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Summary 
A multisignature scheme is a digital signature scheme that allows 
multiple signers to generate a single signature in a collaborative 
and simultaneous manner. In this paper we first review of the 
digital multisignature schemes using elliptic curvers and elliptic 
curve version of the multisignature scheme with distinguished 
signing responsibilities. Then, we propose a new multisignature 
scheme with distinguished signing responsibilities. In this scheme, 
each group member has distinguished signing responsibility and 
partial contents of the message can be verified without revealing 
the whole message. Our proposed scheme is more efficient than 
the scheme reviewed and capable of application in practice.  
Keywords 
Multisignature scheme, Elliptic curve, Distinguished signing 
responsibilities. 

I.  INTRODUCTION  
Digital signatures can be classified into two main 

categories: single signature and multiple signature (or 
multisignature). Single signature refers to the cases where 
only one party signs a document, while multiple signature 
refers to the cases where more than one party sign a single 
document. 

The digital signature schemes in use today can be 
classified according to the hard underlying mathematical 
problem which provides the basis for their security [1]: 

1. Integer Factorization schemes, which base their 
security on the intractability of the integer factorization 
problem. Examples of these include the RSA and 
Rabin signature schemes. 

2. Discrete Logarithm schemes, which base their security 
on the intractability of the (ordinary) discrete 
logarithm problem in a finite field. Examples of these 
include the ElGamal, Schnorr, DSA, and Nyberg-
Rueppel signature schemes. 

3. Elliptic Curve schemes, which base their security on 
the intractability of the elliptic curve discrete logarithm 
problem. For example, in American standard ECDSA 
and Russian standard GOST R 34-2001. 

The indicated problems are hard, if the used primes and 
elliptic curves satisfy special requirements [2, 3].  

In 1983, Itakura and Nakamura [4] proposed the first 
multisignature scheme. It let multiple signers 

collaboratively sign the same message and the resultant 
multisignature can be verified by a group of verifiers to 
check whether it is valid or not. Since then, several 
multisignature schemes have been proposed [5-7]. 

The application of digital multisignature can be found in 
some secret sharing applications. For example, a company's 
policy may require multiple managers to sign any business 
contract. Digital multisignature scheme enables this internal 
policy effectively. Each manager has to use his individual 
secret key to sign the same document and all individual 
signatures can be combined into a single multisignature. 
However, to any external verifier, this multisignature is just 
a normal signature that can be verified by using the 
company's public key, which is a product of all public keys 
of the signers. In the multisignature schemes proposed in [8], 
all group members hold the same responsibility of signing 
the document.  

In fact, there are some applications that need to use 
multisignatures with distinguished signing responsibilities. 
For example, a company releases a document that may 
involve financial department, engineering department and 
program office. Each entity is responsible of preparing and 
signing a particular section of the document. The signing 
responsibility of engineering department may have no 
interest to read the content prepared by the financial 
department. However, the combination of all sections 
represents the company's document. The company's 
document should be easily verified by any outsider using 
company's public key. For the sake of confidentiality, same 
verifier may be restricted to access and verify only some 
sections of the document.  

In this paper, we first review of the digital 
multisignature schemes using elliptic curvers [8] and elliptic 
curve version of the multisignature scheme with 
distinguished signing responsibilities [9]. Then, we propose 
a new multisignature scheme with distinguished signing 
responsibilities. 

We will organize this paper as follows: In section II, we 
will introduce elliptic curve digital schemes. Brief reviews 
of the digital multisignature schemes using elliptic curvers 
in [8] will be introduced in Section III. In Section IV, we 
will describe the elliptic curve version of the multisignature 
scheme with distinguished signing responsibilities proposed 
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in [9]. In Section V, we will propose a new multisignature 
scheme with distinguished signing responsibilities. Section 
VI, we will present example for our scheme. Finally, a 
conclusion will be given in Section VII. 

