
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

24

Manuscript received January 5, 2010

Manuscript revised January 20, 2010

A New Heuristic Approach:Min-mean Algorithm For Scheduling

Meta-Tasks On Heterogeneous Computing Systems

Kamalam.G.K and Murali Bhaskaran.V
Anna University, Kongu Engineering College, Tamilnadu, India

Summary
Grid computing enables the collection of abundance

heterogeneous resources which is geographically distributed is

selected and shared for solving a large scale problem – usually

to a scientific or technical problem that needs a great number of

computer processing cycles or access to large amounts of data.

The basic idea of grid computing is to make use of the idle CPU

cycles and millions of computer systems distributed across a

worldwide network. Job scheduling is a vital and challenging

work in heterogeneous computing environment. The problem of

mapping meta-tasks to a machine is shown to be NP-complete.

The NP-complete problem can be solved only using heuristic

approach. In this paper, a new heuristic technique Min-mean

algorithm for scheduling meta-tasks in grid computing is

presented. The proposed algorithm improves the performance in

both makespan and effective utilization of resources by reducing

the idle time of the machine. The performance analysis show

that the proposed algorithm has a better resource utilization rate,

reduced makespan and the reduced idle time of the machine than

the other known algorithms.

Key words:

Grid Computing, Job Scheduling, Heuristic Algorithm, Load

Balancing

1. Introduction

Heterogeneous computing environment comprises the
collection of different machines interconnected by high
speed networks that executes varied applications [4]. The
most critical issue in grid computing is managing the
resources, which are geographically distributed. In high
throughput computing, the grid aims to schedule large
number of meta-tasks, with the goal of reducing the idle
time of the machines, reducing the makespan and also to
balance the load well across the machines [15].
Applications may require enormous resources, which often
are not available for the user, so a scheduling system is
essential to allocate the resources to the input jobs.
Managing various resources and task scheduling in highly
dynamic grid environment is a challenging and
indispensable task [10, 11]. The problem of mapping
resources to jobs has been shown to be NP-complete [1, 3].
Many useful heuristics for static mapping [2] have been
developed. Among the highly developed algorithms, Min-
min algorithm is very simple, runs fast and provides better
performance. Min-min algorithm schedules small tasks
first which leads to load imbalance. Effective algorithms
have to be designed to gain high performance. The

objectives of scheduling algorithm are increasing the system
throughput measure [12, 13], reducing task completion time,
better resource utilization rate, and balancing the load well.
This paper presents a new scheduling algorithm named
Min-mean heuristic scheduling algorithm for static mapping
to achieve better performance. The proposed heuristic
approach was tested using the benchmark model of Braun et
al [1].

2. Related works

A set of heuristic algorithms has been designed to schedule

meta-tasks to heterogeneous computing systems. It is

assumed that the heuristic derive mapping statically for the

collection of independent meta-task. The scheduling

problem is computationally hard even though there are no

data dependencies among the jobs.

2.1 Opportunistic Load Balancing(OLB)

OLB assigns each job in random order to the next available
machine without considering the job’s expected execution
time on the machine [6, 7].

2.2. Minimum Execution Time(MET)

The minimum execution time or MET assigns each job to

the machine that has the minimum expected execution time.

It does not consider the availability of the machine and the

current load of the machine.

2.3 Minimum Compleion Time(MCT)

The algorithm calculates the completion time for a job on all
machines by adding the machine’s availability time and the
expected execution time of the job on the machine. The
machine with the minimum completion time for the job is
selected. The MCT considers only one job at a time [1].
This causes that particular machine may have the best-
expected execution time for any other job.

2.4 Min-min

Min-min algorithm starts with a set of all unmapped tasks.

The completion time for each job on each machine is

calculated. The machine that has the minimum completion

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

25

time for each job is selected. Then the job with the overall

minimum completion time is selected and mapped to the

machine. Again, this process is repeated with the

remaining unmapped tasks. Compared to MCT, Min-min

considers all unmapped tasks at a time [5, 6, 7].

