
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

275

Optimization of Function Partition between Hardware and
Software Based on United Evolutionary Algorithm

Qiaoling Tong, Xuecheng Zou

 Huazhong University of Science & Technology
 Department of Electronic Science & Technology

Hengqing Tong, Fei Gao
Wuhan University of Technology

Department of Mathematics

Abstract

Partition between hardware and software is a key
problem in hardware-software co-design, and global
optimums detection of the objective function is of vital
importance in hardware/software partitioning. Though
stochastic optimization strategies simulating evolution
process are proved to be valuable tools, the balance
between exploitation and exploration of which is difficult
to be maintained. In this paper, the model of the embedded
system was constructed by directed acyclic graph to obtain
the objective function. Then some established techniques
to improve the performance of evolutionary computation
are discussed, such as uniform design, deflection and
stretching the objective function, and space contraction. A
novel scheme of evolutionary algorithms is proposed to
solve the optimization problems through adding evolution
operations to the searching space contracted regularly with
these techniques. A typical evolutionary algorithm
differential evolution is chosen to exhibit the performance
of new scheme. The improved algorithm can avoid local
optimal solution efficiently and be conveniently
implemented in the field of hardware/software partitioning.

1. Introduction

Embedded system requires hardware/software co-
design, and hardware/software partitioning is a crucial
technique of the hardware/software co-design. Embedded
system is composed of one or more microprocessors,
memory and other components. With the enhancement of
function, the system structure has become increasingly
sophisticated, and the integrity is getting higher and higher.
The hardware/software co-design has overcome the
traditional time and cost consuming problems, considered
and weighed the hardware and software at the same time
in each step, and optimized system architecture [1]. From
hardware and software system design space, in accordance
with the definition of system functions, the
hardware/software partitioning tends to meet the optimal
realization of time, cost, and power consumption [2] [3].
This creates an optimization problem.

Many optimization algorithms have been applied to the
hardware/software partitioning, such as climbing method,
Evolutionary Algorithm(EA), Genetic Algorithm, Ant
Algorithm, simulated annealing, chaos optimization
algorithm, and so on [4][5]. These methods have their own
characteristics in the actual use. In this paper, a Novel
United Evolutionary Algorithm Scheme is proposed to
achieve the optimized computation of hardware/software
partitioning.

2. Model of hardware/software partitioning

In the hardware/software co-design, the function of
embedded system is described by the C language or other
process languages at first. Then extract the system call
graph in accordance with the requirements. Call Graph
normally use directed acyclic graph (DAG), as Figure 1
shows below. In DAG, the T (T1, T2,K , T9) is the node
that represents the task; E (e12, e23, K , e89) is the
directed edge between the nodes, and it denotes the
relationship between the nodes. There are data access and
transfer relations between the two linked nodes.

The current study is targeted mainly at dual division,
that is, there is only one embedded processor in the system
(operative software) and ASIC, FPGA, or other hardware
(operative hardware). Embedded processors and hardware
modules communicate through shared memory or
exclusively channel. In addition, we assume that the
communication time between the hardware and software
has been included in the respective task time.

DAG nodes in each task have three attributes: a. tsi,
time required for software implementation of task nodes; b.
thi, time required for hardware implementation of task
nodes; c. chi, hardware costs required for hardware
implementation of task nodes. Each border of DAG has an
attribute: the times of task node i called by his father node
j number, cij. The total times that node i is called is the
sum of all father nodes call the node i in each possible
path, so the number of calls is:

∑∑
= =

=
k

j
iE

k

V

j
iji cC

1 1

 (1)

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

276

where j
iT is the set of all the father nodes of node i; Ek

calls for all possible paths set. Tsi and Thi represent the
total time of software and hardware implementation in
node i respectively. Under the assumption that there is no
parallelism of hardware and software, we
have isisi CtT ⋅= and ihihi CtT ⋅= . Then the total

implementation time p
totalT and total hardware cost pC are:

∑∑
==

+=

p
h

p
s V

j
hj

V

i
si

p
total TTT

11

 (2)

∑
=

=

p
hV

i
hi

p CC
1

 (3)

where p
sT and p

hT are the set of software and
hardware nodes under p partitioning.

