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Summary 
This paper describes a new fault tolerance routing algorithm for 
Hex-Cell networks. Hex-Cell is an interconnection network 
topology that employs an efficient routing algorithm and 
combines attractive features which make it a good candidate to 
be used for many applications. The Fault Tolerance Routing 
algorithm for Hex-cell networks (FTRH) presented in this paper 
focuses on component software failures and guaranteed message 
delivery from source to destination even with the presence node 
and link failure. Through the analysis of the algorithm, we 
demonstrate that the proposed routing protocol finds routing 
paths that are close to optimal in most cases. 
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1. Introduction 

Interest in massive parallel processing has increased 
rapidly boosting the need for larger number of 
interconnected processors. It has been shown that as the 
number of interconnected processors rises, the probability 
of having faulty nodes increases and it becomes essential 
to find communication paths which detour faulty 
processors or links [2, 3, 4, 15]. In distributed and parallel 
processing systems with faulty processors, it is very 
important to select shortest paths to support efficient 
interprocess communication.  
If every processor in the system identifies the status of all 
processors, an optimal routing is possible which is very 
hard to adopt due to restrictions of space and time 
complexities. Fault-tolerance is the property that enables a 
system to continue operating properly in the event of 
failure of some of its components such as a node fault, link 
fault or both [2, 8, 13]. Each component may suffer from 
hardware failure or software failure. The system which 
doesn’t deal with faulty problem may be unreliable, 
inefficient and can suffer from higher latency [8, 14]. 
We focus on a dynamic routing scheme of interconnected 
processors, which communicates messages in a faulty hex-
cell in order to suppress performance degradation [1, 4]. In 
this paper, we introduce a new fault tolerance routing 

algorithm for hex-cell networks which deals with the 
software component failure problems. A hex-cell network 
combines desired topological features like less 
communication cost, efficient routing, and the capability 
of embedding static topologies such as linear array, ring, 
tree, and mesh topology [1, 3]. Adding fault tolerance 
features to these attractive features increases reliability, 
availability, and efficiency. Some fault tolerance routing 
algorithms wait for failure to happen then react 
accordingly [7, 8, 10]. The proposed Fault Tolerance 
Routing protocol for Hex-Cell networks (FTRH) monitors 
the network status to choose the best path before taking the 
decision of routing the message. The aim is to avoid 
message rerouting in order to reduce the imposed routing 
delay.  
The rest of this paper is organized as follows. Section 2 
discusses the fault tolerance problem. Section 3 presents 
the definition of Hex-Cell and its routing algorithm. 
Section 4 proposes the fault tolerance routing algorithm. 
Section 5 shows the results and discussion. Finally in 
Section 6, some concluding remarks are made.  

2. Related Work 

Many researches have addressed the fault tolerance 
problem for various network topologies. In [5], a new 
routing methodology for tori and meshes topologies was 
proposed to achieve high performance without the use of 
virtual channels. The Segment-based Routing (SR) 
algorithm handles any topology derived from any 
combination of faults when combined with static 
configuration. This algorithm partitions a topology into 
subnets and subnets into segments which places 
bidirectional turn restrictions locally inside a segment. The 
introduction of a locality independence property results 
with a larger degree of freedom in the placement of routing 
restrictions when compared with other routing strategies. 
Evaluation results have shown performance superiority of 
SR especially in the presence of link failures. 
In [6], a routing scheme was presented to prove that fault-
tolerance in hypercube topology networks can be 
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achieved. Comparisons of the proposed routing scheme, 
namely Mask Interval Routing Scheme (MIRS) with other 
classical routing protocols have proved flexibility. In [9], 
the authors defined a 2D hexagonal mesh multiple 
interconnection networks based on triangular tessellation, 
and presented a 3d hexagonal mesh. Although the 2D 
hexagonal mesh topological properties are well known, the 
existing addressing schemes can not be extended to a 3D 
hexagonal mesh. They presented an addressing scheme 
and an optimal routing algorithm for a 2D hexagonal 
network. Additionally, a new 3D hexagonal network that 
can be extended as a natural generalization from the 2D 
hexagonal mesh was proposed. 

3.  The Hex-Cell Network Topology 

A Hex-Cell network [1] with depth d is denoted by HC(d) 
and can be constructed by using units of hexagon cells 
each consisting of six nodes. A Hex-Cell network with 
depth d has d levels numbered from 1 to d, where, level 1 
represents the innermost level corresponding to one 
hexagon cell. Level 2 corresponds to the six hexagon cells 
surrounding the hexagon at level 1. Level 3 corresponds to 
the 12 hexagon cells surrounding the six hexagons at level 
2 as shown in Fig. 1. The levels of the HC(d) network are 
labeled from 1 to d. Each level i has Ni nodes, where Ni = 
6(2i-1). 

