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Abstract 
A quantum computer is a device for computation that makes 
direct use of distinctively quantum mechanical phenomena, such 
as superposition and entanglement, to perform operations on 
data. In a classical (or conventional) computer, the amount of 
data is measured by bits, in a quantum computer; it is measured 
by quantum of bits (qubits). This work describes, and implements 
the universal quantum logic gates, the terminology is introduced 
with two well known quantum gates, the quantum NOT, and the 
quantum XOR gates. The NOT and XOR gates have already 
been described in classical reversible logic. 
        This work gives the implementation of the quantum circuits, 
such as the Quantum Half-Adder Circuits, which consists of 
quantum control control not gate (CCNot) and quantum control 
not gate (CNot). Also, it describes and implements the Quantum 
Full-Adder Circuits, which consists of two Quantum Half-Adder 
Circuits and one control not gate (CNot). 

Depending on the quantum circuits, one can implement 
the quantum basic arithmetic operations such as (addition, 
subtraction, multiplication and division). After each 
implementation, the computational complexity of each step is 
calculated.  
 
Key words: 
Quantum computing, Quantum Logic Gates, Truth Table, 
quantum mechanical, qubits, quantum mechanical, 
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1. Quantum Computer 

A quantum computer is a device for 
computation that makes direct use of distinctively quantum 
mechanical phenomena, such as superposition and 
entanglement, to perform operations on data. In a   
conventional computer, the amount of data is measured by 
bits; in a quantum computer, it is measured by qubits. The 
basic principle of quantum computation is that the 
quantum properties of particles can be used to represent 
and structure data, and that devised quantum mechanisms 
can be used to perform operations with this data. 
In quantum mechanics, the state of a physical system (such 
as an electron or a photon) is described by an element of a 
mathematical object called a Hilbert space.  
A classical computer has a memory made up of bits, where 
each bit holds either a one or a zero. The device computes 

by manipulating those bits, i.e. by transporting these bits 
from memory to (possibly a suite of) logic gates and back. 
A quantum computer maintains a set of qubits.  

A qubit can hold a one, or a zero, or a 
superposition of these. A quantum computer operates by 
manipulating those qubits, i.e. by transporting these bits 
from memory to (possibly a suite of) quantum logic gates 
and back. 

A classical computer operates on a 3 bit register. 
At a given time, the state of the register is determined by a 
single string of 3 bits, such as "101". This is usually 
expressed by saying that the register contains a single 
string of 3 bits. A quantum computer, on the other hand, 
can be in a state which is a mixture of all the classically 
allowed states. The particular state is determined by 8 
complex numbers. In quantum mechanics notation we 
would write: 

 
|Q> = a |000> + b |001> + c |010> + d |011> + e |100>  
                     + f |101> g |110> + h |111> 
 

Where a, b, c, d, e, f, g, and h are complex.  
 
A complex number (α+βi) is called (complex 

valued) amplitude, and each probability (|α|2+|β|2) is the 
absolute square of the amplitude, because it equals |α+ βi|2. 
The probabilities must sum to 1 [1, 2, 3]. 

 
2. Transformation Matrices [4, 9] 
 
 It is often the case in quantum computation that 
we know what the operation we want to perform is, in 
terms of its effect on the state vector of our system, but we 
don’t know how to express the operation as a matrix. In 
this short note, we demonstrate how this can be done quite 
easily. 
 Let’s consider a simple example: the truth table 
for the controlled-NOT gate is 
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to express this as a matrix operator so that we can apply it 
easily to our qubit states. In the usual language, the CNOT 
gate transforms our basis vectors in the following way: 

 
|00> → |00>; |01> → |01>; |10> →  |11>; |11> → |10> 
 
or, in vector form 

 
The key to deducing the matrix which performs 

these transformations is to appreciate how we multiply 
matrices together. It is most convenient to express this in 
component notation, where write 

 