II. ELLIPTIC CURVE DIGITAL SIGNATURE SCHEMES 
Many researchers have examined elliptic curve 

cryptosystems, which were firstly proposed by Miller [10] 
and Koblitz [11]. The elliptic curve cryptosystems which 
are based on the elliptic curve logarithm over a finite field 
have some advantages than other systems: the key size can 
be much smaller than the other schemes since only 
exponential-time attacks have been known so far if the 
curve is carefully chosen [2], and the elliptic curve discrete 
logarithms might be still intractable even if factoring and 
the multiplicative group discrete logarithm are broken. 

Elliptic curve cryptosystem is widely used in several 
digital signature schemes, such as threshold signature 
scheme, proxy signature scheme, blind signature, and so on. 
For the elliptic curve over finite field see more details in 
[12].  

III. DIGITAL MULTISIGNATURE SCHEMES                         
USING ELLIPTIC CURVES 

In this section we describe the elliptic curve version of 
the multisignature scheme proposed in [8]. It contains three 
phases: key generation, multisignature generation, and 
multisignature verification. We review their scheme briefly 
as follows: 

We assume that there are t signers, 1 ≤ i ≤ t to sign the 
same message m ∈ {0, 1}*. 

A. Key Generation 
Firstly, we choose elliptic curve domain parameters ([2, 

12]):  
1. Choose p a prime and n an integer. Let f(x) be an 

irreducible polynomial over GF(p) of degree n, 
generating finite field GF(pⁿ) and assume that α is 
a root of f(x) in GF(pⁿ).  

2. Two field elements a, b ∈  GF(pⁿ), which define 
the equation of the elliptic curve E over GF(pⁿ) 
(i.e., y² = x³ + ax + b in the case p > 3, where 4a³ + 
27b² ≠ 0).  

3. Two field elements xp and yp in GF(pⁿ), which 
define a finite point P = (xp, yp) of prime order q in 
E(GF(pⁿ)) (P ≠ O, where O denotes the point at 
infinity).  

4. The converting function c(x): GF(pⁿ) → Zpⁿ which 
is given by: 
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The operation of the key generation is as follows: 
1. Each signer randomly selects an integer di from 

the interval [1, q - 1] and computes a 
corresponding public key as the point: Qi = diP. 

2. Compute the public key Q for all signers, which is 
equal to the sum of all individual public keys Q = 
Q1+ Q2 + ... + Qt = dP = (xQ, yQ), where d = d1 + d2 
+ ... + dt (mod q). 

3. Let H be a one-way hash function such as SHA-1.  

B. Generating the Multisignature 
Each signer Ui, 1 ≤ i ≤ t executes next steps: 
1. Randomly selects a number ki  ∈ [1, q - 1] and 

computes:  
Ri = kiP = (

ii RR yx , ), 1≤ i ≤ t. 

2. Converting the x-coordinate of point Ri into the 
integer ri = c(

iRx ), where c(x) is the converting 
function. The values ri is broadcast to the other 
signer.  

3. Once ri, 1 ≤ i ≤ t, are available through the 
broadcast channel, each signer computes the 
commitment r as  

r = r1 + r2 + ... + rt (mod q). 
4. Uses his secret keys, di and ki, to sign the message 

m. The signer Ui computes  
si = diH(m) - kir (mod q). 

5. Transmits the pair (m, si) to the clerk.  
Once the clerk receives the individual signature (ri, si) 

from Ui, he needs to verify the validity of this individual 
signature. The verification procedure is to compute the point 

(r
-1

H(m) mod q)Qi - (r
-1

si mod q)P = (
ii ee yx , ), 1 ≤ i ≤ t 

and check  

ri = (
ii ee yx , ) (mod q), 1 ≤ i ≤ t. 

Once all individual signatures are received and verified 
by the clerk, the multisignature of the message m can be 
generated as (r, s), where s = s1 + s2 + ... + st (mod q). 

C. Verifying the Multisignature 
Since individual signatures (ri, si), 1 ≤ i ≤ t, satisfy  

(r
-1

H(m) mod q)Qi - (r
-1

si mod q)P = (
ii ee yx , ),1 ≤ i ≤ t. 