The optimal partitioning discussed in this paper is, in a
certain price for the hardware constraints, we obtain
optimal system performance.

Figure 1. 10-node system task directed acyclic graph

3. Some Established Techniques of EA

In this section we discuss some established techniques
of EA such as uniform design, deflection and stretching
the objective function, and space contraction[6].

We uses uniform design method to generate the initial
population in feasible field so as to have the property of
convergence in large scale without better approximation of
the unknown parameter as iterative initial point.

Suppose iju is the element of uniform design

table)(n
n NU , nua ijij 2/)12(−= , Nj ,,1L= , then set

},,1),,,({ 1 MkaaaP kNkkM LL === contains M

points uniformly distributed in N]1,0[.
It is known that set generated by uniform design

method is better than by random method statistically in
reflecting the distribution property of the objective
function just as Figure 2 shows.

Figure 2. Sets generated by uniform design and random

method

Deflection and Stretching

We restrain the normal EA’s local convergence
limitation virtually through deflection and stretching of
objective function.

If the objective function)(xf is full of local optimums
and more than one minimizer is needed, we choose
another established techniques to guarantee the detection
of a different minimizer, such as deflection and stretching
are introduced. Suppose objective function is)(xf , we
use deflection technique as below to generate the new
objective function)(xF :

)(||)]||[tanh()(
1

1* xfxXxF
k

i
ii∏

=

−−= λ (4)

where),,1(* kixi L= are k minimizes founded,
)1,0(∈iλ .

We also introduce stretching technique to generate the
new objective functions)(xG and)(xH as new objective
functions: .

))]()(sgn(1[||||)()(**
1 ii xfxfxxxfxG −+−+= β (5)

)))()((tanh(
))()(sgn(1

)()(*

*

2
i

i

xGxG
xfxf

xHxH
−

−+
+=

δ
β (6)

where 01 >β , 02 >β , 0>δ .
Fig.3 shows deflection and stretching effects on

xxf cos)(= at π=x . In this way, we see that the
searching algorithms will not locate π=x .

Space Contraction

To avoid exploitation excessively in redundant space
and searching efficiency in the whole feasible space, make
EA with relative fewer generations as a step, we put a
novel technique through a technique space contraction
simulating the idea of sequential number theoretic
optimization (SNTO) as below.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

277

Figure 3. Deflection and stretching effects on f(x)

If a local optimum gQ is found, we define a new

searching space],[)1()1()1(+++ = ttt baD centering gQ

from the current searching space],[)()()(ttt baD = as
below:

⎪⎩

⎪
⎨
⎧

−=
−=

+

+

),max(
),max(

)()()()1(

)()()()1(

t
i

t
i

t
i

t

t
i

t
i

t
i

t

bcxb
acxa

γ
γ si ,,2,1 L= (7)

where γ in)1,0(is pre-given contraction ratio. Then
we use EA to search in the new space to get a new
optimum gQ′ , save the better one in gQ′ and gQ .

4. A Novel United Evolutionary Algorithm
Scheme

With these techniques, we can put a novel United
Evolutionary Algorithms Scheme (UEAS) to progress the
EAs.
Algorithm 1. United Evolutionary Algorithms Scheme (U
EAS)
Step0: Initialization. ,)0(,)0(,)0(,0 bbaaDDt ====

)1,0(∈γ .
Step1: Outer cycle Termination condition Judging. If the
optimums wanted are found, output them and terminate
otherwise deal with the objective function with the
deflection and stretching techniques.
Step2: Generate the initial set)(tA on)](),([tbta by
uniform design method, evaluate the fitness and note the
best one gQ .
Step3: Use EA to get a current optimum; update the best
one gQ .
Step4: Inner cycle Termination condition Judging. Given

0>δ enough small, 2/))()(()(tatbtc −= , if

δ<)(max tc , then)(),(tMtx are accept, go to Step1,
otherwise go to Step5.
Step5: Space contraction. Define a new region

],[)1()1()1(+++ = ttt baD by (7) with 5.0=γ ， 1+= tt , go
to Step2.

