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Abstract 
 

Partition between hardware and software is a key 
problem in hardware-software co-design, and global 
optimums detection of the objective function is of vital 
importance in hardware/software partitioning. Though 
stochastic optimization strategies simulating evolution 
process are proved to be valuable tools, the balance 
between exploitation and exploration of which is difficult 
to be maintained. In this paper, the model of the embedded 
system was constructed by directed acyclic graph to obtain 
the objective function. Then some established techniques 
to improve the performance of evolutionary computation 
are discussed, such as uniform design, deflection and 
stretching the objective function, and space contraction. A 
novel scheme of evolutionary algorithms is proposed to 
solve the optimization problems through adding evolution 
operations to the searching space contracted regularly with 
these techniques. A typical evolutionary algorithm 
differential evolution is chosen to exhibit the performance 
of new scheme. The improved algorithm can avoid local 
optimal solution efficiently and be conveniently 
implemented in the field of hardware/software partitioning. 

 
 

1. Introduction 
 

Embedded system requires hardware/software co-
design, and hardware/software partitioning is a crucial 
technique of the hardware/software co-design. Embedded 
system is composed of one or more microprocessors, 
memory and other components. With the enhancement of 
function, the system structure has become increasingly 
sophisticated, and the integrity is getting higher and higher. 
The hardware/software co-design has overcome the 
traditional time and cost consuming problems, considered 
and weighed the hardware and software at the same time 
in each step, and optimized system architecture [1]. From 
hardware and software system design space, in accordance 
with the definition of system functions, the 
hardware/software partitioning tends to meet the optimal 
realization of time, cost, and power consumption [2] [3]. 
This creates an optimization problem. 

Many optimization algorithms have been applied to the 
hardware/software partitioning, such as climbing method, 
Evolutionary Algorithm(EA), Genetic Algorithm, Ant 
Algorithm, simulated annealing, chaos optimization 
algorithm, and so on [4][5]. These methods have their own 
characteristics in the actual use. In this paper, a Novel 
United Evolutionary Algorithm Scheme is proposed to 
achieve the optimized computation of hardware/software 
partitioning. 

 
 
2. Model of hardware/software partitioning 
 

In the hardware/software co-design, the function of 
embedded system is described by the C language or other 
process languages at first. Then extract the system call 
graph in accordance with the requirements. Call Graph 
normally use directed acyclic graph (DAG), as Figure 1 
shows below. In DAG, the T (T1, T2,K , T9) is the node 
that represents the task; E (e12, e23, K  , e89) is the 
directed edge between the nodes, and it denotes the 
relationship between the nodes. There are data access and 
transfer relations between the two linked nodes.  

The current study is targeted mainly at dual division, 
that is, there is only one embedded processor in the system 
(operative software) and ASIC, FPGA, or other hardware 
(operative hardware). Embedded processors and hardware 
modules communicate through shared memory or 
exclusively channel. In addition, we assume that the 
communication time between the hardware and software 
has been included in the respective task time.  

DAG nodes in each task have three attributes: a. tsi, 
time required for software implementation of task nodes; b. 
thi, time required for hardware implementation of task 
nodes; c. chi, hardware costs required for hardware 
implementation of task nodes. Each border of DAG has an 
attribute: the times of task node i called by his father node 
j number, cij. The total times that node i is called is the 
sum of all father nodes call the node i in each possible 
path, so the number of calls is: 
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where j
iT  is the set of all the father nodes of node i; Ek 

calls for all possible paths set. Tsi and Thi represent the 
total time of software and hardware implementation in 
node i respectively. Under the assumption that there is no 
parallelism of hardware and software, we 
have isisi CtT ⋅=  and ihihi CtT ⋅= .  Then the total 

implementation time p
totalT  and total hardware cost pC are: 
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where p
sT  and p

hT  are the set of software and 
hardware nodes under p partitioning. 

The optimal partitioning discussed in this paper is, in a 
certain price for the hardware constraints, we obtain 
optimal system performance.  

