
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

265

Manuscript received December 5, 2009
Manuscript revised December 20, 2009

Quorum Based Distributed Mutual System

M.V.Ramana Murthy*, Pradosh Patnaik**, M.V.Vijaya Saradhi***, V.Venkateswarlu*

Md. Ismail****, Syed Salahuddin*****
* Dept.of Mathematics & Computer Science, University College of Science, Osmania University, Hyderabad, India.

** Dept.of Computer Science, Aurora Pg College, Ramanthapur, Hyderabad, India.

*** Dept. of Computer Science & Engineering, Astra, Bandlaguda, Hyderabad, India.

Abstract
The main goal of a distributed computing system is to connect
users and resources in a transparent, open, and scalable way.
Ideally this arrangement is drastically more fault tolerant and
more powerful than many combinations of stand-alone computer
systems. Openness is the property of distributed systems such
that each subsystem is continually open to interaction with other
systems. An open system that scales has an advantage over a
perfectly closed and self-contained system. Distributed
programming typically falls into one of several basic
architectures or categories: Client-server, 3-tier architecture, N-
tier architecture, Distributed objects, loose coupling, or tight
coupling. In Client-server architecture Smart client code contacts
the server for data, then formats and displays it to the user. Input
at the client is committed back to the server when it represents a
permanent change. Three tier systems move the client
intelligence to a middle tier so that stateless clients can be used.
This simplifies application deployment. Most web applications
are 3-Tier. N-Tier refers typically to web applications, which
further forward their requests to other enterprise services. This
type of application is the one most responsible for the success of
application servers.
Key words:
DCE, Maekawa's Algorithm, Mutual exclusion, Lamport
algorithm and the Ricart-Agrawal algorithm.

Introduction

A Distributed System [1],[2] consists of a collection of
autonomous computers, connected through a network and
distribution middleware, which enables computers to
coordinate their activities and to share the resources of the
system, so that users perceive the system as a single,
integrated computing facility.
The Distributed Computing Environment (DCE) is a
software system developed in the early 1990s by a
consortium that included Apollo Computer, Helwet-
Packard, IBM, Digital Equipment Corporation, and others.
The DCE supplies a framework and toolkit for developing
Client/Server applications. The framework includes a
Remote Procedure Call (RPC) mechanism known
asDCE/RPC, a naming (directory) service, a time service,
an Authentication service, an authorization service and a
Distributed File System (DFS) known as DCE/DFS

Distributed computing never really caught on as much as
had been hoped for in the late 1980s and early 1990s. The
rise of the Internet, Java and web services stole much of its
mindshare through the mid-to-late 1990s, and competing
systems such as CORBA muddied the waters as well.
Perhaps ironically, one of the major uses of DCE/RPC
today are Microsoft's DCOM and ODBC systems, which
use DCE/RPC (in MSRPC) as their network transport
layer.
The main goal of a distributed computing system is to
connect users and resources in a transparent, open, and
scalable way. Ideally this arrangement is drastically more
fault tolerant and more powerful than many combinations
of stand-alone computer systems. Openness is the property
of distributed systems such that each subsystem is
continually open to interaction with other systems. An
open system that scales has an advantage over a perfectly
closed and self-contained system.
Distributed programming typically falls into one of several
basic architectures or categories: Client-server, 3-tier
architecture, N-tier architecture, Distributed objects, loose
coupling, or tight coupling.
In Client-server architecture Smart client code contacts the
server for data, then formats and displays it to the user.
Input at the client is committed back to the server when it
represents a permanent change.
Three tier systems move the client intelligence to a middle
tier so that stateless clients can be used. This simplifies
application deployment. Most web applications are 3-Tier.
N-Tier refers typically to web applications, which further
forward their requests to other enterprise services. This
type of application is the one most responsible for the
success of application servers.
In Tightly coupled (clustered) architecture a set of highly
integrated machines that run the same process in parallel,
subdividing the task in parts that are made individually by
each one, and then put back together to make the final
result.
In Peer-to-peer architecture there is no special machine or
machines that provide a service or manage the network
resources. Instead all responsibilities are uniformly
divided among all machines, known as peers. Peers can
serve both as clients and servers Mutual exclusion (often

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

266

abbreviated to mutex) algorithms are used in concurrent
programming to avoid the simultaneous use of a common
resource, such as a global variable. In concurrent
programming a critical section is a piece of code that
accesses a shared resource (data structure or device) that
must not be concurrently accessed by more than one
thread of execution.
A critical section will usually terminate in fixed time, and
a thread, task or process will only have to wait a fixed
time to enter it (i.e. bounded waiting). Some
synchronization mechanism is required at the entry and
exit of the critical section to ensure exclusive use, for
example a semaphore.

