
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

268

Manuscript received December 5, 2009
Manuscript revised December 20, 2009

FTRH: Fault Tolerance Routing Algorithm for Hex-Cell Networks

Mohammad Qatawneh1, Bdour Hamed2, Wesam AlMobaideen1, Azzam Sleit1, Amal Oudat1, Wala’a
Qutechat1, Roba Al-Soub1

1Computer Science Department, King Abdulla II School for Information Technology, P.O. Box 13898
University of Jordan, Amman 11942, Jordan

2 Computer Science Department, Mutah University, Karak, Jordan

Summary
This paper describes a new fault tolerance routing algorithm for
Hex-Cell networks. Hex-Cell is an interconnection network
topology that employs an efficient routing algorithm and
combines attractive features which make it a good candidate to
be used for many applications. The Fault Tolerance Routing
algorithm for Hex-cell networks (FTRH) presented in this paper
focuses on component software failures and guaranteed message
delivery from source to destination even with the presence node
and link failure. Through the analysis of the algorithm, we
demonstrate that the proposed routing protocol finds routing
paths that are close to optimal in most cases.
Key words:
Hex-Cell, Fault-Tolerance Routing, Network Topology, Parallel
Processing.

1. Introduction

Interest in massive parallel processing has increased
rapidly boosting the need for larger number of
interconnected processors. It has been shown that as the
number of interconnected processors rises, the probability
of having faulty nodes increases and it becomes essential
to find communication paths which detour faulty
processors or links [2, 3, 4, 15]. In distributed and parallel
processing systems with faulty processors, it is very
important to select shortest paths to support efficient
interprocess communication.
If every processor in the system identifies the status of all
processors, an optimal routing is possible which is very
hard to adopt due to restrictions of space and time
complexities. Fault-tolerance is the property that enables a
system to continue operating properly in the event of
failure of some of its components such as a node fault, link
fault or both [2, 8, 13]. Each component may suffer from
hardware failure or software failure. The system which
doesn’t deal with faulty problem may be unreliable,
inefficient and can suffer from higher latency [8, 14].
We focus on a dynamic routing scheme of interconnected
processors, which communicates messages in a faulty hex-
cell in order to suppress performance degradation [1, 4]. In
this paper, we introduce a new fault tolerance routing

algorithm for hex-cell networks which deals with the
software component failure problems. A hex-cell network
combines desired topological features like less
communication cost, efficient routing, and the capability
of embedding static topologies such as linear array, ring,
tree, and mesh topology [1, 3]. Adding fault tolerance
features to these attractive features increases reliability,
availability, and efficiency. Some fault tolerance routing
algorithms wait for failure to happen then react
accordingly [7, 8, 10]. The proposed Fault Tolerance
Routing protocol for Hex-Cell networks (FTRH) monitors
the network status to choose the best path before taking the
decision of routing the message. The aim is to avoid
message rerouting in order to reduce the imposed routing
delay.
The rest of this paper is organized as follows. Section 2
discusses the fault tolerance problem. Section 3 presents
the definition of Hex-Cell and its routing algorithm.
Section 4 proposes the fault tolerance routing algorithm.
Section 5 shows the results and discussion. Finally in
Section 6, some concluding remarks are made.

2. Related Work

Many researches have addressed the fault tolerance
problem for various network topologies. In [5], a new
routing methodology for tori and meshes topologies was
proposed to achieve high performance without the use of
virtual channels. The Segment-based Routing (SR)
algorithm handles any topology derived from any
combination of faults when combined with static
configuration. This algorithm partitions a topology into
subnets and subnets into segments which places
bidirectional turn restrictions locally inside a segment. The
introduction of a locality independence property results
with a larger degree of freedom in the placement of routing
restrictions when compared with other routing strategies.
Evaluation results have shown performance superiority of
SR especially in the presence of link failures.
In [6], a routing scheme was presented to prove that fault-
tolerance in hypercube topology networks can be

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

269

achieved. Comparisons of the proposed routing scheme,
namely Mask Interval Routing Scheme (MIRS) with other
classical routing protocols have proved flexibility. In [9],
the authors defined a 2D hexagonal mesh multiple
interconnection networks based on triangular tessellation,
and presented a 3d hexagonal mesh. Although the 2D
hexagonal mesh topological properties are well known, the
existing addressing schemes can not be extended to a 3D
hexagonal mesh. They presented an addressing scheme
and an optimal routing algorithm for a 2D hexagonal
network. Additionally, a new 3D hexagonal network that
can be extended as a natural generalization from the 2D
hexagonal mesh was proposed.