 
Fig. 1  (a) HC (one level) (b) HC (two levels)  

(c) HC (three levels) 
 
In this section we describe the routing algorithm for hex-
cell network which introduced in [1]. Each node in the HC 
is identified by a pair (X, Y), where X denotes the line 
number in which the node exists, and Y denotes the 
location of the node in the line as shown in Fig. 2. A node 
with the address (1, 1) is the first node that exists at line 
number 1. (1, 2) refers to the second node that exists at 
line number 1, and so on. 
Assume that Xs is the line number of the source node, Ys is 
the location of source node in line, Xd is the line number of 
destination node, and Yd is the location of destination node 
in the line. One of the following cases will be called 

recursively until the destination has been reached. 

 
Fig. 2 Addressing Node in Hex-Cell 

Case 1:  (Xs > Xd)  moveUp(Xs,Ys,Xd,Yd):  we have two 
directions; namely, moveUp/Left-to-Right, and moveUp/ 
Right-to-Left.  
Case 2:  (Xs < Xd)  moveDown(Xs,Ys, Xd,Yd): we have 
two directions; namely, moveDown/Left-to-Right and 
moveDown/Right-to-Left. 
Case 3:  (Xs = Xd)  moveHorizontal(Xs,Ys, Xd,Yd): we 
have two directions; namely, moveHorizontal/Left-to-
Right and moveHorizontal/Right-to-Left. 
 
Fig. 3 shows how the routing algorithm for Hex-Cell 
works for a non-faulty network. Let (Xs,Ys) = (4, 9) be the 
source node and (Xd,Yd) = (2, 4) be the destination node. 
When executing the routing algorithm, case 1 will be 
applied (MoveUp) {(3, 9) (3, 10) (2, 9)}, then case 3 
(MoveHorizontal/Right-to-Left) will be applied {(2, 
8) (2, 7) (2, 6)  (2, 5) (2, 4)}. 
 

 
Fig. 3 Routing in a non-faulty network. 

4. Fault Tolerance Routing (FTRH) 

This section presents the Fault Tolerance Routing 
Algorithm (FTRH) for the Hex-Cell topology in details. 
The faulty model is discussed followed by an explanation 
for the routing algorithm.  

4.1 FTRH Model 

The algorithm considers node and link failures such that 
all links incident to a faulty node are considered faulty. 
Status signals are sent on the physical channel 
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continuously and are monitored by a designated processor. 
All the nodes except some nodes on the border have three 
neighbors. A sending node malfunction is recognized by 
missing or incorrect sequences of signals from one of the 
neighbors. Therefore, only the directly connected nodes to 
that faulty node will consider it as faulty. If global 
knowledge of failure is maintained, then many messages 
may have to be transmitted on the network since fault can 
occur frequently which causes high overhead [6]. 
In a faulty Hex-Cell, it is necessary for message delivery 
to find a path of non-faulty nodes from source to 
destination. For this purpose, each node can store some 
information about its neighbors along with the address of 
the destination node to help in selecting the proper node 
for message forwarding. A node in a Hex-Cell network 
might be in one of the following three states: 
 

1- Normal state: there are no node or link failures. 

2- Faulty state: the node is down or the link to reach 
that node is broken. This is recognized when the 
neighbors of node don’t receive the periodic 
update from this node for a specific period of 
time. 

3- Dead end state: the node has failure in the 
incident links which makes it a dead end. This 
may occur when the node is linked to two dead 
end nodes, two faulty node neighbors, or one 
dead end and one faulty node neighbor. A node on 
the border of a Hex-Cell topology is considered 
as dead end if one of its neighbors is either faulty 
or dead end.  

FTRH directs the routing decision of a node based on the 
status of its neighbor. A node will not send messages to 
nodes which are in dead end or faulty states. A node sends 
a message indicating that it is in a dead end state, if it has a 
link with just one other node, or has links with other dead 
end nodes and another link with a non-dead-end node. 
FTRH does not allow backtracking. Hence, the message 
will not be sent back to a node that has forwarded it to 
prevent loop occurrence which may be checked by 
inspecting the Come-from parameter. FTRH restricts the 
number of failure components that can be dealt with to the 
number of levels. For example if we are at level three, the 
number of failure components is limited to three.   