Requirment of the Algorithm:

Maekawa's Algorithm is an algorithm for mutual exclusion
on a distributed system. The basis of this algorithm is a
quorum like approach where any one site needs only to
seek permissions from a subset of other sites.
A site is any computing device which is running the
Maekawa's Algorithm For any one request of the critical
section, the requesting site is the site which is requesting
entry into the critical section, The receiving site is every
other site which is receiving the request from the
requesting site. Timestamp refers to the local timestamp of
the system according to its logical clock.
When a processor wishes to enter the critical section, it
sends a vote request to every member of its voting district.
When the processor receives replies from all the members
of the district, it can enter the critical section. When a
processor receives a vote request, it responds with a
"YES" vote if it has not already cast its vote. When a
processor exits the critical section, it informs the voting
district, which can then vote for other candidates.
Deadlock can be avoided by using the following
mechanism: when a processor makes a request, it assigns a
(Lamport) timestamp to the request. The voters will prefer
to vote for the earliest candidates. If a processor V has cast
its ballot for processor B and then processor C, which has
an earlier timestamp than B's, asks for V's vote, V will try
to retrieve its vote from B with an INQUIRE message. If
B has not yet received all the votes of its voting district, it
will relinguish V's vote, which can then be given to C.
Lamport timestamps impose a total order, so either the
candidate with the lowest timestamp eventually gets all of
the votes or the candidate with the lowest timestamp is
blocked by a candidate that enters the critical section. In
either case, some candidate enters the critical section, so
deadlock is avoided.
There is one point at which we need to match up the
messages with protocol invocations. Because the
INQUIRE messages are generated by the voters
asynchronously, a candidate might receive an INQUIRE

message that was generated in response to a previous
critical section request. The usual method for preventing
ambiguous messages is to use sequence numbers. Since
the candidate samples a timestamp for the algorithm, we
use the timestamp as a sequence number to match
INQUIRE messages with critical section request.
The performance of a mutual exclusion algorithm [3],[4] is
measured by the number of messages exchanged per
critical section execution and the delay between successive
executions of the critical section. There is a message
complexity and synchronization delay trade-off in mutual
exclusion algorithms. The Lamport algorithm and the
Ricart-Agrawal algorithm both have a synchronization
delay of T (T is the average message delay), but their
message complexity is O(N).
Maekawa's algorithm reduces the message complexity to
O(sqrt{N})[5],[6],[7], however it increases the
synchronization delay to 2T.

Implementation of Algorithm:

The first variant sends a message to the output channel; if
the receiver node linked to the channel is blocked, this
node is released.
The second variant sends message to all output channels in
a set.
In both variants, the sender node is not blocked even if the
receiver node linked to the corresponding channel is not
ready to receive m. Consequently, output channel may
hold an arbitrary number of messages.
receive: Receiving a Message.
The first variant returns a message from output channel; if
output channel is empty, the current node is blocked until
output channel becomes non-empty.
The second variant behaves like the first one except for
the fact that the current node is blocked for at most time
units. If then output channel is still empty, null is returned.
Which message is returned from c depends on the selector
associated to output channel; by default, this is the oldest
message held by output channel.
The first variant returns the index of a non-empty channel
in the (non-empty) set; if all channels are empty, the
current node is blocked until a channel becomes non-
empty. This index may be used to reference the
corresponding channel in the set.
The second variant behaves like the first one except for
the fact that the current node is blocked for at most time
units. If then all channels are still empty, -1 is returned.