2.5 Max-min

Max-min begins with a set of all unmapped tasks. The

completion time for each job on each machine is

calculated. The machine that has the minimum

completion time for each job is selected. From the set, the

algorithm maps the job with the overall maximum

completion time to the machine. Again the above process

is repeated with the remaining unmapped tasks. Similar to

Min-min, Max-min also considers all unmapped tasks at a

time [6, 7].

2.6 Duplex

The Duplex heuristic is literally a combination of the

Min-min and the Max-min heuristic algorithms [5, 16].

2.7 GA

The Genetic algorithm (GA) is a technique used for

searching large solution spaces. The GA operates on a

population of chromosomes for a given meta-tasks. The

initial population is generated by two methods. In the first

method, a chromosome is generated randomly from a

uniform distribution. In the second method, a

chromosome is generated by Min-min and it is called

“seeding” the population with a Min-min chromosome

[17, 18].

2.8 SA

Simulated Annealing (SA) is an iterative technique that

considers only one possible mapping for each meta-task at

a time. Simulated annealing uses a procedure that

probabilistically allows poorer solutions to be accepted to

attempt to obtain a better search of the solution space

based on a system temperature [19].

2.9 GSA

The Genetic Simulated Annealing (GSA) heuristics is a

combination of the GA and SA heuristics. GSA follows

the procedures similar to the GA. For the selection

process,

GSA uses the SA cooling schedule and system

temperature [20].

2.10 Tabu

Tabu search is a solution space search that keeps track of

the regions of the solution space to avoid repeating a search

near the areas that have already been searched. A mapping

of meta-tasks uses the same representation as a

chromosome in the GA approach. The implementation of

tabu search begins with a random mapping, generated from

a uniform distribution [21].

2.11 A*

A* is a tree search technique based on an m-array tree,

beginning at a root node that is a null solution. As the tree

grows, intermediate nodes represent partial mappings and

leaf nodes represent final mappings. Each node has a cost

function, and the node with the minimum cost function is

replaced by its child node. Whenever a node is added, to

reduce the height of the tree, the tree is pruned by deleting

the node with the largest cost function. This process is

repeated until a complete mapping (a leaf node) is reached

[22].

Though the above stated heuristic algorithms have

advantages, they do have their own disadvantages. OLB

leads to poor makespan since it does not consider the

expected execution time while mapping the meta-tasks to

the machines and it is also hard to achieve dynamic load

balance of jobs.

MET results in severe load imbalance across the machines.

Static mapping of meta-task to machine using MCT

heuristic algorithm leads to poor makespan since it takes

more time for a job to map to the particular machine. Max-

min is appropriate only when most of the jobs arriving to

the grid systems are shortest and also Max-min

outperforms Min-min [14].

The experimental results from [1] show that Duplex, SA,

GSA, and Tabu do not produce good mappings. Min-min,

GA, and A* are able to deliver good performance. GA is

better than Min-min by a few percents, and also it has to be

“seeding” the population with a Min-min chromosome to

obtain its good performance. In different situations, A*

produce better or worse mappings than Min-min and GA.

Among the three algorithms, Min-min is the fastest

algorithm, GA is much slower, and A* is very slow.

Among the stated algorithms, Min-min is the simple and

fastest algorithm and its good performance depends on the

choice of mapping the meta-tasks to the first choice of

minimum execution time. However the drawback of Min-

min is that, it is unable to balance the load because it

usually assigns the small task first and few larger tasks,

while at the same time, several machines sit idle, which

leads to poor utilization of resources. The proposed

algorithm retains the advantage of Min-min algorithm and

reduces the idle time of the resources, which in turn leads

to better makespan.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

26

3. Problem Definition

This section, presents the problem of job scheduling in

heterogeneous computing environment.

In this paper the experimental study is based on a

benchmark simulation model by Braun et al. [1];

In this model static mapping of meta-tasks is considered.