Adding the above equations from 1 through t, we 
obtain  

(r
-1

H(m) mod q)Q - (r
-1

s mod q)P = ( ee yx , ). 

where s = s1 + s2 + ... + st (mod q), Q = Q1 + Q2 + ... + Qt = 
dP = (xQ, yQ) and r = c(xe)(mod q). In other words, the 
verifier computes the point (xe, ye) and check if r = 
c(xe)(mod q). If this is true, then (r, s) is accepted as the 
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valid multisignature of the message m signed by the users 
Ui, 1 ≤ i ≤ t. 

 
Figure 1. The graph of multisignature scheme. 

By Figure 1, we can see that all signers send their partial 
multisignature to the clerk. The clerk checks all partial 
multisignature, construct them into a multisignature and 
sends it to the verifier(s). Of course the clerk is either a 
participant in signer group or the third trusty authority. 

IV. MULTISIGNATURE SCHEME WITH DISTINGUISHED 
SIGNING RESPONSIBILITIES 

In this section we describe the elliptic curve version of 
the multisignature scheme with distinguished signing 
responsibilities proposed in [9]. It contains three phases: key 
generation, multisignature generation, and multisignature 
verification. We review their scheme briefly as follows: 

The elliptic curve domain and the key generation are the 
same as in Section III. 

A. Generating the Multisignature 
We assume that there are t signers Ui, 1 ≤ i ≤ t. Instead 

of signing the same message m directly, each signer should 
prepare a section of message m ∈  {0, 1}* that he is 
responsible of and broadcast H(mi) to all other signers, 
where H is the one way hash function. 

The operation of generating the multisignature with 
distinguished signing responsibilities is as follow: 

1. The signer Ui, 1 ≤ i ≤ t, randomly selects a number 
ki ∈ [1, q - 1] and computes Ri = kiP = (

ii RR yx , ), 
1 ≤ i ≤ t. 

2. Converting the x-coordinate of point Ri into the 
integer ri = c(

iRx ), where c(x) is the converting 
function.  

 The values ri is broadcast to the other signer.  
3. Once ri, 1 ≤ i ≤ t, are available through the 

broadcast channel, each signer computes the 

commitment r as  
r = r1 + r2 + ... + rt (mod q). 

4. Each signer Ui, uses his secret keys, di and ki, to 
sign the message M = H(H(m1), H(m2), ... , H(mt)), 
where H(H(m1), H(m2), ... , H(mt)) means the hash 
value of the concatenation of H(H(m1), H(m2), ... , 
H(mt)). The signer Ui computes  

si = diM - kir (mod q). 
and transmits the pair (M, si) to the clerk.  

Once the clerk receives the individual signature (ri, si) 
from Ui, he needs to verify the validity of this individual 
signature. The verification procedure is to compute the point 

(r
-1

M mod q)Qi - (r
-1

si mod q)P = (
ii ee yx , ), 1 ≤ i ≤ t 

and check  

ri = (
ii ee yx , ) (mod q), 1 ≤ i ≤ t. 

Once all individual signatures are received and verified 
by the clerk, the multisignature of the message m = (m1, m2, 
…, mt) can be generated as (r, s), where s = s1 + s2 + ... + st 
(mod q). Since each signer is responsible of preparing a 
section of message m, the pair (r, s) is a digital 
multisignature with distinguished signing responsibilities. 

B. Verifying the Multisignature 
The verifier computes the point   

(r
-1

M mod q)Q - (r
-1

s mod q)P = ( ee yx , ). 
where s = s1 + s2 + ... + st (mod q), Q = Q1 + Q2 + ... + Qt = 
dP = (xQ, yQ) and r = c(xe)(mod q). In other words, the 
verifier computes the point (xe, ye) and check if r = 
c(xe)(mod q). If this equality holds, the pair (r, s) is a digital 
multisignature with distinguished signing responsibilities of 
the message m. 

Instead of signing the message H(m1, m2, ..., mt), each 
signer needs to sign the message M = H(H(m1), H(m2), ..., 
H(mt)). The computation of H(H(m1), H(m2), ..., H(mt)) is 
faster than that of H(m1, m2, ..., mt) because each signer 
needs only to compute his own H(mi) and the other H(mj), j 
≠ i, 1 ≤ i, j ≤ t, has been computed by the other signer.  

