alarm information consisting of alarm
priority and alarm description. When alarms have the
same object-class and object-instance, they cab be
classified in same categories.

The paper examines other subjects as follows. In Section
2, the learning automata are briefly reviewed, Section 3
discusses the motion cellular learning automata and
section 4 illustrates the clustering algorithm based on the
motion cellular learning automata model. The proposed
algorithm is presented in Section 5. Section 6 gives the
simulation results and finally section 7, being the
conclusion, will includes the results and suggestions.

2. Learning Automata (LA)
A learning automaton is a decision-making device that is
able to do finite actions. In each step, a learning
automaton chooses one action from action-set. The
environment evaluates selected actions and automata use
environment answers to choose next action and updates
the internal structure. Automata learn to choose the best
action from action-set [14]. In fact, the objective for the
automaton is to identify the optimal action. Figure 1
depicts the relationship between an automaton and its
environment.

Fig. 1 Relationship between learning automata and its

environment

Environment can be defined by the triple E={α,β,c} where
α={α1,α2,…,αr} represents a finite input set,
β={β1,β2,…,βr} represents the output set, and c =
{c1,c2,…,cr} is a set of penalty probabilities, where each
element ci of c corresponds to one input action
ai.Environments in which β can take only binary values 0
or 1 are referred to as P-models. Further generalization of
the environment allows finite output sets with more than
two elements that take values in the interval [0, 1]. Such
an environment is referred to as Q-model. Finally, when
the output of the environment is a continuous random
variable which assumes values in the interval [0, 1], it is

referred as an S-model. Learning automata are classified
into fixed-structure stochastic and variable-structure
stochastic. In the following, we consider only variable-
structure automaton. A variable-structure automaton is
defined by the quadruple {α,β,p,T} in which
α={α1,α2,…,αr} represents the action set of the automaton,
β={β1,β2,…,βr}represents the input set, p={p1,p2,…,pr}
represents the action probability set, and finally p(n + 1) =
T[α(n),β(n),p(n)] represents the learning algorithm. This
automaton operates as follows. Based on the action
probability set p, the automaton randomly selects an
action αi, and performs it on the environment. After
receiving the environment’s reinforcement signal, the
automaton updates its action probability set based on Eq.
(1), for favourite responses, and Eq.(2) for unfavourite
ones.

)1()()1()1(
)](1[)()1(

npanp
npanpnp

jj

iii

−=+
−+=+

)()1()1/()1(
)2()()1()1(

npbrbnp
npbnp

jj

ii

++−=+
−=+

In these two equations, a and b are received reward and
penalty parameters respectively. S-model, automaton
updates its action probability set based on Eq.(3) and
Eq.(4) .

))(1()).(1())()(
1

)(()()1(

)4(),3()](1.[)).(1()(.).()()1(

npannpb
r
bnnpnp

npannpbnnpnp

jjjj

iiii

−−−−+
−

+=+

−−+−=+

ββ

ββ

where)(nβ is an environment’s reinforcement signal in
the interval [0,1]. For a=b, learning algorithm is called LR-

P , for a<b, it is called LR-P, and for b = 0, it is called LR-I .

A cellular learning automaton is grid cellular that every
cell can have k states. A cellular automaton is composed
of component-set that every component behavior is
modified and is specified based on last experiences and
neighbours behavior [15]. Every cell includes one
automaton with finite states. In one-dimension, every cell
has two close neighbours. Neighbourhood in one-
dimension learning automaton can be extended to involve
more than two neighbours. Automata can assume radius r
for neighbourhood. Of course, automata assumes nearest
neighbours. Cellular automata cells can be set in various
dimension grids where definitions and laws of
neighbourhood have been altered by the proportion of
dimension. A d-dimension cellular learning automaton is
a structure CLA=),,,,(FNAzd φ , where dz is a lattice
of d-tupple of integer numbers , φ is a finite set of states,
A is the set of LAs each of which is assigned to one cell
of the CLA , N= },...,,{ 21 mxxx is a finite subset of Zd

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

170

called neighbourhood vector, βφ →mF : is the local rule

of the cellular learning automaton where β is the set of
values that the reinforcement signal can take [16]. The
General general learning automaton is a two-dimensional
cellular learning automaton. Important types of
neighbourhoods are Moore, Cole and Smith. In Moore
neighbourhood for every central cell there are eight
neighbour cells.

