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Summary 
Powerful fault management systems are increasingly required to 
ensure robustness and qualitative services. Though alarms are 
usually useful for identifying faults in such systems, huge 
numbers of alarms generated as a result of some major network 
event require efficient   management methods and algorithms in 
order to discover the root cause in a timely manner. In this paper, 
we propose a robust algorithm for recognizing root cause faults 
in a reasonable time window by dynamically clustering alarms 
and events. Our algorithm is composed of three stages and uses 
cellular learning automaton in all stages. Simulations testify to 
the high efficiency of this algorithm with different parameters.  

Keywords: alarm correlation, dynamic correlation, learning 
automata, event correlation, clustering 

 

1. Introduction 
Failure management has traditionally been performed by 
human operators. Network managers are helped in their 
duties by simple network status monitoring software. This 
matter has less accuracy nowadays due to the complexity 
of the new interconnected networks. Operators must be 
assisted in their tasks by various tools other than a simple 
monitoring system. By an alarm, we mean a signal which 
indicates a failure or malfunction of some elements in the 
network. An alarm is an unsolicited message from a 
device, typically indicating a problem in the system that 
requires repairmen. A single fault may produce a cascade 
of alarm from the affected network elements. In fact, a 
fault can lead to another one in a chain reaction fashion; 
thus, it increases innumerous alarms and masks the really 
important ones [1].  An event is a set of correlated alarms 
according to a specific fault. But a fault can lead to the 
global event composed of different alarms, or several 
local events. An event can be composed of several 
identical alarms. Moreover, a fault can also lead to other 
faults. For each alarm there is one and only one associated 
event. Alarms are created in three kinds: periodic alarms, 
which are triggered at a regular period, aperiodic alarms, 
or alarms which do not seem to be triggered with a 
specific period, and finally, alarms which are triggered 
only once. These alarms can either be classified as 
periodic (with an unknown period) or aperiodic [2]. The 
telecommunication network management system is 

responsible for the recording of the alarms generated by 
the nodes or components in the network, and appears 
them to the operator. Operators of network can be 
expected to see about millions of alarms in the 
management centre. 

Many algorithms and methods have been offered for 
management of alarms. For example, Behavioral 
Proximity (BP) algorithm [3] reduces the number of 
alarms by clustering them to their behavior and the other 
algorithm is Topographical Proximity (TP) [4] that 
exploits topographical information in the alarm data. 
CUFRES algorithm [1] and other algorithms have been 
offered based on data mining [5][6] and probability[7][8]. 
Currently, many systems employ event correlation 
engines to find fault. The problem of an automatic 
identification of events for correlation purposes has been 
tackled from various perspectives. Model traversal 
approaches aim to represent the interrelations between the 
components of the network or the causal relations 
between the possible events in the network or a 
combination of the two. Correlations are identified as 
alarms propagate through the model. Rule-based [9] and 
Code-based [10] systems also show the relations between 
the events in the system, which specifies correlations 
according to a rule-set or codebook. Other AI techniques, 
such as neural networks [11], [12] or decision-trees, have 
also been applied to the task. Generated Alarms in a 
network can create events and clustering of events that 
show faults in a system. Types of alarms vary from one 
system to another and may be divided into four main 
categories [6][2]: 

1. Hardware failure 

2. Software failure 

3. Functional failure (perceived external fault or 
feature) 

4. Environmental failure (e.g. fire, temperature, 
etc.) 

In fact, most of alarms do not contain the information 
about the root cause of a fault. When a fault occurs in the 
networks, it may incur many alarms. So, some alarms are 
redundant, which make fault processing more difficult 
[13]. Here we offer two definitions for alarm [13]: 
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A. Definition 1.    An alarm event  

An alarm event is defined as Ei=<ei,tn>, i, n=1,2,3,., where 
ei is an alarm type and tn is its  time of occurance. 

B. Definition2.    An alarm type  

An alarm type is defined as ei=<object_class,object-
instance,alarm-num,desc>, i=1,2,3,., where object-class is 
the serial NO. of object class, object-instance is the serial 
NO. of object instance, alarm-number is the NO. of alarm 
type and desc is the alarm information consisting of alarm 
priority and alarm description. When alarms have the 
same object-class and object-instance, they cab be 
classified in same categories. 

The paper examines other subjects as follows. In Section 
2, the learning automata are briefly reviewed, Section 3 
discusses the motion cellular learning automata and 
section 4 illustrates the clustering algorithm based on the 
motion cellular learning automata model. The proposed 
algorithm is presented in Section 5. Section 6 gives the 
simulation results and finally section 7, being the 
conclusion, will includes the results and suggestions. 