As many experiment results reported suggest that too
many generations do not bring the optimum better than the
local one, thus the EA in Step3 of Algorithm1 has
relatively fewer generations contrast to the normal EAs,
usually 30 to 1000.

Through Algorithm 1, firstly UEAS can detect the
objective function’s character as far as possible with the
initial set by uniform design method. Secondly UEAS can
get more optimums and avoid premature through the
deflection and stretching techniques. Thirdly UEAS can
avoid exploitation excessively in redundant space and
search in the most prospective space of the feasible field,
so it can jump the local optimum easier. Fourthly with the
help of Outer cycle Termination condition Judging UEAS
can find all the optimums sequentially. And lastly if EA in
Step3 is valid enough, UEAS will not contract the
searching space, and in this sense Eas are the special cases
of UEAS, then UEAS can combine most of current
stochastic optimization strategies such as such as Genetic
Algorithms, Evolutionary Programming, PSO, DE
algorithm, BOA et al.

Now we choose a typical stochastic optimization
strategies DE[7] as the Step3 of UEAS to show its
advantages.

DE algorithm grew out of Price’s attempts to solve
the Chebyshev Polynomial fitting Problem that had been
posed to him by Storn[8]. It utilizes nM –dimensional
vectors as a population for each iteration, called a
generation, of the algorithm. At each generation, two
operators, namely mutation and crossover (recombination),
are applied on each individual, thus producing the new
population. Then, a selection phase takes place, where
each individual of the new population is compared to the
corresponding individual of the old population, and the
best between them is selected as a member of the
population in the next generation. The details of the DE
are given as below.

Algorithm 2. Differential Evolution (DE) Algorithm
Step1: Initialization. Random generate M individuals in
feasible region S , 0=G , crossover constant 0>CR ,
mutation constant 5.0=CF , maxG , define a fitness
function)(xf , value the population and label the best
individual in current population as Q .
Step2: DE Evolution. 1+= gg , for each inii xxx ,,, 21 L .
(1) Mutation. Random choose four mutually different
individuals dcba xxxx ,,, , in the current population to get a

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

278

vector)()(dcbaabcd xxxxD −+−= , use it to generate new
vector as below:

abcdi DCFQ ×+=ξ (8)
(2)Crossover.
To get a new testing vector),,(1 inii uuU L= with iξ :

⎩
⎨
⎧

≠>
=≤

=
))(())((,

))(())((,
irnbrjandCRjrandbifx

irnbrjorCRjrandbif
u

ij

ij
ij

ξ
 (9)

where)(jrandb is thj − random real in]1,0[,
nj ,,1L= , and)(irnbr is random integer in },,1{ nL .

(3) Replacement. Remain the better one between ix an
d iU :

⎩
⎨
⎧

≥
<

=
)()(,
)()(,

iii

iii
i xfUfifx

xfUfifU
x (10)

Step3: Updating. Find the current best Q′ and remain the
better between Q and Q′ as the new Q .
Step4: Termination. If maxGg > , then export the Q ,
else go back to Step2.

Hardware/software partitioning

In the hardware/software partitioning, the optimal
partition P can be expressed by a sequences,
as () () (){ }kXkXkX M,,, 21 K . ()kXi denotes the software
or hardware partitioned state of the node. This sequence is
an optimization variable.

Based on the above analysis, we propose the improved
PSO algorithm on hardware/software partitioning as
follows:
Step 1: Initialization. Use the uniform design method to
generate M individuals)(kX i . Then design the objective
function)(xf .)(xf can be optimized by above methods
based on equation (2) and (3).
Step 2: Calculate the adaptive value and mark best gQ .
Step 3: Use EA to get a current optimum; update the best
one gQ .
Step4: Inner cycle Termination condition Judging.
Step5: Space contraction. Define a new region

],[)1()1()1(+++ = ttt baD . Then go to step 2.