Each machine executes one task at a time in the order in

which tasks are allocated to the machines. For static

mapping, the size of the meta-tasks and the number of

machines in the heterogeneous computing environment is

known a priori. Since there are static heuristics, the

accurate estimate of the expected execution time for each

task on each machine is known a priori to execution and is

contained within an ETC(expected time to compute)

matrix where ETC(ti, mj) is the estimated execution time

of task i on machine j.

Using the ETC matrix model, the scheduling problem can

be defined as follows:

 A number of independent jobs to be allocated to

the available grid resources. Because of Non-
preemptive scheduling, each job has to be
processed completely in a single machine.

 Number of machines is available to participate in
the allocation of tasks.

 The workload of each job(in millions of
instructions)

 The Computing capacity of each resources(in
MIPS)

 ready m- represents the ready time of the machine
after completing the previously assigned jobs.

 ETC matrix of size t * m, where t-represents the
number of jobs and m-represents the number of
machines.

3.1 Proposed Min-mean Heuristic Scheduling

Algorithm

Job scheduling system is the most important part of grid

resource management system. The scheduler receives the

job request, and chooses appropriate resource to run that

job. In this paper, the formulation of job scheduling is

based on the expected time to compute (ETC) matrix of

Braun et al.

A meta-task is defined as a collection of independent task

(i.e. task doesn’t require any communication with other

tasks) [1, 9]. Tasks derive mapping statically. For static

mapping, the number of tasks, t and the number of

machines, m is known a priori.

ETC (i,j) represents the estimated execution time for task

ti on machine mj.

The expected completion time of the task ti on machine mj

is

 ct (ti, mj) = mat(mj) + ETC(ti, mj)

 mat (mj) is the machine availability time, i.e. the

time at which machine mj completes any previously

assigned tasks [8].

The main aim of the heuristic scheduling algorithm is to

minimize the makespan where

 makespan = max (ct (ti, mj))

The proposed heuristic scheduling algorithm Min-mean

works in two phases.

 In phase 1, the job allocation is done based on the

Min-min algorithm.

 In phase 2, the mean of all machines completion

time is taken. The machine whose completion

time is greater than the mean value is selected.

The tasks allocated to the selected machines are

reallocated to the machines whose completion

time is less than the mean value.

The related definition of proposed Min-mean heuristic

scheduling algorithm is as follows:

 ETij - the amount of time taken by machine Mj to

execute Taski given that Mj is idle when Taski is

assigned.

 CTj - the expected completion time of Mj

 Mat (mj) - the machines availability time i.e. the

time at which Machinej completes any previously

assigned tasks.

 Group (CTi, Machinej) –The function

“f1” is used to group all the tasks and machines

that has minimum completion time.

 The best minimum task/machine pair (Taski,

Machinej) is selected from the Group

 MeanCT- is used to find the mean completion of

all the machines.

3.1.1 Algorithm Min-mean

 (1) while there are tasks to schedule

 (2) for all Taski to schedule

 (3) for all Machinej

 (4) ComputeCTi,j ; CTi,j = Mat (mj) + ETij

 (5) end for

 (6) Group (CTi, Machinej) =f1 (CTi, 1, CTi, 2 ...)

 (7) end for

(8) Select the best minimum pair (Taski, Machinej) from

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

27

 the Group

 (9) Compute minimum CTi,j

 (10) Reserve Taski on Machinej

 (11) end while

 //Optimization based on MeanCT

 (12) Calculate MeanCT= (ΣCT j)/No of machines

 (13) for all Machinej

 (14) if (CT j>MeanCT)

 (15) Select tasks Taski reserved on the machines

 Machinej

 (16) end for

(17) Sort the selected machines in the increasing order of

 CT j

 (18) for all Machinek reselected

 (19) for all Taski in Machinek reselected

 (20) for all Machinej

 (21) Compute New CTi,j

 (22) if(New CTi,j < MeanCT)

 (23) Group (CTi, Machinej) =f1 (CTi, 1, CTi, 2 ...)