 
The bi is the components of the new vector, the ai are the 
components of the original vector, and the Mij are the 
elements of the matrix operator M.  In this notation i label 
the rows of M and j labels the columns.  Expanding the 
summation, yields   
 

 
 
Applying this to the example of the CNOT gate, gives 
 

 
 
and since b1 = a1 = 1, we must have M11 = 1. Similarly, 
we find that M22 = M34 = M43 = 1, with all other Mij = 0. 
We write the matrix down as: 
 

 
 

A useful way of looking at this is to label the 
rows and columns of the matrix with the basis states they 
correspond to. You simply label each row and column with 
the basis states in the usual order. The row labels label the 
basis states of the new vector; the column labels label the 
basis states of the old vector. So, for example: 

 
can be translated into matrix form as follows: 
 

 
 
So we have that 
 

 
 
and so 
 

 
 
and so on. Other gates are equally easy. For the Hadamard 
gate: 
 

 
 
We have 

 
and for the more complex example of 
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We have 

 
3. Quantum Bits Representation  
 
 In this section, we describe how the bits are 
represented in quantum computer. 

3.1. One-Quantum Bits [6, 7, 8, 9] 

 A qubit can exist in an arbitrary superposition 
state, a measurement on it will always find it in one of the 
two eigenstates, |0>　 or |1>, according to the 
measurement postulate of quantum mechanics. 
 
|Q> = a0 |0> + a1|1> 

|a> = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

0

a
a

 

|0> = ,
0
1

1

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
a
a

  

this is a superposition matrix for Dirac |0> 

|1> = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1
0

1

0

a
a

, 

this is a superposition matrix for Dirac |1>                    　  

3.2. Two-Quantum Bits [6, 7, 8, 9] 

 If we have more than one qubit in our quantum 
system, we can express its state in terms of product 
eigenstates. For example, a two-qubit system has the basis 
states, |00>, |01>, |10>, |11>, which are the quantum 
analogs of the input lines in the truth table for a classical 
logic gate. Unlike classical bits however, two or more 
qubits can interfere with one another, creating a 
macroscopically coherent superposition, of the form         

 
c00|00> + c　 01|01> + c　 10|10> + c　 11|11>. 
 
|Q> = a00|00> + a01|01> + a10|10> + a11|11> 
 

         |Q>=
⎟⎟
⎟
⎟
⎟

⎠

⎞
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⎜
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   |00>= 10,

0
0
1
0

01,

0
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1
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3.3. Representation of the QuBit  

         In this section, we will explain how Dirac 
representations convert to the superposition representation 
to deal it as quantum bits (QuBit) in quantum computers. 
         Below, we illustrate our algorithm for convert Dirac 
qubits representations to the superposition qubits 
representation. 
 
Algorithm 1 convert  
 
Input:   

- qubit as a Dirac representation ( QD). 
- n= number of bits.  

Output:   
        -  qubit as a superposition matrix representation 

(QB). 
Process: 
    Step1: set the superposition matrix (QB) by zero  
          according to 2n  
   Step2: let t= 1. 
         k= 1 
   Step3: Determine the position (t) of the superposition    

of the matrix. 
   Step4: compute this position (t) by the forloop as 

below 
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         For i=n downto 1 do 
         Begin 
              t= t+QD[i] *k; 
              k=k*2; 
          End; 
  
 Step5: set the value of position (t) by one in QB like QB[t] 

=1. 
 Step6: Output the superposition matrix (QB). 
 Step7: Finish.  
         
Below, we illustrate our algorithm for converting 
superposition qubits representations to the Dirac qubits 
representation. 
   
Algorithm 2 deconvert  
 
Input:   

- qubit as a superposition matrix 
representation (QB). 