4.2 FTRH Algorithm 

Fig. 4 outlines the Fault Tolerance Routing Algorithm for 
the Hex-Cell network based on the addressing scheme 
introduced in [1]. The abovementioned three cases are 
resolved as follows: 

Case 1: (Xs<Xd)  MoveDown(Xs,Ys, Xd,Yd) as in Fig. 
4(a) - we have here two directions, MoveUp/Left-to-Right, 
and MoveUp/Right-to-Left. 
Case 2: (Xs>Xd) MoveUp (Xs,Ys, Xd,Yd) as in Fig. 
4(b) - we have here two directions, MoveDown/Left-to-
Right, and MoveDown/Right-to-Left. 
Case 3: (Xs=Xd) MoveHorizontal. (Xs,Ys, Xd,Yd) as in 
Fig. 4(c) - we have here two directions, 
MoveHorizontal/Left-to-Right, and MoveHorizontal/ 
Right-to-Left. 

 
(a) Case 1: MoveDown. 

 
(b) Case 2. MoveUp. 

 
(c) Case 3.  MoveHorizontally. 
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(d) Cases and Subroutines. 
Fig. 4  FTRH for HC (d). 

 
The following examples illustrate the proposed algorithm: 
Example – Fig. 5: MoveDown Right-to-leftSource node: 
(2, 8), destination node: (5, 3), and faulty nodes: (3, 5), (3, 
8), (4, 8).  
 
The algorithm moves down to (2, 8)  (2, 7)   (2, 6)  
(2, 5)  (3, 6)  (3, 7)  (4, 7)  (4, 6)  (5, 5)  then 
moves horizontal from (5, 4) to the destination (5, 3). The 
nodes (3, 8) and (3, 5) will not be chosen because they are 
faulty. 
 

 
Fig. 5 MoveDown Right-to-left Example. 

Example – Fig. 6: MoveUp Left-to-Right with loop free 
path: 
Source node: (3, 7), destination node: (1, 3), and faulty 
nodes: (1, 4), (3, 6), (2, 3). The algorithm  moves up (3, 7) 

 (3, 8)  (2, 7)  (2, 6)  (2, 5)  (2, 4)  (1, 3). 
At node (2, 6), the algorithm will not go to node (1, 5) 

since it is located at border and one of its neighbors is 
faulty. This constraint is made in the algorithm to prevent a 
potential loop on the border. 
 

 
Fig. 6  Move Up Left -to-Right with loop free path 

Example. 
 
Example – Fig. 7: MoveHorizontal Left-to-Right: 
Source node: (5, 1), destination node: (5, 9), faulty nodes: 
(5, 6), (6, 4), and faulty links: (5, 3)-(5, 4). The algorithm 
moves horizontally (5, 1) (5, 2) (5, 3)  then move up to 
(4, 4) (4, 5) (4, 6) (4, 7) (4, 8), down to (5, 7) and 
again moves horizontally from (5, 8) to the destination (5, 
9). At node (4, 6) it doesn't go (5, 5) because two of its 
neighbors are faulty; i.e. it is a dead node. 
 

 
Fig. 7  MoveHorizontal  Right-to-left Example. 

Example – Fig. 8: MoveDown Left-to-Right with loop free 
path:Source node:(4, 7), destination node:(5, 5), and faulty 
nodes:(5, 6), (4, 6), (5, 8). The algorithm moves down (4, 
7) (4, 8) (4, 9) (3, 9) (3, 8) (3, 7) (3, 6) (3, 
5) (4, 5) (4, 4) (5, 3). Then moves horizontally to (5, 
4) (5, 5). In this example, at node (4, 8), routing will not 
go to node (5, 7), since its two direct neighbors are faulty. 
Also, at node (3, 7) it doesn't go to (4, 7) because it is the 
original sender of the message. 
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5. Results and Discussion 

In order to have confidence in the results we ran the 
algorithm for a 120 different sample cases. Each case 
represents sending a message from a source to a 
destination with the existence of faulty nodes and/or links. 
The number of faulty nodes or links is equal to the depth 
of the Hex-Cell. The 120 sample cases were divided into 
four groups such that each group represents different depth 
of the Hex-Cell such as 2, 3, 4, and up to 5 with various 
sources and destinations. Table 1 shows a comparison of 
the proposed FTRH algorithm with a hypothetical optimal 
routing algorithm with respect to the routes lengths. From 
the table, we can notice that FTRH is identical to the 
optimal solution for 55 cases out of the 120 test cases. The 
route length for FTRH is slightly greater than optimal for 
the remaining cases. These cases tend to appear if all or 

most of the faulty components are on the same row. The 
message goes through longer path to reach the destination. 
 

 
Fig.  8  MoveDown Left -to-Right with a loop free path. 