 

2. Learning Automata (LA) 
A learning automaton is a decision-making device that is 
able to do finite actions. In each step, a learning 
automaton chooses one action from action-set. The 
environment evaluates selected actions and automata use 
environment answers to choose next action and updates 
the internal structure. Automata learn to choose the best 
action from action-set [14]. In fact, the objective for the 
automaton is to identify the optimal action. Figure 1 
depicts the relationship between an automaton and its 
environment. 

 
Fig. 1 Relationship between learning automata and its 

environment 

Environment can be defined by the triple E={α,β,c} where 
α={α1,α2,…,αr} represents a finite input set, 
β={β1,β2,…,βr} represents the output set, and c = 
{c1,c2,…,cr} is a set of penalty probabilities, where each 
element ci of c corresponds to one input action 
ai.Environments in which β can take only binary values 0 
or 1 are referred to as P-models. Further generalization of 
the environment allows finite output sets with more than 
two elements that take values in the interval [0, 1]. Such 
an environment is referred to as Q-model. Finally, when 
the output of the environment is a continuous random 
variable which assumes values in the interval [0, 1], it is 

referred as an S-model. Learning automata are classified 
into fixed-structure stochastic and variable-structure 
stochastic. In the following, we consider only variable-
structure automaton. A variable-structure automaton is 
defined by the quadruple {α,β,p,T} in which 
α={α1,α2,…,αr} represents the action set of the automaton, 
β={β1,β2,…,βr}represents the input set, p={p1,p2,…,pr} 
represents the action probability set, and finally p(n + 1) = 
T[α(n),β(n),p(n)] represents the learning algorithm. This 
automaton operates as follows. Based on the action 
probability set p, the automaton randomly selects an 
action αi, and performs it on the environment. After 
receiving the environment’s reinforcement signal, the 
automaton updates its action probability set based on Eq. 
(1), for favourite responses, and Eq.(2) for unfavourite 
ones.   
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In these two equations, a and b are received reward and 
penalty parameters respectively. S-model, automaton 
updates its action probability set based on Eq.(3) and 
Eq.(4) . 
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where )(nβ  is an environment’s reinforcement signal in 
the interval [0,1]. For a=b, learning algorithm is called LR-

P , for  a<b, it is called LR-P, and for b = 0, it is called LR-I . 

A cellular learning automaton is grid cellular that every 
cell can have k states. A cellular automaton is composed 
of component-set that every component behavior is 
modified and is specified based on last experiences and 
neighbours behavior [15]. Every cell includes one 
automaton with finite states. In one-dimension, every cell 
has two close neighbours. Neighbourhood in one-
dimension learning automaton can be extended to involve 
more than two neighbours. Automata can assume radius r 
for neighbourhood. Of course, automata assumes nearest 
neighbours. Cellular automata cells can be set in various 
dimension grids where definitions and laws of 
neighbourhood have been altered by the proportion of 
dimension. A d-dimension cellular learning automaton is 
a structure CLA= ),,,,( FNAzd φ , where dz is a lattice 
of d-tupple of integer numbers , φ  is a finite set of states, 
A is the set of LAs each of which is assigned to one cell 
of the CLA , N= },...,,{ 21 mxxx  is a finite subset of Zd 
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called neighbourhood vector, βφ →mF :  is the local rule 

of the cellular learning automaton where β is the set of 
values that the reinforcement signal can take [16]. The 
General general learning automaton is a two-dimensional 
cellular learning automaton. Important types of 
neighbourhoods are Moore, Cole and Smith. In Moore 
neighbourhood for every central cell there are eight 
neighbour cells. 

 

3. Motion Cellular Learning Automata (M-
CLA)  
In motion cellular learning automaton, learning automata 
are independent of cells [17]. Cell includes one learning 
automaton or more than one learning automata, called 
active cell. Like cellular learning automata, cellular 
structure and local law is impressive in motion cellular 
learning automaton to update the internal structure of 
learning automaton that resides in the active cell. Only 
active neighbour cells next to an active cell affect the 
optimized action learning of every learning automaton. 
Instructions of the motion cellular learning automaton are 
illustrated here. In every moment, every learning 
automaton in cellular learning automata chooses one 
action from its action-set based on the action probability 
vector. Selected action causes movement of the learning 
automaton from one cell to another. If pervious cell has 
contained learning automaton, then it does not contain any 
learning automaton, called inactive cell. Learning 
automata actions in every active cell receive reward or 
penalty based on current learning automata actions in 
neighbouring active cells and current local laws. 
Receiving reward and penalty leads to the updating of 
internal structure of learning automaton in active cell. 
Rewarding or giving penalties continues until the system 
arrives to a permanent state or former criterion is existed 
in automaton. Updating action of automaton structure is 
performed concurrently by learning algorithm in cellular 
learning automaton.  