 (24) endif

 (25) end for

(26) Select the best minimum pair (Taski, Machinej) from

 the Group

(27) Compute minimum New CTi,j

(28) Reschedule (Taski on Machinej)

(29) end for

(30) Compute Makespan=Max(CTi,j)

(31) end for

Min-min heuristic scheduling algorithm executes all

shortest tasks first and then the longest task. Table 1 gives

a sample ETC matrix, the expected execution time of

three tasks (t1, t2, t3) on two machines (m1, m2). This

sample ETC matrix clearly explains how proposed Min-

mean heuristic scheduling algorithm performs better than

the Min-min algorithm. It is assumed that both the

machines are idle at the start.

TABLE 1. THE EXECUTION TIME OF THREE TASKS ON TWO MACHINES

 m1 m2

t1 1 2

t2 2 4

t3 5 9

The sequence of the execution of Min-min algorithm and

the proposed Min-mean heuristic scheduling algorithm is

as follows:

 Step 1: Static mapping of tasks to machines based
on Min-min is shown in Figure 1. Min-min
algorithm gives a makespan of 8 sec.

Figure 1: Results of Min-min algorithm

 The proposed Min-mean heuristic scheduling
algorithm works as follows:

 Step 2: The mean completion time for the sample
ETC matrix can be calculated by using the
following relation:

 MeanCT = CTm1+CTm2

 where,

 CTm1: Completion time of all tasks on
machine m1

 CTm2: Completion time of all tasks on
machine m2.

 MeanCT = 4 sec.

 Step 3: Tasks on machines m1 are selected as
shown in Figure 2 because

 CTm1 > MeanCT.

 Figure 2: Selected tasks on machine m1

 Step 4: Rescheduling of the tasks on machine m1 to
the machine m2 is done, whose expected execution
time is

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

28

 ETi < MeanCT

 The final scheduling of the tasks (t1, t2, t3) on two
machines (m1, m2) using the proposed Min-mean
heuristic scheduling algorithm is shown in Figure
3. Min-mean heuristic scheduling algorithm gives
a makespan of 6 sec.

Figure 3: Results of Min-mean algorithm

 The Figure 1 and Figure 3 clearly show that Min-
mean heuristic scheduling algorithm performs
better than Min-min algorithm.

 The comparison results of Figure 1 and Figure 3 is
as follows:

o The idle time of the machine m2 is
reduced.

o The load is well balanced in both the
machines m1 and m2.

o The measure of the throughput of the
heterogeneous computing systems is
termed as makespan. The makespan can
be calculated as

 makespan = max (CTi,j)

 makespan = 6 sec.

 Figure 1 and Figure 3 shows that the makespan using
Min-mean is reduced compared to that of the makespan
using Min-min.

4. Experimental Results

Experimental results obtained for the benchmark of
instances by Braun et al. [1] for various heuristic
scheduling algorithms were compared with the proposed
algorithm.

4.1 Benchmark Description

The makespan of the various heuristic algorithms were
compared using Braun et al. benchmark. Using the ETC
matrix, the instance of this benchmark is divided into 12
different types each of them consisting of 100 instances
based on the three metrics: job heterogeneity, machine
heterogeneity and consistency. Instances are labeled as u-x-
yyzz.k where

u- uniform distribution used to generate ETC matrix.

x- Type of consistency(c-consistent, i-inconsistent, s-
semi-consistent or partially-consistent).

An ETC matrix is consistent if a machine executes any job ti
faster than machine mk, then machine mj executes all jobs
faster than machine mk [8].

An ETC matrix is inconsistent if a machine mj is faster than
machine mk for some jobs and slower for other jobs.

An ETC matrix is semi-consistent or partially consistent if it
includes a consistent sub-matrix.