3. The Hex-Cell Network Topology

A Hex-Cell network [1] with depth d is denoted by HC(d)
and can be constructed by using units of hexagon cells
each consisting of six nodes. A Hex-Cell network with
depth d has d levels numbered from 1 to d, where, level 1
represents the innermost level corresponding to one
hexagon cell. Level 2 corresponds to the six hexagon cells
surrounding the hexagon at level 1. Level 3 corresponds to
the 12 hexagon cells surrounding the six hexagons at level
2 as shown in Fig. 1. The levels of the HC(d) network are
labeled from 1 to d. Each level i has Ni nodes, where Ni =
6(2i-1).

Fig. 1 (a) HC (one level) (b) HC (two levels)

(c) HC (three levels)

In this section we describe the routing algorithm for hex-
cell network which introduced in [1]. Each node in the HC
is identified by a pair (X, Y), where X denotes the line
number in which the node exists, and Y denotes the
location of the node in the line as shown in Fig. 2. A node
with the address (1, 1) is the first node that exists at line
number 1. (1, 2) refers to the second node that exists at
line number 1, and so on.
Assume that Xs is the line number of the source node, Ys is
the location of source node in line, Xd is the line number of
destination node, and Yd is the location of destination node
in the line. One of the following cases will be called

recursively until the destination has been reached.

Fig. 2 Addressing Node in Hex-Cell

Case 1: (Xs > Xd) moveUp(Xs,Ys,Xd,Yd): we have two
directions; namely, moveUp/Left-to-Right, and moveUp/
Right-to-Left.
Case 2: (Xs < Xd) moveDown(Xs,Ys, Xd,Yd): we have
two directions; namely, moveDown/Left-to-Right and
moveDown/Right-to-Left.
Case 3: (Xs = Xd) moveHorizontal(Xs,Ys, Xd,Yd): we
have two directions; namely, moveHorizontal/Left-to-
Right and moveHorizontal/Right-to-Left.

Fig. 3 shows how the routing algorithm for Hex-Cell
works for a non-faulty network. Let (Xs,Ys) = (4, 9) be the
source node and (Xd,Yd) = (2, 4) be the destination node.
When executing the routing algorithm, case 1 will be
applied (MoveUp) {(3, 9) (3, 10) (2, 9)}, then case 3
(MoveHorizontal/Right-to-Left) will be applied {(2,
8) (2, 7) (2, 6) (2, 5) (2, 4)}.

Fig. 3 Routing in a non-faulty network.

4. Fault Tolerance Routing (FTRH)

This section presents the Fault Tolerance Routing
Algorithm (FTRH) for the Hex-Cell topology in details.
The faulty model is discussed followed by an explanation
for the routing algorithm.

4.1 FTRH Model

The algorithm considers node and link failures such that
all links incident to a faulty node are considered faulty.
Status signals are sent on the physical channel

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

270

continuously and are monitored by a designated processor.
All the nodes except some nodes on the border have three
neighbors. A sending node malfunction is recognized by
missing or incorrect sequences of signals from one of the
neighbors. Therefore, only the directly connected nodes to
that faulty node will consider it as faulty. If global
knowledge of failure is maintained, then many messages
may have to be transmitted on the network since fault can
occur frequently which causes high overhead [6].
In a faulty Hex-Cell, it is necessary for message delivery
to find a path of non-faulty nodes from source to
destination. For this purpose, each node can store some
information about its neighbors along with the address of
the destination node to help in selecting the proper node
for message forwarding. A node in a Hex-Cell network
might be in one of the following three states:

1- Normal state: there are no node or link failures.