In the case some verifies only allowed to access partial 
contents of the message, the partial contents can still be 
verified using the group public key without revealing whole 
message. This feature can be achieved by just providing the 
one way hash values of the inaccessible contents to the 
verifier. But in fact this is very difficult to implement 
because of the complexity of verifying procedures at each 
verifier. So this scheme is not high realistic. 
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In the next section, we will propose a new digital 
multisignature scheme allows overcoming the drawbacks 
pointed out by this scheme. 

V. OUR PROPOSED SCHEME  
In this section we describe the proposed multisignature 

scheme with distinguished signing responsibilities.  

The elliptic curve domain is the same as in Section III. 

In this scheme, instead of signing the message M = 
H(H(m1), H(m2), ..., H(mt)), each signer just needs to sign 
the message H(mi) their respective.   

A. Key Generation 
1. Each signer randomly selects an integer di from 

the interval [1, q - 1] and computes a 
corresponding public key as the point: Qi = diP. 

2. Compute the public key Q for all signers, which is 
equal to the sum of all individual public keys 

∑
=

=
t

i
ii QmHQ

1
)(  = (xQ, yQ), where H(mi) mean the 

hash value of ith signer. 
3. Let H be a one-way hash function such as SHA-1.  

B. Generating the Multisignature 
1. The signer Ui, 1 ≤ i ≤ t, randomly selects a number 

ki ∈ [1, q - 1] and computes Ri = kiP = (
ii RR yx , ), 

1 ≤ i ≤ t. 
2. Once Ri, 1 ≤ i ≤ t, are available through the 

broadcast channel, each signer computes the 
commitment R as  

R = R1 + R2 + ... + Rt (mod q). 
3. The first part e of the signature (e, s) is computed 

using formula:  
δmod)( Rxe = ,  

where choose δ is a prime greater than or equal to 160 
bits [13].  
4. Each signer Ui, uses his secret keys, di and ki, to 

sign the message H(mi) their respective. The 
signer Ui computes  

( ) qdmeHks iiii mod)(−=  
and transmits  si to the clerk. 

Once the clerk receives the individual signature (ri, si) 
from Ui, he needs to verify the validity of this individual 
signature. The verification procedure is to compute the point 

( δmod)(
iRx )Qi + siP = (

ii ee yx , ), 1 ≤ i ≤ t 

and check  

Ri = (
ii ee yx , ) (mod q), 1 ≤ i ≤ t. 

 
5. Compute the second part s of the signature: 

∑
=

=
t

i
i qss

1
mod  

The multisignature of the message m = (m1, m2, …, mt) 
can be generated as (e, s). Since each signer is responsible 
of preparing a section of message m, the pair (e, s) is a 
digital multisignature with distinguished signing 
responsibilities. 

C. Verifying the Multisignature 
1. Using the pair (e, s) compute value R': 

R’ = eQ + sP 

2. Compute e’ = xR’ mod δ. 
3. Compare values e' and e.  

If this equality holds, the pair (e, s) is a digital 
multisignature with distinguished signing responsibilities of 
the message m. 

Proof formula in the process of verifying the 
multisignature: 

The public key Q for all signers, which is equal to the 
sum of all individual public keys  

∑∑
==

==
t

i
ii

t

i
ii PdmHQmHQ

11
)()( . 

Value si calculated by the formula: 

( ) qdmeHks iiii mod)(−=  
Thus 

∑ ∑∑
= ==

−≡
t

i

t

i
iii

t

i
i qQmHeks

1 11
mod)(  

Value R' used to calculate the first part of the verify 
equation, calculated by the following formula: 

R’ = eQ + sP PdmHekQmHe
t

i

t

i
iiii

t

i
i ))(()(

1 11
∑ ∑∑
= ==

−+=  

PdmHekPdmHe i
t

i

t

i
ii

t

i
ii ))(())((

1 11
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= ==

−+=  

∑
=

==
t

i
i RPk

1
. 