3. Motion Cellular Learning Automata (M-
CLA)
In motion cellular learning automaton, learning automata
are independent of cells [17]. Cell includes one learning
automaton or more than one learning automata, called
active cell. Like cellular learning automata, cellular
structure and local law is impressive in motion cellular
learning automaton to update the internal structure of
learning automaton that resides in the active cell. Only
active neighbour cells next to an active cell affect the
optimized action learning of every learning automaton.
Instructions of the motion cellular learning automaton are
illustrated here. In every moment, every learning
automaton in cellular learning automata chooses one
action from its action-set based on the action probability
vector. Selected action causes movement of the learning
automaton from one cell to another. If pervious cell has
contained learning automaton, then it does not contain any
learning automaton, called inactive cell. Learning
automata actions in every active cell receive reward or
penalty based on current learning automata actions in
neighbouring active cells and current local laws.
Receiving reward and penalty leads to the updating of
internal structure of learning automaton in active cell.
Rewarding or giving penalties continues until the system
arrives to a permanent state or former criterion is existed
in automaton. Updating action of automaton structure is
performed concurrently by learning algorithm in cellular
learning automaton.

4. Clustering algorithm based on motion
cellular learning automata model
 For every n-dimension data is assigned learning automata,
is called an agent [17]. Allowable neighbourhood of agent
for moving is called movement direction. Two similar
agents tend to move in a specific direction and this
similarity of movement direction is called similar-side
direction. Two different agents tend to move in different
directions and this difference of movement direction is
called dissimilar-side direction. In data clustering, every
agent moves to a direction based on its movement
direction probability vector. If the similarity adjustment
between current agent and neighbour agent is high, the
agent changes its movement direction based on similarity

adjustment to the neighbouring agent direction. In other
words, current agent learns movement direction of
neighbour agent and this movement direction is the
suitable direction to find similar agents. Also if the
similarity adjustment between the current agent and
neighbour agent is low, the current agent changes its
movement direction. In other words, current agent's
learning the movement direction of the neighbouring
agent is not a suitable direction to find similar agent.
Dissimilar-side or similar-side direction of agent for
finding similar agent leads to learning of favorite
movement direction based on local information.
Similarity adjustment is the outcome of a similarity
equation. In a motion-learning cellular automaton, every
learning automaton is equal with one agent and that agent
includes an n-dimension data. Every cell includes one
agent, called active cell. Also it is possible to say in every
cell there is more than one agent. A cellular automaton is
assumed an environment for an agent's movement. Every
agent chooses a movement direction based on defined
directions and its neighbourhoods and probability of
different directions. After movement, if the current agent
has neighbouring agents, the current agent updates its
probability vector. This updating is performed based on
reward and penalty that the current agent acquires through
similarity adjustment between current agent and its
neighbour agent. Two laws are assumed for clustering as
follows:

1) Every neighbour agent separately affects the
movement direction of the current agent.

2) The similarity between two agents is calculated
based on Euclidean or cosine distance. If the
similarity between two agents is high, the current
agent is rewarded and will have a similar-side
direction with the neighbouring agent. If the
similarity between the two agents is low, the current
agent receives penalty and will have a dissimilar-side
direction with the neighbouring agent.

5. Proposed Algorithm
An alarm is an unsolicited message from a device,
generally indicating a problem in the system that requires
attention. A single fault may produce a cascade of alarms
from the affected network elements. Generated alarms
form events in an environment and events clustering show
the existence of fault in the network. The proposed
algorithm has three stages: in the first stage, generated
alarm types in cells receive reward or penalty. Every
generated alarm type is given reward and other alarm
types are given penalty in the same and neighbour cells.
In the second stage, primary events are found by captured
rewards in the first stage and other parameters like time
and degree. In the third stage, final event clustering is
performed by motion learning automaton to find whether
fault exists in the network. Every Telecommunication

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

171

node is assumed as a cell. Every cell includes an
automaton. We assume K as the number of alarm types in
a cell. Every node is activated by receiving alarm and the
automaton chooses the suitable action. Then it gives
penalty/reward to the alarm by Eq.(5) and Eq.(6). The
aggregation of probabilities in a cell should be equal to 1/r
that enables us to use motion learning automaton in the
next stage. A is a generated alarm and S is an alarm
collection except the generated alarm in cell. When an
alarm is generated, learning automaton gives reward or
penalty in the same and neighbour nodes based on the
Moore method.

))(1)()(1 Ap
r

ApAp nnn ×−×+=+ αα (5),(6)

kSAsSsSpbSp nn ≤≠⇒∈∀−=+ ||,)()1()(1

Where α is a reward parameter and b is a penalty
parameter, r is the number of telecommunication nodes.
When an alarm type is generated vastly, the alarm
probabilities increase immediately. When an alarm is
generated, rewards and penalties are updated in a cell and
its neighbours. Now, the automaton should find
correlations between the alarm of cell and its neighbours.
We can find faults in system by finding the alarm
correlation between alarms and we can fix it. After
rewarding or giving penalty, every automaton in cells
calculates Eq. (7) for all available events in parallel. All
automata acquire value of AVL(E) and this value is equal.