 

4. Clustering algorithm based on motion 
cellular learning automata model  
 For every n-dimension data is assigned learning automata, 
is called an agent [17]. Allowable neighbourhood of agent 
for moving is called movement direction. Two similar 
agents tend to move in a specific direction and this 
similarity of movement direction is called similar-side 
direction. Two different agents tend to move in different 
directions and this difference of movement direction is 
called dissimilar-side direction. In data clustering, every 
agent moves to a direction based on its movement 
direction probability vector. If the similarity adjustment 
between current agent and neighbour agent is high, the 
agent changes its movement direction based on similarity 

adjustment to the neighbouring agent direction. In other 
words, current agent learns movement direction of 
neighbour agent and this movement direction is the 
suitable direction to find similar agents. Also if the 
similarity adjustment between the current agent and 
neighbour agent is low, the current agent changes its 
movement direction. In other words, current agent's 
learning the movement direction of the neighbouring 
agent is not a suitable direction to find similar agent. 
Dissimilar-side or similar-side direction of agent for 
finding similar agent leads to learning of favorite 
movement direction based on local information. 
Similarity adjustment is the outcome of a similarity 
equation. In a motion-learning cellular automaton, every 
learning automaton is equal with one agent and that agent 
includes an n-dimension data. Every cell includes one 
agent, called active cell. Also it is possible to say in every 
cell there is more than one agent. A cellular automaton is 
assumed an environment for an agent's movement. Every 
agent chooses a movement direction based on defined 
directions and its neighbourhoods and probability of 
different directions. After movement, if the current agent 
has neighbouring agents, the current agent updates its 
probability vector. This updating is performed based on 
reward and penalty that the current agent acquires through 
similarity adjustment between current agent and its 
neighbour agent. Two laws are assumed for clustering as 
follows: 

1)  Every neighbour agent separately affects the 
movement direction of the current agent. 

2)  The similarity between two agents is calculated 
based on Euclidean or cosine distance. If the 
similarity between two agents is high, the current 
agent is rewarded and will have a similar-side 
direction with the neighbouring agent. If the 
similarity between the two agents is low, the current 
agent receives penalty and will have a dissimilar-side 
direction with the neighbouring agent. 

 
5. Proposed Algorithm 
An alarm is an unsolicited message from a device, 
generally indicating a problem in the system that requires 
attention. A single fault may produce a cascade of alarms 
from the affected network elements. Generated alarms 
form events in an environment and events clustering show 
the existence of fault in the network. The proposed 
algorithm has three stages: in the first stage, generated 
alarm types in cells receive reward or penalty. Every 
generated alarm type is given reward and other alarm 
types are given penalty in the same and neighbour cells. 
In the second stage, primary events are found by captured 
rewards in the first stage and other parameters like time 
and degree. In the third stage, final event clustering is 
performed by motion learning automaton to find whether 
fault exists in the network. Every Telecommunication 
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node is assumed as a cell. Every cell includes an 
automaton. We assume K as the number of alarm types in 
a cell. Every node is activated by receiving alarm and the 
automaton chooses the suitable action. Then it gives 
penalty/reward to the alarm by Eq.(5) and Eq.(6). The 
aggregation of probabilities in a cell should be equal to 1/r 
that enables us to use motion learning automaton in the 
next stage. A is a generated alarm and S is an alarm 
collection except the generated alarm in cell. When an 
alarm is generated, learning automaton gives reward or 
penalty in the same and neighbour nodes based on the 
Moore method.  

))(1)()(1 Ap
r

ApAp nnn ×−×+=+ αα       (5),(6) 

kSAsSsSpbSp nn ≤≠⇒∈∀−=+ ||,)()1()(1  

Where α is a reward parameter and b is a penalty 
parameter, r is the number of telecommunication nodes. 
When an alarm type is generated vastly, the alarm 
probabilities increase immediately. When an alarm is 
generated, rewards and penalties are updated in a cell and 
its neighbours.  Now, the automaton should find 
correlations between the alarm of cell and its neighbours. 
We can find faults in system by finding the alarm 
correlation between alarms and we can fix it. After 
rewarding or giving penalty, every automaton in cells 
calculates Eq. (7) for all available events in parallel. All 
automata acquire value of AVL(E) and this value is equal. 
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Where )(eR is the value of penalties and rewards that the 
automaton has given to the alarm type e . As we 
mentioned before, alarms are divided into four types: 
hardware and software, functional and environmental. 
Hardware alarms are important because these alarms can 
show the fault core.  Functional alarms are conversely 
unimportant because these alarms arisen from hardware or 
software faults. Degree  shows the significance of every 
alarm type. In hardware and software alarms, degree is 
valuable. )(eT shows the interval between the starting 
point of an alarm type until the automaton starts to 
calculate the AVL(E) . γ  parameter specifies the 
resolution to calculate the primary events. If γ  value is 
high, then the primary events would be found with upside 
accuracy. γ causes different number of faults in the 
network. In fact, we will not have fixed fault number for 
different networks. We can find correct fault number by 
changing γ  value in the network. Then, every automaton 

calculates Eq.(8) for every generated event in its cell. If 
Eq.(8) is indefeasible on some events, then these events 
are called primary events and If Eq.(8) is not indefeasible 
on some events, then these events are called secondary 
events: 