Job heterogeneity: Variation in the execution time of the
task for a given machine.

yy- the heterogeneity of the jobs (hi- represents high, lo-
represents low).

Machine heterogeneity: Variation in the execution time for
a particular task among the entire machine.

zz- the heterogeneity of the machines (hi- represents
high, lo-represents low).

Every instance consists of 512 jobs and 16 machines. The
experimental results are based on the set of 12 instances,
which comprises three groups of four instances each. The
first group relates to the consistent ETC matrices of various
combinations comprising the machine heterogeneity and job
heterogeneity. The second and third group relates to the
inconsistent and semi-consistent ETC matrices.

The experimental results are tabulated in Tables 2 and 3.
The makespan computed for MET, MCT, Min-min and the
proposed Min-mean heuristic scheduling algorithm clearly
specifies the fair performance of the proposed heuristic
scheduling algorithm over the existing heuristic algorithms.

5. Performance Analysis

To evaluate the efficiency of the proposed Min-mean
heuristic scheduling algorithm described in section 3 Min-
mean heuristic scheduling algorithm is compared with MET,
MCT, Min-min heuristic algorithm in all the four instances.

Table 2 show the improvement of the proposed Min-mean
heuristic scheduling algorithm over Min-min.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

29

Figure 4, 5, 6 represents the improvement of Min-mean
heuristic scheduling algorithm over Min-min in all 12
different types of instances based on the three metrics: Job
heterogeneity, machine heterogeneity and consistency.

TABLE 2. IMPROVEMENT OF MIN-MEAN OVER MIN-MIN

Consistency Improvement over Min-min

Inconsistent

High-High 4.56%

High-Low 6.79%

Low-High 5.28%

Low-Low 4.77%

Consistent

High-High 1.58%

High-Low 0.15%

Low-High 1.47%

Low-Low 0.97%

Partially

consistent

High-High 1.80%

High-Low 0.52%

Low-High 3.59%

Low-Low 0.83%

Figure 4. Graphical representation for improvement of Min-mean over

Min-min algorithm for Consistent job heterogeneity and machine

heterogeneity

 Figure 5. Graphical representation for improvement of Min-mean over

Min-min algorithm for Inconsistent job heterogeneity and machine

heterogeneity

Figure 6. Graphical representation for improvement of Min-mean over

Min-min algorithm for Partially consistent job heterogeneity and

machine heterogeneity

The four instances comprises High task High machine, High
task Low machine, Low task High machine, Low task Low
machine. The four instances are represented for three
different (consistent, inconsistent, semi-consistent or
partially-consistent) heterogeneous computing systems.

Table 3 represents the makespan value obtained by MET,
MCT, Min-min, Max-min, Min-mean in the first, second,
third, fourth and fifth column respectively. Graphical
representation of Table 3 in Figure 7 show that the proposed
Min-mean heuristic scheduling algorithm improves the
efficiency in both makespan and resource utilization rate
among all the heuristics selected for analysis.

TABLE 3 COMPARISON OF MAKESPAN VALUES OBTAINED BY MET, MCT,
MIN-MIN, MAX-MIN, MIN-MEAN USING BRAUN ET AL. BENCHMARK

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

30

0.00E + 00

5.00E + 06

1.00E + 07

1.50E + 07

2.00E + 07

2.50E + 07

3.00E + 07

3.50E + 07

4.00E + 07

4.50E + 07

5.00E + 07

C
H
IH

I

C
H
IL

O

C
L
O
H
I

C
L
O
LO

IC
H
IH

I

IC
H
IL

O

IC
LO

H
I

IC
LO

L
O

P
C
H
IH

I

P
C
H
IL

O

P
C
LO

H
I

P
C
LO

L
O

Ins tances

M
a
k
e
s
p
a
n

ME T

MC T

Minmin

Maxmin

Min mean

 Figure 7. Graphical representation of Table 3

6. Conclusions and Future Work

The implementation of Min-mean heuristic scheduling

algorithm and various existing algorithm are tested using

the benchmark simulation model for distributed

heterogeneous systems by Braun et al. (2001). The

experimental results show that Min-mean performs better

than the existing heuristic algorithm in various systems

and settings and also it delivers improved makespan on

various heterogeneous environments such as job

heterogeneity (high, low), machine heterogeneity (high,

low), and consistency (consistent, inconsistent, semi-

consistent or partially-consistent). The future research will

be directed towards the factors such as CPU workload,

communication delay and so on.