- n= number of qubits  
Output:  
           qubit as a Dirac representation ( QD). 
Process: 
           Step1: let t=0. 
           Step2: find the position (t) in the                     
             superposition of the matrix (QB)  
             by the repeat until loop below. 
             Repeat  
                  t=t+1; 
             Until QD[t]=1;  
           Step3: compute the a Dirac matrix (QD) by  
             the forloop below 
             For i=n downto 1 do  
             Begin 
                  QD[i] =t mod 2; 
                   t=t div 2; 
      End; 
 
            Step4: Output the Dirac matrix (QD). 
            Step5: Finish.  
   
4. Quantum Not and XOR Gates [8, 9, 10] 
 
 The problem of universality can be posed for 
quantum computation as well, in asking whether arbitrary 
unitary operations can be broken down into simpler ones. 
Similar to classical logic, quantum logic gates exist that 
operate on a handful of qubits at a time, and that are able 
to simulate arbitrary unitary operations. Note that it is a 
property of unitary matrices that a product of two of them 
remains unitary; hence a product of unitary logic gates will 
also be unitary. Before we describe the universal quantum 
logic gates, we introduce the terminology with two well 
known quantum gates, the NOT, and the XOR gates. We 

have already described the NOT and XOR gates in 
classical reversible logic. A straight-forward quantum 
generalization of these gates is the unitary matrices. 
 

 
 
Which describes the evolution of the two product 
eigenstates of the one-qubit NOT gate, and the four 
products eigenstates of the two-qubit XOR gate. Note that 
unlike their classical counterparts, these quantum gates can 
transform superposition states as well. For example, 
operations of the form, UNOT: c0|0> + c　 1|1> 

c　　　　 0|1> + c　 1|0>, are also possible with the 
quantum NOT gate, we will describe the quantum Not 
Gate and quantum XOR Gate with details and algorithms 
in the next section. 
 
4.1. One Input Quantum Bit Gate 
 

The behavior of quantum Not Gate is:-  
 
  

 
 
 
But the unitary matrix of quantum Not Gate is:- 
 
 
 
 
 
This is the block diagram of quantum Not Gate is:- 
 
 
 
 
 
 Here, we multiply the unitary matrix of 
quantum Not Gate with |0> that represent with 

superposition  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
1

  or with |1> that is represented with 

superposition  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
0

  to get the output of this gate.  

 
 
 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠
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⎝
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0

1

1

0
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a

 

Unot = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10

 

Not |X> |X> 

⎟⎟
⎠
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⎜⎜
⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛
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⎠
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⎛
∴

1
0

0
1

01
10

i.e Unot |0> = |1>  
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Bellow, we illustrate our algorithm of quantum 

Not gate:-  
 
Algorithm 3 Quantum Not Gate 
 
Input:   

qubit as a Dirac representation ( QD). 
Output:  
        quantum Not gate result. 

         
Process:  
     Step1: set the unitary matrix transformation  
              
     Step2: represent the sequence of qubit as one  
     dimension (QB[i]) by using algorithm 4.1 convert. 
           
     Step3: compute the quantum Not of  qubit by  
     multiplying 
      
          The UQNot matrix by QB  
          NQB = QB * UQNot . 
            
      Step4: Output the (NQB). 
      Step5: Finish.  
 
4.2. Two Input Quantum Bit Gate 

 
When we use two input quantum Bit in gate,  

this case  is called controlled not (CNOT) gate, this 
process is equivalent to XOR gate in classical computer, 
below we present the unitary matrix of quantum XOR 
Gate or quantum controlled Not Gate (CNOT) with its 
coefficients.  
 