)()()(deg)( EAVLeTereeeR iii >++       (8) 

Primary event numbers impact the final cluster number. In 
fact, primary events show final cluster numbers and final 
clusters show faults in the system. Every cell including 
the primary event is an active cell and a motion-learning 
automaton starts to create its own cluster. In proposed 
algorithm, we use geographical distance instead of 
Euclidean or Cosine distance. Reward and penalty values 
of motion learning automaton have been showed in 
simulation results. 

 

6. Simulation Results 
In this section, we conduct simulations to evaluate our 
proposed method. We perform simulations with different 
nodes. Alarms are generated absolutely random as the 
location and position of nodes are. We perform 
simulations with different alarms, nodes numbers and 
γ values. We assume four alarm types in different 
simulations. Alarm types labeled with {A,B,C,D} and in it 
A shows hardware alarms, B shows software alarms, C 
shows conditional alarms and D shows environmental 
alarms. We assume that an alarm A, B, C, or D can appear 
in any node of the network. If we calculate the alarm 
correlation for every received alarm then the efficiency of 
the system would be decreased because one new alarm 
can not probably creates new correlations in the system. 
We try to find fault in the interval time or when operator 
requests results. In the first simulation, we assume 25 
nodes and 2000 generated alarms and different γ  in 
figure (2). Primary events vary with diverse values of γ  .  

  
Fig. 2  Primary event numbers proportion with γ values 

We repeated the simulation with different Degrees. In the 
next experiment, we assume value less than one for 
Degrees. The degree value for A is 1, for B is 0.7 and for 
C is 0.3, and Degree value for D is 0.1 with 100 nodes and 
7000 alarms. We choose different degrees that these are 
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used in Eq.(7). When an alarm is created, degree value is 
assigned to it based on its type. 

Red color shows that how many hardware events are 
primary events in figure (3). When we choose high 
coefficient, it shows just hardware events. Coefficient 
from 1 to 14 shows four type events that can be primary 
and Coefficient from 17.5 to 20 shows hardware events in 
figure (3). 

 
Fig. 3  Different alarm types 

Experiment shows various primary events with different 
Degrees for different alarm types. The best result has been 
acquired as stair diagram in which the Degree values of 
alarm types are calculated as follows.  

Degree A = n 

Degree B = 3/4n 

Degree C = 2/4n 

Degree D = 1/4n 

Where n is the node numbers in telecommunication 
network. In the next experiment, the degree value for A is 
100, for B is 75, and for C it is 50, and the degree value 
for D is 25 with 100 nodes and 10000 alarms.  

 
Fig. 4  primary event numbers with evaluated Degrees 

Changing the degrees and γ  values leads to change in 
primary events. The diversity of primary event numbers 
directly affects the final fault. Here, we show primary 
event with different Degrees. The blue color shows 
primary events with similar Degrees. 

 
Fig. 5  Different primary events with 10000 alarms and 100 

nodes 

After finding the primary events, we should find the final 
cluster or the final fault. In this stage, experiments are 
repeated for γ =18 by motion learning automaton. After 
the second stage, every cell that has primary event is an 
active cell and it starts to create its cluster. In motion 
learning automaton is used S-model and 51 −= ea , 

11 −= eb . Where ba,  are reward and penalty value 
respectively. Alarms in clusters are different. Alarms in 
cluster show the number of alarms that the network has 
generated due to a fault.  

 
Fig. 6 number of alarms in every cluster with 8000 alarms and 

100 nodes 

This algorithm has only one problem that appears rarely. 
This problem occurs when a primary event that has 
occurred once in the network is lost. Of course, this 
problem occurs rarely. We can design algorithms by 
learning machine and other events can recognize its lost 
primary event. 

 

7. Conclusion 
 In this paper, we have addressed the problem of finding 
the root cause of alarms in an alarm flooding situation. 
The proposed method introduced in this paper uses 
learning automaton dynamically to cluster the incoming 
alarms and find the root cause. Our experiments in a 
simulated environment show that our method is accurate 
90% of the time. 
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