2- Faulty state: the node is down or the link to reach
that node is broken. This is recognized when the
neighbors of node don’t receive the periodic
update from this node for a specific period of
time.

3- Dead end state: the node has failure in the
incident links which makes it a dead end. This
may occur when the node is linked to two dead
end nodes, two faulty node neighbors, or one
dead end and one faulty node neighbor. A node on
the border of a Hex-Cell topology is considered
as dead end if one of its neighbors is either faulty
or dead end.

FTRH directs the routing decision of a node based on the
status of its neighbor. A node will not send messages to
nodes which are in dead end or faulty states. A node sends
a message indicating that it is in a dead end state, if it has a
link with just one other node, or has links with other dead
end nodes and another link with a non-dead-end node.
FTRH does not allow backtracking. Hence, the message
will not be sent back to a node that has forwarded it to
prevent loop occurrence which may be checked by
inspecting the Come-from parameter. FTRH restricts the
number of failure components that can be dealt with to the
number of levels. For example if we are at level three, the
number of failure components is limited to three.

4.2 FTRH Algorithm

Fig. 4 outlines the Fault Tolerance Routing Algorithm for
the Hex-Cell network based on the addressing scheme
introduced in [1]. The abovementioned three cases are
resolved as follows:

Case 1: (Xs<Xd) MoveDown(Xs,Ys, Xd,Yd) as in Fig.
4(a) - we have here two directions, MoveUp/Left-to-Right,
and MoveUp/Right-to-Left.
Case 2: (Xs>Xd) MoveUp (Xs,Ys, Xd,Yd) as in Fig.
4(b) - we have here two directions, MoveDown/Left-to-
Right, and MoveDown/Right-to-Left.
Case 3: (Xs=Xd) MoveHorizontal. (Xs,Ys, Xd,Yd) as in
Fig. 4(c) - we have here two directions,
MoveHorizontal/Left-to-Right, and MoveHorizontal/
Right-to-Left.

(a) Case 1: MoveDown.

(b) Case 2. MoveUp.

(c) Case 3. MoveHorizontally.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

271

(d) Cases and Subroutines.
Fig. 4 FTRH for HC (d).

The following examples illustrate the proposed algorithm:
Example – Fig. 5: MoveDown Right-to-leftSource node:
(2, 8), destination node: (5, 3), and faulty nodes: (3, 5), (3,
8), (4, 8).

The algorithm moves down to (2, 8) (2, 7) (2, 6)
(2, 5) (3, 6) (3, 7) (4, 7) (4, 6) (5, 5) then
moves horizontal from (5, 4) to the destination (5, 3). The
nodes (3, 8) and (3, 5) will not be chosen because they are
faulty.

Fig. 5 MoveDown Right-to-left Example.

Example – Fig. 6: MoveUp Left-to-Right with loop free
path:
Source node: (3, 7), destination node: (1, 3), and faulty
nodes: (1, 4), (3, 6), (2, 3). The algorithm moves up (3, 7)

 (3, 8) (2, 7) (2, 6) (2, 5) (2, 4) (1, 3).
At node (2, 6), the algorithm will not go to node (1, 5)

since it is located at border and one of its neighbors is
faulty. This constraint is made in the algorithm to prevent a
potential loop on the border.

Fig. 6 Move Up Left -to-Right with loop free path

Example.

Example – Fig. 7: MoveHorizontal Left-to-Right:
Source node: (5, 1), destination node: (5, 9), faulty nodes:
(5, 6), (6, 4), and faulty links: (5, 3)-(5, 4). The algorithm
moves horizontally (5, 1) (5, 2) (5, 3) then move up to
(4, 4) (4, 5) (4, 6) (4, 7) (4, 8), down to (5, 7) and
again moves horizontally from (5, 8) to the destination (5,
9). At node (4, 6) it doesn't go (5, 5) because two of its
neighbors are faulty; i.e. it is a dead node.