 
Table 1: Cases and Comparisons 
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1 7 7 0 0 9 9 0 0 12 12 0 0 23 23 0 0 
2 8 8 0 0 12 12 0 0 13 13 0 0 28 28 0 0 
3 9 9 0 0 6 6 0 0 9 9 0 0 10 10 0 0 
4 9 9 0 0 7 7 0 0 12 12 0 0 18 18 0 0 
5 8 8 0 0 10 10 0 0 14 14 0 0 22 22 0 0 
6 7 7 0 0 10 10 0 0 12 12 0 0 12 12 0 0 
7 8 8 0 0 11 11 0 0 8 8 0 0 12 12 0 0 
8 6 6 0 0 9 9 0 0 12 12 0 0 21 21 0 0 
9 5 5 0 0 14 14 0 0 13 13 0 0 10 10 0 0 
10 6 6 0 0 8 8 0 0 16 16 0 0 22 22 0 0 
11 7 7 0 0 6 6 0 0 17 17 0 0 16 16 0 0 
12 9 9 0 0 13 13 0 0 11 11 0 0 12 12 0 0 
13 8 8 0 0 14 14 0 0 10 10 0 0 21 22 1 0.5 
14 5 5 0 0 10 10 0 0 5 5 0 0 21 23 2 0.10 
15 10 10 0 0 15 15 0 0 11 11 0 0 22 24 2 0.09 
16 8 9 1 0.13 19 20 1 0.06 13 13 0 0 16 18 2 0.13 
17 7 8 1 0.14 13 14 1 0.08 14 15 1 0.07 16 18 2 0.13 
18 15 16 1 0.07 9 11 2 0.22 18 19 1 0.06 15 18 3 0.2 
19 9 11 1 0.22 11 13 2 0.18 16 17 1 0.06 20 23 3 0.15 
20 7 9 2 0.29 5 7 2 0.4 14 16 2 0.14 17 20 3 0.17 
21 7 9 2 0.29 11 13 2 0.18 15 17 2 0.13 13 17 4 0.38 
22 8 10 2 0.25 17 19 2 0.12 12 14 2 0.17 21 25 4 0.19 
23 7 9 2 0.29 10 12 2 0.2 18 20 2 0.11 21 25 4 0.19 
24 6 8 2 0.33 8 12 4 0.5 15 17 2 0.13 19 23 4 0.21 
25 8 10 2 0.25 8 12 4 0.5 21 23 2 0.10 20 24 4 0.2 
26 5 7 2 0.4 9 13 4 0.44 14 18 4 0.29 10 15 5 0.5 
27 6 8 2 0.333 7 12 5 0.71 15 19 4 0.27 23 29 6 0.26 
28 3 6 3 1 12 14 6 0.17 10 22 12 1.2 12 18 6 0.5 
29 6 10 4 0.67 5 15 10 2 5 19 14 2.8 7 19 12 1.716
30 8 12 4 0.5 5 17 12 2.4 5 21 16 3.2 4 22 18 4.5 

 Differences Average= 1.03 
Relative Error =0.17 

Differences Average= 1.97
Relative Error =0.27 

Differences Average=2.17
Relative Error = 0.29 

Differences Average= 2.8
Relative Error = 0.32 
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We may notice that the average difference between the 
proposed protocol and the hypothetical optimal one is 1.95. 
As shown in Fig. 9, the average difference in the route 
length increases as the depth increases, with a reasonable 
maximum average difference equals to 2.8 for depth = 5. 
 

 
Fig.  9  The differences average between the fault 

tolerance routing algorithm and a hypothetical optimal 
algorithm. 

 
Fig. 10 shows the Relative Error with respect to depth of 
the network which is calculated as:  

 
Relative Error = (FTRH path length - Optimal path length) 

/ Optimal path length 
The average of relative error for all cases is 0.26. Fig. 10 
confirms that the efficiency of the proposed protocol 
decreases as the depth increases. 
 

 
Fig. 10 The Relative Error between FTRH and a 

hypothetical optimal algorithm. 

Fig. 11 describes the average route length in terms of the 
topology depth for FTRH versus an optimal solution. The 
Fig. shows that the routes lengths of the two protocols are 
quite close to each other. Although the average route 

length increases as the depth increases, the difference 
between the two protocols slightly increases. The 
closeness of the proposed algorithm to the optimal one, 
stresses its effective way of choosing the route around 
faulty nodes. 
 

 
Fig. 11  Average route length versus network depth. 

6. Conclusion 

This paper introduces a fault tolerance routing algorithm 
for the Hex-Cell network topology. The algorithm 
guarantees the delivery of messages even with the 
presence of component failures. The algorithm is 
evaluated and compared with a hypothetical optimal fault 
tolerance algorithm for the length of the resulting route. It 
produces optimal path lengths for 46% of the cases. A 
slight increase in the route length is noticed for the 
remaining studied cases. The closeness of the proposed 
algorithm to the optimal one increases the reliability of 
routing process in the Hex-Cell network topology by 
ensuring the delivery messages to destination even with 
the presence of failure components.  
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