 
 

 
 

 
 

Here, we multiply the unitary matrix of quantum 
controlled Not 

Gate with ⎜00> is represented in superposition 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
0
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Here, we multiply the unitary matrix of quantum 
Controlled Not  

Gate with ⎜10> that is represented in superposition 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
1
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Here, we multiply the unitary matrix of quantum 
Controlled Not  

Gate with ⎜11> that is represented in superposition 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1
0
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Here, we multiply the unitary matrix of quantum 
Controlled Not  

Gate with ⎜01> that is represented in superposition 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
0
1
0

 

 
 

⎟⎟
⎠

⎞
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⎝

⎛
=⎟⎟
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⎜⎜
⎝
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⎟⎟
⎠
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⎜⎜
⎝

⎛
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1
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01
10

 i.e. Unot |1> = |0> 

UQNot =  
0 1 
10     Ucnot ⎜10> = ⎜11> 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1
0
0
0

0
1
0
0

0100
1000
0010
0001

 

 Ucnot ⎜11> = ⎜10> 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞
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⎟⎟
⎟
⎟
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⎞
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Ucnot = 

⎟⎟
⎟
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⎟

⎠
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⎜⎜
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⎜
⎜

⎝

⎛

0100
1000
0010
0001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
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⎟
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⎜
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This is the block diagram of quantum Controlled Not Gate  
when it has the two inputs ( |x> , |y> ) and we can get from 
it  two outputs ( |x> , |x> ⊕ |y> ).  
 
 

 
 
 
 

Now, we illustrate our algorithm of quantum Control Not 
gate:-  
 
Algorithm 4 Quantum Control Not Gate 
 
Input:   

qubit as a Dirac representation ( QD). 
 
Output:  
        quantum control Not gate result. 
              
 
Process:  
       Step1:  set the unitary  matrix  transformation         

       
       Step2: represent the  sequence  of qubit as one  
       Dimension(QB[i]) by using algorithm 4.1 convert. 
    
       Step3: compute the quantum control Not of qubit  
       by multiplying 
               
            The UCNot matrix by QB  
 

CNQB = QB * UCNot . 
                    
        Step4: Output the (CNQB). 
 
        Step5: Finish.  
 
 

4.3. Three Input Quantum Bits Gate 
 
 This section, represents and describes the three 
inputs of quantum bits, which are used in controlled 
CNOT (CCNOT), below we present the unitary matrix of 
quantum controlled CNot Gate with its coefficients. It is 
also called controlled controlled NOT (CCNOT) or called 
Toffoligate. 
 
The superposition of this qubits, is represented in the next 
description: 

 
Here, we multiply the unitary matrix of quantum 
Controlled CNot  

 
Gate with ⎜000> that is represented in superposition 
(1 0 0 0 0 0 0 0)T 

 

Here, we multiply the unitary matrix of quantum 
Controlled CNot  
 
Gate with ⎜000> that is represented in superposition  
(0 1 0 0 0 0 0 0)T 

 
Here, we multiply the unitary matrix of quantum 
Controlled CNot  

 
 
Gate with ⎜000> that is represented in superposition  
(0 0 1 0 0 0 0 0)T 

 

 
Here, we multiply the unitary matrix of quantum 
Controlled CNot  
 
Gate with ⎜000> that is represented in superposition 
(0 0 0 1 0 0 0 0)T 

 
Here, we multiply the unitary matrix of quantum 
Controlled CNot  
 
Gate with ⎜000> that is represented in superposition  
(0 0 0 0 1 0 0 0)T 

Ucnot  ⎜01> = ⎜01> 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
0
1
0

0
0
1
0

0100
1000
0010
0001

 

CNO
T

⎜x>  
⎜Y>  

⎜x> 
⎜x⊕Y>  

UCNot =   

1 0 0 0  
0 1 0 0 
0 0 0 1  
0 0 1 0 

Uccnot  ⎜000> = ⎜000> 

Uccnot  ⎜001> = ⎜001> 

Uccnot  ⎜011> = ⎜011> 

Uccnot  ⎜010> = ⎜010> 
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Here, we multiply the unitary matrix of quantum 
Controlled CNot  

 
Gate with ⎜000> that is represented in superposition  
(0 0 0 0 0 1 0 0)T 

Here, we multiply the unitary matrix of quantum 
Controlled CNot  
Gate with ⎜000> that is represented in superposition  
(0 0 0 0 0 0 1 0)T 

Here, we multiply the unitary matrix of quantum 
Controlled CNot  

 
Gate with ⎜000> that is represented in superposition  
(0 0 0 0 0 0 0 1)T 

Below, the block diagram of quantum CCNot Gate 
represents:  
 
-Three inputs: (⎥ X 〉,⎥ Y 〉,⎥ Z 〉 ).   
-Three outputs: (⎥ X 〉, ⎥ Y 〉, ⎥ X Y ⊕ Z 〉 ). 
 