Fig. 7 MoveHorizontal Right-to-left Example.

Example – Fig. 8: MoveDown Left-to-Right with loop free
path:Source node:(4, 7), destination node:(5, 5), and faulty
nodes:(5, 6), (4, 6), (5, 8). The algorithm moves down (4,
7) (4, 8) (4, 9) (3, 9) (3, 8) (3, 7) (3, 6) (3,
5) (4, 5) (4, 4) (5, 3). Then moves horizontally to (5,
4) (5, 5). In this example, at node (4, 8), routing will not
go to node (5, 7), since its two direct neighbors are faulty.
Also, at node (3, 7) it doesn't go to (4, 7) because it is the
original sender of the message.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

272

5. Results and Discussion

In order to have confidence in the results we ran the
algorithm for a 120 different sample cases. Each case
represents sending a message from a source to a
destination with the existence of faulty nodes and/or links.
The number of faulty nodes or links is equal to the depth
of the Hex-Cell. The 120 sample cases were divided into
four groups such that each group represents different depth
of the Hex-Cell such as 2, 3, 4, and up to 5 with various
sources and destinations. Table 1 shows a comparison of
the proposed FTRH algorithm with a hypothetical optimal
routing algorithm with respect to the routes lengths. From
the table, we can notice that FTRH is identical to the
optimal solution for 55 cases out of the 120 test cases. The
route length for FTRH is slightly greater than optimal for
the remaining cases. These cases tend to appear if all or

most of the faulty components are on the same row. The
message goes through longer path to reach the destination.

Fig. 8 MoveDown Left -to-Right with a loop free path.

Table 1: Cases and Comparisons

 DEPTH 2

DEPTH 3

DEPTH 4

DEPTH 5

C
A

SE
S

O

pt
im

al

Fa
ul

t
To

le
ra

nt

D
iff

er
en

ce

R
el

at
iv

e
E

rr
or

O
pt

im
al

Fa
ul

t
To

le
ra

nt

D
iff

er
en

ce

R
el

at
iv

e
E

rr
or

O
pt

im
al

Fa
ul

t
To

le
ra

nt

D
iff

er
en

ce

R
el

at
iv

e
E

rr
or

O
pt

im
al

Fa
ul

t
To

le
ra

nt

D
iff

er
en

ce

R
el

at
iv

e
E

rr
or

1 7 7 0 0 9 9 0 0 12 12 0 0 23 23 0 0
2 8 8 0 0 12 12 0 0 13 13 0 0 28 28 0 0
3 9 9 0 0 6 6 0 0 9 9 0 0 10 10 0 0
4 9 9 0 0 7 7 0 0 12 12 0 0 18 18 0 0
5 8 8 0 0 10 10 0 0 14 14 0 0 22 22 0 0
6 7 7 0 0 10 10 0 0 12 12 0 0 12 12 0 0
7 8 8 0 0 11 11 0 0 8 8 0 0 12 12 0 0
8 6 6 0 0 9 9 0 0 12 12 0 0 21 21 0 0
9 5 5 0 0 14 14 0 0 13 13 0 0 10 10 0 0
10 6 6 0 0 8 8 0 0 16 16 0 0 22 22 0 0
11 7 7 0 0 6 6 0 0 17 17 0 0 16 16 0 0
12 9 9 0 0 13 13 0 0 11 11 0 0 12 12 0 0
13 8 8 0 0 14 14 0 0 10 10 0 0 21 22 1 0.5
14 5 5 0 0 10 10 0 0 5 5 0 0 21 23 2 0.10
15 10 10 0 0 15 15 0 0 11 11 0 0 22 24 2 0.09
16 8 9 1 0.13 19 20 1 0.06 13 13 0 0 16 18 2 0.13
17 7 8 1 0.14 13 14 1 0.08 14 15 1 0.07 16 18 2 0.13
18 15 16 1 0.07 9 11 2 0.22 18 19 1 0.06 15 18 3 0.2
19 9 11 1 0.22 11 13 2 0.18 16 17 1 0.06 20 23 3 0.15
20 7 9 2 0.29 5 7 2 0.4 14 16 2 0.14 17 20 3 0.17
21 7 9 2 0.29 11 13 2 0.18 15 17 2 0.13 13 17 4 0.38
22 8 10 2 0.25 17 19 2 0.12 12 14 2 0.17 21 25 4 0.19
23 7 9 2 0.29 10 12 2 0.2 18 20 2 0.11 21 25 4 0.19
24 6 8 2 0.33 8 12 4 0.5 15 17 2 0.13 19 23 4 0.21
25 8 10 2 0.25 8 12 4 0.5 21 23 2 0.10 20 24 4 0.2
26 5 7 2 0.4 9 13 4 0.44 14 18 4 0.29 10 15 5 0.5
27 6 8 2 0.333 7 12 5 0.71 15 19 4 0.27 23 29 6 0.26
28 3 6 3 1 12 14 6 0.17 10 22 12 1.2 12 18 6 0.5
29 6 10 4 0.67 5 15 10 2 5 19 14 2.8 7 19 12 1.716
30 8 12 4 0.5 5 17 12 2.4 5 21 16 3.2 4 22 18 4.5