 
Figure 1. 10-node system task directed acyclic graph 

 
3. Some Established Techniques of EA 
 

In this section we discuss some established techniques 
of EA such as uniform design, deflection and stretching 
the objective function, and space contraction[6].  

We uses uniform design method to generate the initial 
population in feasible field so as to have the property of 
convergence in large scale without better approximation of 
the unknown parameter as iterative initial point.  

Suppose iju  is the element of uniform design 

table )( n
n NU , nua ijij 2/)12( −= , Nj ,,1L= , then set 

},,1),,,({ 1 MkaaaP kNkkM LL ===  contains M  

points uniformly distributed in N]1,0[ .  
It is known that set generated by uniform design 

method is better than by random method statistically in 
reflecting the distribution property of the objective 
function just as Figure 2 shows. 

 
Figure 2. Sets generated by uniform design and random 

method 
 
Deflection and Stretching 

We restrain the normal EA’s local convergence 
limitation virtually through deflection and stretching of 
objective function.  

If the objective function )(xf  is full of local optimums 
and more than one minimizer is needed, we choose 
another established techniques to guarantee the detection 
of a different minimizer, such as deflection and stretching 
are introduced. Suppose objective function is )(xf , we 
use deflection technique as below to generate the new 
objective function )(xF : 

)(||)]||[tanh()(
1

1* xfxXxF
k

i
ii∏

=

−−= λ     (4) 

where ),,1(* kixi L=  are k  minimizes founded, 
)1,0(∈iλ . 

We also introduce stretching technique to generate the 
new objective functions )(xG  and )(xH  as new objective 
functions: . 
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where 01 >β , 02 >β , 0>δ . 
Fig.3 shows deflection and stretching effects on 

xxf cos)( =   at π=x . In this way, we see that the 
searching algorithms will not locate π=x . 
 
Space Contraction 

To avoid exploitation excessively in redundant space 
and searching efficiency in the whole feasible space, make 
EA with relative fewer generations as a step, we put a 
novel technique through a technique space contraction 
simulating the idea of sequential number theoretic 
optimization (SNTO) as below.   
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Figure 3. Deflection and stretching effects on f(x) 

 
If a local optimum gQ  is found, we define a new 

searching space ],[ )1()1()1( +++ = ttt baD  centering gQ  

from the current searching space ],[ )()()( ttt baD =  as 
below: 
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where γ   in )1,0(   is pre-given contraction ratio. Then 
we use EA to search in the new space to get a new 
optimum gQ′ , save the better one in gQ′  and gQ . 

 
4. A Novel United Evolutionary Algorithm 
Scheme  
 

With these techniques, we can put a novel United 
Evolutionary Algorithms Scheme (UEAS) to progress the 
EAs. 
Algorithm 1. United Evolutionary Algorithms Scheme (U
EAS) 
Step0: Initialization. ,)0(,)0(,)0(,0 bbaaDDt ====  

)1,0(∈γ . 
Step1: Outer cycle Termination condition Judging. If the 
optimums wanted are found, output them and terminate 
otherwise deal with the objective function with the 
deflection and stretching techniques. 
Step2: Generate the initial set )(tA  on )](),([ tbta by 
uniform design method, evaluate the fitness and note the 
best one gQ . 
Step3: Use EA to get a current optimum; update the best 
one gQ . 
Step4: Inner cycle Termination condition Judging. Given 

0>δ  enough small, 2/))()(()( tatbtc −= , if 

δ<)(max tc , then )(),( tMtx  are accept, go to Step1, 
otherwise go to Step5. 
Step5: Space contraction. Define a new region 

],[ )1()1()1( +++ = ttt baD  by (7) with 5.0=γ ， 1+= tt , go 
to Step2. 

As many experiment results reported suggest that too 
many generations do not bring the optimum better than the 
local one, thus the EA in Step3 of Algorithm1 has 
relatively fewer generations contrast to the normal EAs, 
usually 30 to 1000. 