 
 
 
 
 
 
 
 

 
 
 
Now, we illustrate our algorithm of quantum Control 
Control Not gate:-  
 
Algorithm 5 Quantum Control Control Not Gate  
 
Input:   

qubit as a Dirac representation ( QD). 
 
Output:  
        quantum control Not gate result. 
              

Process:  
        Step1: set the unitary matrix transformation  
            
       Step2: represent the sequence of qubit as one  
       dimension(QB[i]) by using algorithm 4.1 convert. 
    
       Step3: compute the quantum control controNot  
       of qubit by   
        
             Multiplying The UCCNot matrix by QB             
             CCNQB = QB * UCCNot . 
                    
        Step4: Output the (CCNQB). 
        Step5: Finish.  
 

5. Quantum Circuits Gate Representation 
 
 In this section, we describe the quantum circuits 
gate that is represented by Half Adder quantum circuit and 
Full Adder quantum circuit.  
 
5.1. Half Adder Quantum Circuits 
        
    We design the Quantum Half-Adder Circuits, which 
consists of quantum control control not gate (CCNot) and 
quantum control not gate (CNot), below is the structure 
design of Quantum Half-Adder Circuits with its table. 
 
 
 
 
 
 
 
 
 
 
 
This Circuit represents the three inputs (⎥ X0 〉, ⎥ X1 〉, ⎥ Y 
〉 ) and three outputs (⎥ X0 〉, Sum, Carry1   ) .    
 
 

⎥X 〉 

⎥ X Y ⊕ Z 〉
 

⎥ Y 〉 
 

⎥ Z 〉 
 

 
 
 

CCNOT 

⎥X 〉 
 

⎥ Y 〉 

UCCNot =  

1 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

Uccnot  ⎜100> = ⎜100> 

Uccnot  ⎜101> = ⎜101> 

Uccnot  ⎜110> = ⎜111> 

Uccnot  ⎜111> = ⎜110> 

⎥ X0 〉 
 

Carry1 

 

⎥ X1 〉 
 

⎥ Y 〉 
 

 
CCNOT 

 
 
 

Toffoli 

⎥ X0 〉
 

Sum 
 

 
CNOT 
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The result of the Half-Adder:- 
Sum    = ⎥ X0 〉  ⊕ ⎥ X1 〉  
Carry1 = Carry ⊕⎥ Y 〉 
          =  ⎥ X0 X1 ⊕ Y 〉 
Let ⎥ Y 〉 = zero 
Carry1    = ⎥ X0 X1 ⊕ 0 〉 
 
See the table below  
 

X0 X1 Sum Carry 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

 
Below, we illustrate our algorithm of Half 

Adder Quantum Circuits:-  
 
Algorithm 6 Quantum Half-Adder Circuit 
 
Input:   

Two qubit as a Dirac representation (|X0>, |X1>). 
Output:  
        Two qubit result (Sum,Carry). 
Process:  
        Step1: let  ⎥ Y 〉  = ⎥ 0 〉 
         
        Step2: compute the output of Quantum  Control  
        Control Not by using algorithm 4.5  to get  the  
        carry carry =  |X0X1    ⊕ Y  > 
         
        Step3: compute   the  output  of   Quantum  
        Control Not by using algorithm 4.4 to get the        
        sum  
            Sum = ⎥ X0 〉  ⊕ ⎥ X1 〉  
           
         Step4: output the result of Quantum Half-Adder  
         represented by  
           Sum and Carry. 
         