 Differences Average= 1.03
Relative Error =0.17

Differences Average= 1.97
Relative Error =0.27

Differences Average=2.17
Relative Error = 0.29

Differences Average= 2.8
Relative Error = 0.32

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

273

We may notice that the average difference between the
proposed protocol and the hypothetical optimal one is 1.95.
As shown in Fig. 9, the average difference in the route
length increases as the depth increases, with a reasonable
maximum average difference equals to 2.8 for depth = 5.

Fig. 9 The differences average between the fault

tolerance routing algorithm and a hypothetical optimal
algorithm.

Fig. 10 shows the Relative Error with respect to depth of
the network which is calculated as:

Relative Error = (FTRH path length - Optimal path length)

/ Optimal path length
The average of relative error for all cases is 0.26. Fig. 10
confirms that the efficiency of the proposed protocol
decreases as the depth increases.

Fig. 10 The Relative Error between FTRH and a

hypothetical optimal algorithm.

Fig. 11 describes the average route length in terms of the
topology depth for FTRH versus an optimal solution. The
Fig. shows that the routes lengths of the two protocols are
quite close to each other. Although the average route

length increases as the depth increases, the difference
between the two protocols slightly increases. The
closeness of the proposed algorithm to the optimal one,
stresses its effective way of choosing the route around
faulty nodes.

Fig. 11 Average route length versus network depth.

6. Conclusion

This paper introduces a fault tolerance routing algorithm
for the Hex-Cell network topology. The algorithm
guarantees the delivery of messages even with the
presence of component failures. The algorithm is
evaluated and compared with a hypothetical optimal fault
tolerance algorithm for the length of the resulting route. It
produces optimal path lengths for 46% of the cases. A
slight increase in the route length is noticed for the
remaining studied cases. The closeness of the proposed
algorithm to the optimal one increases the reliability of
routing process in the Hex-Cell network topology by
ensuring the delivery messages to destination even with
the presence of failure components.

References
[1] Ahmad Sharieh, Mohammad Qatawneh, Wesam

Almobaideen, Azzam Sleit, Hex-Cell: Modeling
topological properties and routing algorithm, Euro Journal
of Scientific Research, 22(2) (2008) 457 – 468.

[2] Jong-Hoon Youn, Bella Bose, Seungjin Park, Fault-Tolerant
routing algorithm in meshes with solid faults, Journal of
supercomputing, 37(2006) 161-177.

[3] Dajin Wang, A Low-cost fault-tolerant structure for
hypercube, Journal of Supercomputing, 20(2001) 203-216.

[4] Flaviu Cristian, Bob Dancey, Jon Dehn, Fault-tolerance in
air traffic control systems, Transactions on Computer
Systems (TOCS), 14(3) (1996) 265-286.