Next, e’ = xR’ mod δ = xR mod δ = e, i. e, the correctness 
of the procedures for generating and verifying digital 
signature is proved. 

In this scheme, instead of signing the message M = 
H(H(m1), H(m2), ..., H(mt)) of each signer, each signer just 
needs to sign the message H(mi) their respective. The 
computation of H(mi) is faster than that of H(H(m1), 
H(m2), ..., H(mt)) because each signer needs only to 
compute his own H(mi).  
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Since not calculated inverse element in process of 
veriying as well as the operation of the scheme done faster. 

However, in the case some verifies only allowed to 
access partial contents of the message, this scheme also has 
disadvantages such scheme in Section IV (must provide the 
one way hash values of the inaccessible contents to the 
verifier). 

The proposed scheme possess the following advantages: 

1. the digital signature length is sufficiently small 
and does not depend on number of signers (the 
multisignature length is equal to the length of 
individual signature provided by the underlying 
signature algorithm);  

2. the standard public key infrastructure (PKI) is 
used;  

3. the scheme can be efficiently used in practice for 
simultaneous signing a contract with distinguished 
signing responsibilities; 

4. the secure is as secure as elliptic curve schemes is 
secure. 

The last fact can be proved using the technique applied 
in [14] to prove security of the collective DS regarding to 
the following two types of general attacks.  

The attack of the first type corresponds to forgery of the 
multisignatue.  

The second type attack corresponds to scenario of the 
calculating the secret key of one of the signers, which shares 
a multisignature.  

In the first attack it is assumed that t − 1 legitimate 
signers attempt to create a multisignatue corresponding to t 
signers.  

In the second attack it is assumed that t − 1signers that 
shares some multisignatue (e, s) with the tth signer are 
trying to compute the private key of the tth signer.  

It has been proved [14] that any successful method to 
perform any of the attacks allows breaking the underlying 
DS algorithm.  

A modification of this scheme allows integrity checking 
more efficient and capable of application in practice is 
proposed as follows: 

All steps are implemented remain, except the following 
changes: With t signers Ui, 1 ≤ i ≤ t, instead of signing the 
message H(mi) their respective, (t – 1) signer needs to sign 
the message H(mi) their respective, 1 ≤ i ≤ t – 1, where 
message m = (m1, m2, …, mt-1). The last signer (who 
authorized the highest) needs to sign the message H(m). 

On the receipt, the verifier entitled to receive the full 
message will check the signature on behalf of the whole 
group. 

VI. EXAMPLE 
This example illustrates the signature generation and 

verification procedures in the digital multisignature scheme 
proposed. 

The parameters used in the example to ensure sufficient 
magnitude to be applied in practice. 

In the example shown simultaneously with the three 
signer signed the three documents in a contracts (t = 3, m = 
(m1, m2, m3)). 

A. Key Generation 
Firstly, we choose elliptic curve domain parameters as 

follows: 

a = 552176786573763455539041630059977662234733335
9784, b = 9717196, 
p = 552176786573763455539041630059977662234733335
9787. 

This elliptic curve contains the number of points equal 
to the prime number 
V = 552176786573763455539041622878388691333982384
1723, i. e any of its point of order q, equal to the value V, i. 
e q = V. 

B. Generating the Multisignature 
1. Generate elliptic curve with the parameters listed 
above. 
2. Each signer randomly selects an integer di from the 
interval [1, q - 1]: 
d1 = 8182108890892890101467333434019; 

d2 = 3952504539403758278808581024791; 

d3 = 9763160941600092631935520658071. 
3. Computes a corresponding public key as the point: Qi 
= diP 
a. Generate a point P of order q: 
P = (4058138998817699569976678358233335958495037
969465, 
76856892633603682571849521891630868249411614416
0); 
b. Generate points Q1, Q2, Q3 according to the formula Qi 

= diP, where i = 1, 2, 3: 
Q1 = (2406767665928158899446906165821747218883574

602371,562377648521692290689031507205008060

205345636991); 

Q2 = (3487081083780270853573894140448252379226835

10732,1402026191996080196399482770468472598

076052599809) 
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Q3 = (4307166077833519301063322533024162005091025

020313,528029631254915602814890591421557065

5514986217509). 