         Step5: Finish. 
 
 
5.2. Full Adder Quantum Circuits 
 

We design the Quantum Full-Adder Circuits, 
which consists of two Quantum Half-Adder Circuits and 
one control not gate (CNot), below is the structure design 
of Quantum Full-Adder Circuits. 
 
 

The result of the Half-Adder one (AH1):- 
 
Sum (S0) = ⎥ X0 〉  ⊕ ⎥ X1 〉  
Carry (C0) =⎥ X0 X1 ⊕ Y 〉 
Let ⎥ Y 〉 = zero 
∴ Carry = ⎥ X0 X1 ⊕ 0 〉 
 
The result of the Half-Adder two (AH2):- 
 
Sum (S1)  = ⎥ B0 〉  ⊕ ⎥ S0 〉  
Carry (C1) =⎥ B0 S0  ⊕ Y 〉 
Let ⎥ Y 〉    = zero 
∴ Carry    = ⎥ B0 S0  ⊕ 0 〉 
 
The result of the full-Adder:- 
 
Sum (S1) = ⎥ B0 〉  ⊕ ⎥ S0 〉  
Carry      =⎥ C0  ⊕ C1 〉 

 
Below, we illustrate our algorithm of Full Adder 

Quantum Circuits:-  
 
Algorithm 7 Quantum Full-Adder Circuit 
 
Input:   

Two qubit as a Dirac representation (|X0>, |X1>). 
 
Output:  
        Two qubit result (Sum,Carry). 
           
Process:  
     Step1: let   ⎥ Y 〉  = ⎥ 0 〉 
               
     Step2: compute the output of Quantum Half-Adder1  
     (HA1) by using algorithm 4.6 to get  
            
           Sum (S0) = ⎥ X0 〉  ⊕ ⎥ X1 〉 
           carry (C0) =  |X0X1    ⊕ Y  > 
 
      Step3:  compute  the  output   of   Quantum  
      Half-Adder2 (HA2) by using algorithm 4.6 to get   
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           Sum (S1) = ⎥ B0 〉  ⊕ ⎥ S0 〉  
           carry (C1) =  |B0S0    ⊕ Y  > 
 
      Step4: compute the output   of Quantum Control  
      Not by using algorithm 4.4 to get  
             
           Sum   = S1   
           Carry = ⎥ C0  ⊕ C1 〉  
 
      Step5: output the result of Quantum Full-Adder  
      represented by  
       
           Sum and Carry. 
             
      Step6: Finish. 
 
6. Quantum Arithmetic Operations on 
Quantum Computer 
 
 This section describes and represents how we 
can design and implement the basic arithmetic operations 
to quantum basic arithmetic operations to be suitable for 
use in the quantum computer, these operations are 
(Addition, Subtraction, multiplication and Division).     
 
6.1. Quantum Addition Operation 
 

The quantum addition operation can be 
performed by converting each number into sequence of 
qubit then adding these two sequences by using our 
algorithm of Quantum Addition Operation 
 
Algorithm 8 Quantum Addition Operation 
 
Input:   

Two decimal numbers 
 
Output:  
        The result of Addition as a decimal number. 
              
Process:  
        Step1: Convert the first decimal number into  
        dirac representation  
              A= ⎥ a1,, a2  , . . . . . . , an〉   
 
         Step2: Convert the second decimal number into  
         Dirac Representation  
               
             B= ⎥ b1,, b2  , . . . . . . , bn〉   
          Step3: compute the addition process by  
          Quantum Full-Adder By using algorithm 4.7. 
 
          Step4: convert the dirac result of addition into  
          decimal number. 

 
          Step5: Output the result. 
          Step6: Finish. 
 