References
[1] Tracy D.Braun, Howard Jay Siegel, and Noah Beck, “A

Comparison of Eleven Static Heuristics for Mapping a

Class of Independent Tasks onto Heterogeneous

Distributed Computing Systems”, Journal of Parallel and

Distributed Computing 61, pp.810-837, 2001.

[2] J.M.Schopf, “A General Architecture for Scheduling on the

Grid”, special issue of JPDC on Grid Computing, 2002.

[3] T.Braun, H.Siegel, N.Beck, L.Boloni, M.Maheshwaran,

A.Reuther, J.Robertson, M.Theys, B.Yao, D.Hensgen, and

R.Freund, “A Comparison Study of Static Mapping

Heuristics for a Class of Meta-tasks on Heterogeneous

Computing Systems”, In 8th IEEE Heterogeneous

Computing Workshop(HCW’99), pp. 15-29, 1999.

[4] I.Foster, C.Kesselman, and S.Tuecke, “The Anatomy of the

Grid: Enabling Scalable Virtual Organizations”,

International Journal of Supercomputer Applications, 15(3),

pp. 200-222, 2001.

[5] R.F.Freund, and M.Gherrity, “Scheduling Resources in

Multi-user Heterogeneous Computing Environment with

Smart Net”, In Proceedings of the 7th IEEE HCW, 1998.

[6] R.Armstrong, D.Hensgen, and T.Kidd, “The Relative

Performance of Various Mapping Algorithms is

Independent of Sizable Variances in Run-time Predictions”,

In 7th IEEE Heterogeneous Computing Workshop(HCW’98),

pp. 79-87, 1998.

[7] R.F.Freund and H.J.Siegel,”Heterogeneous Processing”,

IEEE Computer , 26(6), pp. 13-17, 1993.

[8] J.Brevik, D.Nurmi, and R.Wolski, “Automatic Methods for

Predicting Machine Availability in Desktop Grid and Peer-

to-Peer Systems”, In Proceedings of CCGRID’04, pp. 190-

199, 2004.

[9] TD. Braun, HJ. Siegel, N.Beck, “ A Taxonomy for

Descriging Matching and Scheduling Heuristics for Mixed-

machine Heterogeneous Computing Systems”, IEEE

Workshop on Advances in Parallel and Distributed Systems,

West Lafayette, pp. 330-335, 1998.

[10] T.Ghazawi, K.Gaj, N.Alexandridis, F. Vroman, N.Nguyen,

P.Samipagdi and S.suboh, “A Performance study of Job

Management Systems”, Concurrency and Computation:

Practice and Experience 16(13): 1229-1246, 2004.

[11] He Xiaoshan, Xia-He Sun, Gregor Von Laszewski, “QoS

Guided Min-min Heuristic for Grid Task Scheduling”,

Journal of Computer Science and Technology, pp. 442-451,

July 2003.

[12] Zhang Qian, Li Zhen, “Design of Grid Resource

Management System Based on Divided Min-min scheduling

Algorithm”, IEEE First International Workshop on

Education Technology and Computer Science, pp. 613-618,

2009.

[13] Hojjat Baghban, Amir Masoud Rahmani, “ A Heuristic on

Job Scheduling in Grid Computing Environment”, In

Proceedings of the seventh IEEE International Conference

on Grid and Cooperative Computing, pp. 141-146, 2008.