Conclusions:

Maekawa's algorithm reduces the message complexity to
O(sqrt{N}); however, it increases the synchronization

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

267

delay to 2T.. And this Algorithm is efficient and less Time
complexity compare to other distributed mutual exclusion
algorithms.
The Lamport algorithm and the Ricart-Agrawal algorithm
both have a synchronization delay of T (T is the average
message delay), but their message complexity is O(N).
The token-based Suzuki-Kasamis Broad Cast Algorithm
has message complexity as N. The other token based
Raymonds Tree-based Algorithm has the average case
complexity as 2LogN.
Finally Maekawa’s Algorithm is easy to implement and
comparatively less complexity with respective to other
algorithms.

References
[1] “Distributed Systems Concepts and Design”, G

COULOURIS, J DOLLIMORE, T KINDBERG
[2] “Distributed Operating Systems” ANDREW S.

TANENBAUM, , Prentice Hall, 1995
[3] A Toolkit for the Simulation of Distributed Algorithms in

Java Technical Report 97-36, Research Institute for
Symbolic Computation (RISC-Linz), Johannes Kepler
University, Linz, Austria, November 1997.

[4] A Fair Distributed Mutual Exclusion Algorithm, IEEE
TRANSACTIONS ON PARALLELAND DISTRIBUTED
SYSTEMS, VOL. 11, NO. 6, JUNE 2000

[5] A SQRT(N) Algorithm for Mutual Exclusion in
Decentralized Systems ACM Transactions on Computer
Systems, Vol. 3, No. 2, May 1985, Pages 145-159.

[6] Performance of the Network Intrusion Detection Systems
M.V.Ramana Murthy et.al, Int. Jr.Computer Science &
NetworkSecurities,Oct, 2009, Vol. 9 No. 10, pp. 198-202

[7] Journal of Universal Computer Science, vol. 12, no. 2
(2006), 140-159 An O(SQRT(N) Distributed Mutual
Exclusion Algorithm Using Queue Migration1.

Mangipudi Venkata Ramana Murthy is
currently Professor in Faculty of
Mathematics and Computer Science in
University College of Science, Osmania
University. He has received his Ph.D in
Computational Fluid Mechanics in 1986
from Osmania University. He is actively
involved in research and successfully

supervised 22 students for their Doctorial work in the areas of
Computer Science and applied Mathematics. The research areas
include Artificial Neural Net works, Net work securities , Digital
Image processing of Computer Science besides this he also
contributed to Fluid Mechanics of Applied Mathematics. He has
several research publications to his credit which has international
repute such as IEEE, ATTI DELLA FOUNDZIONE, ASME ,
JFMR, IJHMT

Pradosh Chandra Pattnaik is currently
working as Associate Professor in the
Department of Computer Science at
Aurora's PG College,
Hyderabad,India ,where he teaches several
Courses in the area of Computer
Science.He is Currently Pursuing the PhD
degree in Computer Science at Dravidian

University,Kuppam, India.His main research interests are
Distributed Systems,Design Patterns,Object Oriented
Design Analysis and Software Engineering

M.Vijaya Saradhi is currently working as
Associate Professor in the Department of
Computer Science and Engineering at
Aurora's Scientific,Technological and
Research Academy, Hyderabad,India,
where he teaches Several Courses in the
area of Computer Science.He is Currently
Pursuing the PhD degree in Computer

Science at Osmania University,Hyderabad, India.His main
research interests are Software Metrics,Distributed
Systems,Design Patterns,Object Oriented Design Measurements
and Empirical Software Engineering

Dr V.Venkateswarlu has obtained Ph.D
from the Osmania University in the area of
digital image processing in the year 2001.
My research interest includes Artificial
Intelligence and expert systems, network
securities besides digital image processing.
My prime research includes security
applications in distributed computing.

Presently I am as a Sr. database administrator.

Md. Ismail is currently working as
Associate Professor in the Department of
Computer Science at Aurora's PG College,
Hyderabad,India ,where he teaches several
Courses in the area of Computer
Science.He is Currently Pursuing the PhD
degree in Computer Science at Dravidian
University,Kuppam, India.His main

research interests are Computer Architectutre and Design,
Computer Networks, Distributed Systems and Network Security.

Syed Salahuddin is Currently working as
Lecturer in Mathematics College of
Science, Al-Jouf University, Jouf, Saudi
Arabia, He has received his Ph.D in Linear
and non-Linear paramateric programming
problems with bounded variables from
Osmania University, Hyderabad, India.