4. Compute the public key Q for all signers, which is 
equal to the sum of all individual public keys 

∑
=

=
t

i
ii QmHQ

1
)(  

a. Accepts three messages, submitted H1, H2 and H3: 
H1= 13570809221559791016831415475191722063371217

8686; 

H2= 38124989900288191553165713506343766528143317

70527; 

H3= 89259990268711451315203376121177786806591925

76033. 

b. Forms the collective public key in the form of point Q 

by the formula ∑
=

=
t

i
ii QmHQ

1
)(  

H1Q1 = (1386084349002545424511668926945575066838

407867380,45436337319588401011248458187718410043

74561021017) 

H2Q2 = (2992114315324190264281413933953962887786

94972469,530032709442115487602206494687620629685

3312043729) 

H3Q3 = (4523528487954522900878694877895556963796

345154180,41008261034809727989809969091965261993

27733122181) 

P=(22842653948590033809093887809046461154863825

4406,1202278174553095231135389060209649902535727

110543). 

C. Generating the Multisignature 
1. The first, second and third signer generates random k1, 
k2 and k3, respectively: 
k1 = 2090880922625982683584460167862382379; 

k2 = 5360383526856663700583896205266418341; 

k3 = 7677118810723142352012317453400887449. 

2. Then the first, second and third signer generates points 
R1, R2 and R3, respectively, according to the formula Ri = 
kiP = (

ii RR yx , ): 

R1 = (4533360075292446608850664400364711592205136

618460,11750613370622321795843486864773247621011

64050095); 

R2  = (1958279223827902047379336465285895435330140

185477,88365089082562329551442342429704943185648

52573); 

3. R3  = (503861602885295987750955408178966743685
3794753557,2096131579330446779245516884845347130
38841468913). 
4. Generate the R-point formula R = R1 + R2 + R3 (mod q): 
R = (2597097970263610863546069436833994580002105

418569,33049150401044008138023742824739855500155

21973383). 

5. The first part e of the signature (e, s) is computed 
using formula: δmod)( Rxe = ,  
δ = 7118198218659321028989011; 

e = 5079008233076932087473789. 

6. Each signer Ui, uses his secret keys, di and ki, to sign 
the message H(mi) their respective. The signer Ui computes 

( ) qdmeHks iiii mod)(−=  
s1 = 13344496387533338892374318727147312291544320

5289; 

s2 = 18876616532038479447102824508356125516200814

27016; 

s3 = 48506961619559911255593180845550213355803021

89827. 

7. Compute the second part s of the signature: 

∑
=

=
t

i
i qss

1
mod  

s = 13500349132975379038029274938782200967760029

80409. 

8. The pair (e, s) is a digital multisignature with 
distinguished signing responsibilities 
(5079008233076932087473789,135003491329753790380
2927493878220096776002980409). 

D. Verifying the Multisignature 
1. Using the pair (e, s) compute value R': R’ = eQ + sP 
eQ = (455684817959588714140072672389132143860230

7875189,2883779289574756983177387955618073719731

329543379); 
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sP = (1360352815531577166684912233134001496389816

081366,35432697872472357819008974041042793416447

52005600); 

R′= (2597097970263610863546069436833994580002105

418569,33049150401044008138023742824739855500155

21973383); 

2. Compute e’ = xR’ mod δ 
δ = 7118198218659321028989011: 

e’ = 5079008233076932087473789. 

3. Compare values e' and e. 
e’  = 5079008233076932087473789 = e. 

The comparison shows that the parameters e’ and e 
coincide. The coincidence of the values of e’ and e means 
that the digital multisignature is authentic. 

VII. CONCLUSION  
A new multisignature scheme with distinguished signing 

responsibilities have been proposed. 

In this scheme, each group member has distinguished 
signing responsibility and partial contents of the message 
can be verified without revealing the whole message. Thus 
the proposed scheme is efficient as solutions of the 
problems of simultaneous signing a contract and package of 
contract, which suites well for practical application.. 
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