[5] Ivan Stojmenovic, Honeycomb Networks: Topological
properties and communication algorithms, IEEE
Transactions on Parallel and Distributed Systems, 8(10)
(1997) 1036-1042.

[6] Fabian Garcia Nocetti, Ivan Stojmenovic, Jingyuan Zhang,
Addressing and routing in hexagonal networks with
applications for tracking mobile users and connection
rerouting in cellular networks, IEEE Transaction on Parallel
Distributed Systems, 13(9) (2002) 963-971.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

274

[7] A.Mejia, J. Flich, J. Duato, Sven-Arne Reinemo, Tor Skeie,
Segment-based routing: An efficient fault-tolerance routing
algorithm for mesh and tori, Proceedings of the 20th IEEE
International Parallel and Distributed Symposium, 2006.

[8] Mahmoud Al-Omari, Mohammed Mahafzah, Fault-tolerant
routing in hypercubes using masked interval routing scheme,
Proceedings of the 1999 ACM symposium on Applied
computing, 481-485.

[9] Huaxi Gu , Jie Zhang, Zengji Liu, Xiaoxing TU, Routing in
hexagonal networks under a corner-based addressing
schema, The institute of Electronics, Information and
Communication Engineers, 2006.

[10] Suresh Chalasani, Rajendra V. Boppana, Fault-tolerant
wormhole routing in Tori, International Conference on
Supercomputing, (1994) 146-155.

[11] Catherine Decayeux, David Seme, 3D hexagonal network:
modeling, topological properties, addressing scheme, and
optimal routing algorithm, IEEE Transactions on Parallel
and Systems, 16(9) (2005), 875-884.

[12] Qatawneh Mohammad, Adaptive fault tolerant routing
algorithm for Tree-Hypercube multicomputer, Journal of
Computer Science, 2(2) (2006) 124-126.

[13] Jipeng Zhou and Francis C.M. Lau, Multi-phase minimal
fault-tolerant wormhole routing in meshes, Parallel
Computing. 30 (3) (2004), 423–442

[14] K. Day K, S. Harous, A. Al-Ayyoub, A Fault tolerant
routing scheme for Hypercubes, Telecommunication
Systems, 13(1) (2000) 29-44.

[15] J. Al-Sadi, K. Day and M. Ould-Khaoua, Fault-tolerant
routing in hypercubes using probability vectors, Parallel
Computing, 27(10) (2001) 1381-1399.

Mohammed Qatawneh is an associate
professor and Chairman of the Computer
Science Department at the University of
Jordan. He received his Ph.D. in Computer
Engineering from Kiev University in 1996.
Dr. Qatawneh published several papers in
the areas of parallel algorithms, Networks
and Embedding systems. His research
interests include Parallel Computing,

Embedding System, and Network Security.

Wesam AlMobaideen received his Ph.D.
in computer Networks from the University
of Bologna, Bologna Italy in 2003, Master
degree in Computer Science from the
University of Jordan in 1999 and B.Sc.
degree in Computer Science from Mu’ta
University, Karak, Jordan in 1997. He is
currently an sssociate professor with the
Computer Science Department at the

University of Jordan. He held several administrative positions
including the Assistant Dean of King Abdullah II School for
Information Technology and Head of Quality Assurance.

Azzam Sleit is an associate professor with the Computer Science
Department and the Director of the Computer Center, University
of Jordan. His research interests include imaging databases,
information retrieval, and distributed systems. Before Joining the
University of Jordan in 2005, Dr. Sleit was the Chief Information

Officer at Hamad Medical / Qatar’s Ministry of Public Health
where he developed and executed the information technology
strategy of healthcare for State of Qatar. Dr. Sleit has over sixteen
years of experience and leadership in the information technology
field including work at all levels of government, private and
international sectors. Before joining Hamad Medical, Dr. Sleit
was the Vice President of Strategic Group & Director of
Professional Services of Triada, USA. Dr. Sleit served as the
Director of Professional Services at Information Builders, USA.
Dr. Sleit holds B.Sc., M.Sc. and Ph.D. in Computer Science from
Wayne State University, USA.