5. Conclusion

In this paper the directed acyclic graph was introduced
to model the embedded system and get the objective
function for hardware/software partitioning. Then we
discussed a Novel United Evolutionary Scheme that can
be used in hardware/software partitioning. The algorithm
can avoid local optimal solution efficiently by the
introduction of translation objective function and
stretching objective function. The algorithm also has fast
convergence speed. Our further exploration will focus on

the impact of parameters on algorithm efficiency. Because
our algorithm can be easily implemented by MATLAB,
more detailed data examples are omitted here.

The project is supported by National Science
Foundation of China (30570611, 60773210).

References
[1] R.Daniel, S.Peter, S.Paul, “A detailed cost model for

concurrent use with hardware/software co-design”,
Proceedings of the 39th Conference on Design
Automation, 2002, pp. 269-274.

[2] Staunstrup J., Wolf W., Hardware/Software Co-
Design: Principles and Practice, Kluwer Academic
Publishers, Boston, 1997.

[3] Dick P. R., Multiobjective synthesis of low-power
real-time distributed embedded systems, Princeton
University, Princeton, 2002.

[4] Henkel J., Ernst R., “An approach to automated
hardware/software partitioning using a flexible
granularity that is driven by high-level estimation
techniques”, Very Large Scale Integration Systems,
2001, Vol. 9, No. 2, pp. 273-289.

[5] Saha D., Mitra RS., Basu, “A hardware software
partitioning using genetic algorithm”, Proceedings of
the International Conference on VLSI Design, 1997,
pp. 155-160.

[6] Parsopoulos, K. E., Vrahatis, M. N., “On the
Computation of All Global Minimizers through
Particle Swarm Optimization”, IEEE Tran. on
evolutionary computation, 2004, Vol. 8, No.3, pp.
211–224.

[7] Storn, R., Price, K., “Differential evolution-a simple
and efficient adaptive schemefor global optimization
over continuous spaces”, Journal of Global
Optimization, 1997, Vol. 11, pp. 341–359.

[8] Price, K., Storn, R., Lampinen, J. Differential
Evolution, “A Practical Approach to Global
Optimization”, Natural Computing Series, Springer,
2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.12, December 2009

279

Qiaoling Tong received his B.Sc.
and the M.S. from the department of
Electronic Science and Technology
in Huazhong University of Science
and Technology, China, in 2003 and
2005, respectively. He is currently a
Ph.D. student at Huazhong
University of Science and
Technology. Now he attends in
advanced studies in University of
California Irv e, USA. His research
interests include VLSI and systems,

neural networks and intelligent computing.

Xuecheng Zou received his B.Sc in
received B.S, M.Sc and Ph.D degrees
from Dept. of Electronic Science &
Technology in Huazhong University
of Science and Technology in 1985,
1988 and 1995, respectively. He is
currently a professor and the head of
Department of Electronic Science and
Technology, Huazhong University of
Science and Technology, Wuhan,
China. His research interests include
Microelectronics and high-speed I/O

circuit design.

Hengqing Tong received the B.Sc.
in Mathematics from Wuhan
University of Technology, China,
in1982, the M.S. in Statistics from
Huazhong University of Science and
Technology, China, in 1987, and the
Ph.D. in Statistics from Shanghai
Financial & Economic University,
China, in 1997. Dr. Tong is currently
a professor in the Department of
Mathematics at Wuhan University of
Technology. His research interests

include applied statistics, econometrics, statistical computing,
and neural networks and applications.

Fei Gao received the B.Sc. and M.S.
in Mathematics from Wuhan
University, China, in1999 and 2002
respectively. Dr. Tong is currently an
associate professor in the Department
of Mathematics at Wuhan University
of Technology. Currently he works in
a multi-disciplinary environment
involving Optimization theories &
methods, Computational Intelligence,

Bio-informatics, Chaos control & chaos synchronization, and
their inter-applied to various real world problems.