6.2. Quantum Subtraction Operation 
 

The quantum subtraction operation can be 
performed by converting each number into sequence of 
qubit. Then take 2's complement of the second number. 
This process is performed by using our algorithm of 
Quantum Subtraction Operation 
 
   Algorithm 9 Quantum Subtraction Operation 
 
Input:   

Two decimal numbers 
Output:  
        The result of subtraction as a decimal number. 
              
Process :  
        Step1:  Convert  the first decimal number into  
        dirac representation  
               
               A= ⎥ a1,, a2  , . . . . . . , an〉   
 
        Step2: Convert the second decimal number into  
        dirac representation  
             
                B= ⎥ b1,, b2  , . . . . . . , bn〉   
               
        Step3: convert the second dirac number into 2’S  
        complement representation     
                         　  
                    B = B + 1                
                                          
        Step4: compute the addition process by  
        Quantum Full-Adder By using algorithm 4.7. 
 
        Step5: convert the  dirac result of addition into  
        decimal number. 
         
        Step6: Output the result. 
        Step7: Finish. 
 
6.3. Quantum Multiplication Operation 
 

The multiplication operation can be performed by 
converting each number into sequence of qubit then 
multiplying these two sequences by using our algorithm of 
Quantum Multiplication Operation 

 
 
 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010 

 

94

 

Algorithm 10 Quantum Multiplication  
 
Input:   

Two decimal numbers 
 
Output:  
        The result of multiplication as a decimal number. 
              
Process :  
        Step1:  Convert  the first decimal number into  
        dirac representation  
                           
               A= ⎥ a1,, a2  , . . . . . . , an〉   
 
        Step2: Convert the second decimal number into  
        dirac representation  
             
               B= ⎥ b1,, b2  , . . . . . . , bn〉   
  
        Step3: set C =  ⎥ 0 〉  
 
        Step4: compute the multiplication  process by  
        Following: 
              Step4.1: if dirac  digit  = ⎥ 1  〉  then 
                     compute the addition   process  
                     by Quantum Addition By using  
                     algorithm 4.8. 
                         
              Step4.2: Shift A to the left by zero  
                     according to case of Dirac of B. 
 
              Step4.3: goto  to the Step4.1. 
                        
        Step5: convert the dirac result of Multiplication  
        into decimal number. 
 
        Step6: Output the result. 
 
        Step7: Finish. 

 
6.4. Quantum Division Operation 
 

The division operation can be performed by 
converting each number into sequence of qubit then 
dividing these two sequences by using our algorithm of 
Quantum Division Operation 
 
Algorithm 11 Quantum Division Operation 
 
Input:   

Two decimal numbers 
 
Output:  
        The  result  of division  as a decimal number  
         without reminder. 

              
Process:  
        Step1: Convert the first  decimal  number into  
        dirac representation  
 
              A= ⎥ a1,, a2  , . . . . . . , an〉   
 
        Step2: Convert the second decimal number into  
        dirac representation  
             
               B= ⎥ b1,, b2  , . . . . . . , bn〉   
  
         Step3: set C =  ⎥ 0 〉  
         
         Step4: compute the division process by  
         following  
               Setp4.1: do while A > = B 
               Step4.2: compute the subtraction  
               process by Quantum subtraction By  
               using algorithm 4.9. 
               Step4.3: increment C by one: C=C+1  
                        
          Step5: convert the dirac result of Division into  
          decimal number. 
 
          Step6: Output the result. 
 
          Step7: Finish. 
 
7. Conclusions  
 
This work introduces the quantum computer and 
computation principles and properties. It gives the 
implementation of the quantum circuits, such as the Quantum 
Half-Adder Circuits, which consists of quantum control control 
not gate (CCNot) and quantum control not gate (CNot). Also, it 
describes and implements the Quantum Full-Adder Circuits, 
which consists of two Quantum Half-Adder Circuits and one 
control not gate (CNot). The steps of implementation of 
quantum basic operations (addition, subtraction, 
multiplication division) with its algorithms are an essential 
step toward building the hardware and software of 
quantum computer. 
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