(7)

rAlarmNumbe

))e(T)e(reedeg)e(R(
)E(AVL

n

0i

n

0i

n

0i iii∑ ∑ ∑= = =
×++

=
γ

Where)(eR is the value of penalties and rewards that the
automaton has given to the alarm type e . As we
mentioned before, alarms are divided into four types:
hardware and software, functional and environmental.
Hardware alarms are important because these alarms can
show the fault core. Functional alarms are conversely
unimportant because these alarms arisen from hardware or
software faults. Degree shows the significance of every
alarm type. In hardware and software alarms, degree is
valuable.)(eT shows the interval between the starting
point of an alarm type until the automaton starts to
calculate the AVL(E) . γ parameter specifies the
resolution to calculate the primary events. If γ value is
high, then the primary events would be found with upside
accuracy. γ causes different number of faults in the
network. In fact, we will not have fixed fault number for
different networks. We can find correct fault number by
changing γ value in the network. Then, every automaton

calculates Eq.(8) for every generated event in its cell. If
Eq.(8) is indefeasible on some events, then these events
are called primary events and If Eq.(8) is not indefeasible
on some events, then these events are called secondary
events:

)()()(deg)(EAVLeTereeeR iii >++ (8)

Primary event numbers impact the final cluster number. In
fact, primary events show final cluster numbers and final
clusters show faults in the system. Every cell including
the primary event is an active cell and a motion-learning
automaton starts to create its own cluster. In proposed
algorithm, we use geographical distance instead of
Euclidean or Cosine distance. Reward and penalty values
of motion learning automaton have been showed in
simulation results.

6. Simulation Results
In this section, we conduct simulations to evaluate our
proposed method. We perform simulations with different
nodes. Alarms are generated absolutely random as the
location and position of nodes are. We perform
simulations with different alarms, nodes numbers and
γ values. We assume four alarm types in different
simulations. Alarm types labeled with {A,B,C,D} and in it
A shows hardware alarms, B shows software alarms, C
shows conditional alarms and D shows environmental
alarms. We assume that an alarm A, B, C, or D can appear
in any node of the network. If we calculate the alarm
correlation for every received alarm then the efficiency of
the system would be decreased because one new alarm
can not probably creates new correlations in the system.
We try to find fault in the interval time or when operator
requests results. In the first simulation, we assume 25
nodes and 2000 generated alarms and different γ in
figure (2). Primary events vary with diverse values of γ .

Fig. 2 Primary event numbers proportion with γ values

We repeated the simulation with different Degrees. In the
next experiment, we assume value less than one for
Degrees. The degree value for A is 1, for B is 0.7 and for
C is 0.3, and Degree value for D is 0.1 with 100 nodes and
7000 alarms. We choose different degrees that these are

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

172

used in Eq.(7). When an alarm is created, degree value is
assigned to it based on its type.

Red color shows that how many hardware events are
primary events in figure (3). When we choose high
coefficient, it shows just hardware events. Coefficient
from 1 to 14 shows four type events that can be primary
and Coefficient from 17.5 to 20 shows hardware events in
figure (3).

Fig. 3 Different alarm types

Experiment shows various primary events with different
Degrees for different alarm types. The best result has been
acquired as stair diagram in which the Degree values of
alarm types are calculated as follows.

Degree A = n

Degree B = 3/4n

Degree C = 2/4n

Degree D = 1/4n

Where n is the node numbers in telecommunication
network. In the next experiment, the degree value for A is
100, for B is 75, and for C it is 50, and the degree value
for D is 25 with 100 nodes and 10000 alarms.

Fig. 4 primary event numbers with evaluated Degrees

Changing the degrees and γ values leads to change in
primary events. The diversity of primary event numbers
directly affects the final fault. Here, we show primary
event with different Degrees. The blue color shows
primary events with similar Degrees.

Fig. 5 Different primary events with 10000 alarms and 100

nodes

After finding the primary events, we should find the final
cluster or the final fault. In this stage, experiments are
repeated for γ =18 by motion learning automaton. After
the second stage, every cell that has primary event is an
active cell and it starts to create its cluster. In motion
learning automaton is used S-model and 51 −= ea ,

11 −= eb . Where ba, are reward and penalty value
respectively. Alarms in clusters are different. Alarms in
cluster show the number of alarms that the network has
generated due to a fault.

Fig. 6 number of alarms in every cluster with 8000 alarms and

100 nodes

This algorithm has only one problem that appears rarely.
This problem occurs when a primary event that has
occurred once in the network is lost. Of course, this
problem occurs rarely. We can design algorithms by
learning machine and other events can recognize its lost
primary event.