[14] Hui Yan, Xue-Qin-Shen, Xing Li, Ming-Huiwu, “ An

Improved Ant Algorithm for Job Scheduling in Grid

Computing”, In Proceedings of the IEEE fourth International

Conference on Machine Learning and Cybernetics, pp. 2957-

2961, August 2005.

[15] Li Wenzheng, Zhang Wenyue, “ An Improved Scheduling

Algorithm for Grid Tasks”, International Symposium on

Intelligent Ubiquitous Computing and Education, pp. 9-12,

2009.

[16] R. Armstrong, D.Hensgen, and T.Kidd, “The Rekative

Performance of Various Mapping Algorithms is Independent

of Sizable Variances in Run-time Predictions”, in 7th IEEE

Heterogeneous Computing Workshop, pp. 79-87, March

1998.

[17] H.Singh, and A.Youssef, “Mapping and Scheduling

Heterogeneous Task Group Using Genetic Algorithms”, in

5th IEEE Heterogeneous Computing Workshop (HCW’96),

pp. 86-97, April 1996.

[18] L.Wang, H.J.Siegel, V.P.Roychowdhury, and

A.A.Macicjewski, “Task Matching and Scheduling in

Heterogeneous Computing Environments Using a Genetic

AlgorithmBased Approach”, Journal of Parallel and

Distributed Computing, 47(1), pp. 1-15,November 1997.

[19] M.Coli, and P.Palazzari, “Real Time Pipelined System

Design Through Simulated Annealing”, Journal of Systems

Architecture, 42(6-7), pp. 465-475, December 1996.

[20] H.Chen, N.S.Flann, and D.W.Watson, “Parallel Genetic

Simulated Annealing: A Massively Parallel SIMD

Approach”, IEEE transactions on Parallel and Distributed

Computing, 9(2), pp. 126-136, February 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

31

[21] I.D.Falco, R.D.Balio, E.Tarantino, and R.Vaccaro,

“Improving Search by Incorporating Evolution Principles

in Parallel Tabu Search”, in IEEE Conference on

Evolutionary Computation, pp. 823-828, 1994.

[22] K.Chow, and B.Liu, “On Mapping Signal Processing

Algorithms to a Heaterogeneous Multiprocessor System”,

in ICASSP’91, pp. 1585-1588, May 1991.

AUTHORS

V.Muralibhaskaran, M.E., Ph.D., Principal,

Paavai College of Engineering, Pachal,

Namakkal-637 018, India, He obtained his

Bachelors degree in Computer Science and

Engineering,” from Bharathidasan University,

Thiruchirapalli and MS in Computer Science

from BITS, Pilani and Masters Degree in

Computer Science and Engineering from

Bharathiyar University, Coimbatore. He completed PhD in

Network Security from Bharathiyar University, Coimbatore. He

presented 12 papers in National and International Conferences.

He published 4 papers in international journals. He is presently

working as a Principal of Paavai College of Engineering, Pachal,

Namakkal. He received the “Best Staff” award for the year

1991- 1992 at Sathyabama Engineering College, Chennai.and

2002-2003 in Kongu Engineering College, Perundurai. He

is guiding 10 research scholars and his area of interest is

Cryptography and Network Security, High Speed

Networks, and Computer Architecture.

G.K.Kamalam.,B.E.,MBA.,M.E., (Ph.D).,

Senior Lecturer, Kongu Engineering College,

Perundurai, Erode-638 052, India. She obtained

her Bachelors degree in Computer Science

and Engineering from Madras University,

Chennai and Masters of Business

Administration from Madurai Kamaraj

University, Madurai and M.E degree in VLSI from Anna

University, Chennai. She is currently doing research in Grid

Computing under Anna University, Coimbatore. She is presently

working as a Senior Lecturer in the Department of Computer

Science and Engineering, Kongu Engineering College,

Perundurai,Tamilnadu, India. Her area of interest is Grid

Computing, Datastructures and analysis of algorithms, and

Compiler Design. She has presented papers in National

conferences.