Through Algorithm 1, firstly UEAS can detect the 
objective function’s character as far as possible with the 
initial set by uniform design method. Secondly UEAS can 
get more optimums and avoid premature through the 
deflection and stretching techniques. Thirdly UEAS can 
avoid exploitation excessively in redundant space and 
search in the most prospective space of the feasible field, 
so it can jump the local optimum easier. Fourthly with the 
help of Outer cycle Termination condition Judging UEAS 
can find all the optimums sequentially. And lastly if EA in 
Step3 is valid enough, UEAS will not contract the 
searching space, and in this sense Eas are the special cases 
of UEAS, then UEAS can combine most of current 
stochastic optimization strategies such as such as Genetic 
Algorithms, Evolutionary Programming, PSO, DE 
algorithm, BOA et al. 

Now we choose a typical stochastic optimization 
strategies DE[7] as the Step3 of UEAS to show its 
advantages.  

DE algorithm grew out of Price’s attempts to solve 
the Chebyshev Polynomial fitting Problem that had been 
posed to him by Storn[8]. It utilizes nM –dimensional 
vectors as a population for each iteration, called a 
generation, of the algorithm. At each generation, two 
operators, namely mutation and crossover (recombination), 
are applied on each individual, thus producing the new 
population. Then, a selection phase takes place, where 
each individual of the new population is compared to the 
corresponding individual of the old population, and the 
best between them is selected as a member of the 
population in the next generation. The details of the DE 
are given as below. 

Algorithm 2. Differential Evolution (DE) Algorithm 
Step1: Initialization. Random generate M  individuals in 
feasible region S , 0=G , crossover constant 0>CR , 
mutation constant 5.0=CF , maxG , define a fitness 
function )(xf , value the population and label the best 
individual in current population as Q . 
Step2:  DE Evolution. 1+= gg , for each inii xxx ,,, 21 L . 
(1) Mutation. Random choose four mutually different 
individuals dcba xxxx ,,, , in the current population to get a 
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vector )()( dcbaabcd xxxxD −+−= , use it to generate new 
vector as below:   

abcdi DCFQ ×+=ξ             (8) 
(2)Crossover. 
To get a new testing vector ),,( 1 inii uuU L=  with iξ : 
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where )( jrandb  is thj −  random real in ]1,0[ , 
nj ,,1L= , and )(irnbr is random integer in },,1{ nL . 

(3) Replacement. Remain the better one between ix  an
d iU : 
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Step3: Updating. Find the current best Q′  and remain the 
better between Q  and Q′  as the new Q . 
Step4: Termination. If maxGg > , then export the Q , 
else go back to Step2.  
 
Hardware/software partitioning 

In the hardware/software partitioning, the optimal 
partition P can be expressed by a sequences, 
as ( ) ( ) ( ){ }kXkXkX M,,, 21 K . ( )kXi denotes the software 
or hardware partitioned state of the node. This sequence is 
an optimization variable. 

Based on the above analysis, we propose the improved 
PSO algorithm on hardware/software partitioning as 
follows: 
Step 1: Initialization. Use the uniform design method to 
generate M individuals )(kX i . Then design the objective 
function )(xf . )(xf can be optimized by above methods 
based on equation (2) and (3). 
Step 2: Calculate the adaptive value and mark best gQ . 
Step 3: Use EA to get a current optimum; update the best 
one gQ . 
Step4: Inner cycle Termination condition Judging. 
Step5: Space contraction. Define a new region 

],[ )1()1()1( +++ = ttt baD . Then go to step 2. 
 
5. Conclusion 

In this paper the directed acyclic graph was introduced 
to model the embedded system and get the objective 
function for hardware/software partitioning. Then we 
discussed a Novel United Evolutionary Scheme that can 
be used in hardware/software partitioning. The algorithm 
can avoid local optimal solution efficiently by the 
introduction of translation objective function and 
stretching objective function. The algorithm also has fast 
convergence speed. Our further exploration will focus on 

the impact of parameters on algorithm efficiency. Because 
our algorithm can be easily implemented by MATLAB, 
more detailed data examples are omitted here. 

The project is supported by National Science 
Foundation of China (30570611, 60773210). 
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