7. Conclusion
 In this paper, we have addressed the problem of finding
the root cause of alarms in an alarm flooding situation.
The proposed method introduced in this paper uses
learning automaton dynamically to cluster the incoming
alarms and find the root cause. Our experiments in a
simulated environment show that our method is accurate
90% of the time.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

173

References
[1] Jacques-H.Bellec,M-Tahar Kechadi, ”CUFRES: Clustering

Using Fuzzy Representative Events Selection for the Fault
Recognition Problem in Telecommunication
Network”,Lisboa ,Portugal , ACM , 2007

[2] Jacques-H.Bellec,M-Tahar Kechadi, Joe
Carthy, ”Performance Evaluation of Two Data Mining
Techniques of Network Alarms Analysis”,Conference On
Data mining,Las Vegas ,NV,USA,june 2006

[3] Bellec,J.H., Kechadi , M.T., J.Carthy,”A New Efficient
Clustering Algorithm for Network Alarm
Analysis” ,Coference on Parallel and Distributed
Computed Computing and System, AZ ,USA , Nov 14-16
2005

[4] A.Devit, J.Duffin, and R.Moloney,”topographical
Proximity for Mining Network Alarm Data” ,
USA ,ACM ,aug 22-26 2005

[5] Klause Julisch ,”Mining Alarm Clusters to Improve Alarm
Handling Efficiency” ,Zurich Research Laboratory ,2002

[6] Robert D.Gardner , David A.Harle, “Fault Resolution and
Alarm Correlation in High-Speed Network Using Database
Mining Techniques”, Singapor,9-12 September 1997

[7] Okuthe P. Kogeda, Johnson I. Agbinya and Christian W.
Omlin,” A Probabilistic Approach To Faults Prediction in
Cellular Networks”, ICNICONSMCL’06 , IEEE,2006

[8] Zhen Guo, Guofei Jiang, Haifeng Chen, Kenji Yoshihira,”
Tracking Probabilistic Correlation of Monitoring Data for
Fault Detection in Complex Systems”, Conference on
Dependable Systems and Networks, IEEE,2006

[9] G.Liu, A.Mok,E.Yang,”Composite Events for Network
Event Correlation”,Boston, USA, 1999,pp.247-260

[10] S.Yemini, S.Kliger, E.Mozes,Y.Yemini and
D.Ohsie , ”High Speed and Roubust Event Correlation” ,
IEEE , 1996

[11] R.Gardner and D.Harle,”Alarm Correlation and Network
Fault Resolution Using Kohonen Self-Organising
Map”,IEEE Global Telecom Conf , NewYork ,
NY ,USA ,1997

[12] H.Wietgrerf, K.-D.Tuchs, K.jomann,G.carls,
P.Frohlich ,W.Nejdle and S.Steinfeld,”Using Neural
Network for Alarm Correlation in Cellular Phone
Network” Proc. Of the International Workshop on
Application of Neural Network to Telecommunication
1997

[13] Qingguo Zheng,Ke Xu, Weifeng Lv,Shilong
Ma,”Intelligent Search of Correlation Alarms from
Database Containing Noise Data”,Beijing
100083,china,2002

[14] Thathachar, M.A.L. and Sastry, P.S.; “Varieties of
Learning Automata: An Overview”, IEEE Transaction on
Systems, and Cybernetics-Part B: Cybernetics Vol. 32, No.
6, pp. 711-722, 2002.

[15] Beigy, H. and Meybodi, M.R.; “A Mathematical
Framework for Cellular Learning Automata”, Advances in
Complex Systems, Vol. 7, Nos. 3-4, pp. 295-320,
September/December 2004.

[16] Hamid Beigy, Mohammad Reza Meybodi,” Open
Synchronous Cellular Learning Automata”, The CSI
Journal on Computer Science and Engineering,2003

[17] Meisam Hosseini Sedehi, Mohammad Reza Meybodi,” A
Data Clustering Algorithm based on Cellular Learning

Automata”, Amir Kabir University,Tehran , Iran ,
IDMC'07, 20-21 Nov.2007 [Digests 13th Annual Conf.
Comp Iran]

Mahnaz Imanazari Bonab
received her B.E. degree from
Payamnoor University in 2006. She
received her M.E. degree from Qazvin
Azad University in 2009. Her research
interests include network management,
databases and image processing.

Seyed Majid Noorhosseini
received the B.Sc. and M.Sc degrees
from Amirkabir university of
technology in 1986 and 1989 ,
respectively. He received his PhD
degree from McGill University in
Montreal ,Canada in 1994. He was a
senior scientist at Nortel Networks in
Canada and U.S during 1996-2005,
working in different areas of network
management. He has a US patent
6707795 in alarm correlation method

and system. He is now with the Department of Computer
Engineering and Information Technology at Amirkabir
University of Technology.

Faezeh Akbari received B.E.
degree from Kashan Azad University
in 2004. She received M.E. degree
from Qazvin Azad University in 2009.
Her research interests include network
management as well as sensor and ad
hoc networks.

