
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

85

Manuscript received January 5, 2010.
Manuscript revised January 20, 2010.

Operations Algorithms on Quantum Computer

Moayad A. Fahdil†, Ali Foud Al-Azawi††, and Sammer Said †††

† Information Technology Faculty, Philadelphia University, Amman, Jordan
†† Information Technology Faculty, Philadelphia University, Amman, Jordan

††† Al-Mansour University College Baghdad-Iraq

Abstract
A quantum computer is a device for computation that makes
direct use of distinctively quantum mechanical phenomena, such
as superposition and entanglement, to perform operations on
data. In a classical (or conventional) computer, the amount of
data is measured by bits, in a quantum computer; it is measured
by quantum of bits (qubits). This work describes, and implements
the universal quantum logic gates, the terminology is introduced
with two well known quantum gates, the quantum NOT, and the
quantum XOR gates. The NOT and XOR gates have already
been described in classical reversible logic.
 This work gives the implementation of the quantum circuits,
such as the Quantum Half-Adder Circuits, which consists of
quantum control control not gate (CCNot) and quantum control
not gate (CNot). Also, it describes and implements the Quantum
Full-Adder Circuits, which consists of two Quantum Half-Adder
Circuits and one control not gate (CNot).

Depending on the quantum circuits, one can implement
the quantum basic arithmetic operations such as (addition,
subtraction, multiplication and division). After each
implementation, the computational complexity of each step is
calculated.

Key words:
Quantum computing, Quantum Logic Gates, Truth Table,
quantum mechanical, qubits, quantum mechanical,
superposition.

1. Quantum Computer

A quantum computer is a device for
computation that makes direct use of distinctively quantum
mechanical phenomena, such as superposition and
entanglement, to perform operations on data. In a
conventional computer, the amount of data is measured by
bits; in a quantum computer, it is measured by qubits. The
basic principle of quantum computation is that the
quantum properties of particles can be used to represent
and structure data, and that devised quantum mechanisms
can be used to perform operations with this data.
In quantum mechanics, the state of a physical system (such
as an electron or a photon) is described by an element of a
mathematical object called a Hilbert space.
A classical computer has a memory made up of bits, where
each bit holds either a one or a zero. The device computes

by manipulating those bits, i.e. by transporting these bits
from memory to (possibly a suite of) logic gates and back.
A quantum computer maintains a set of qubits.

A qubit can hold a one, or a zero, or a
superposition of these. A quantum computer operates by
manipulating those qubits, i.e. by transporting these bits
from memory to (possibly a suite of) quantum logic gates
and back.

A classical computer operates on a 3 bit register.
At a given time, the state of the register is determined by a
single string of 3 bits, such as "101". This is usually
expressed by saying that the register contains a single
string of 3 bits. A quantum computer, on the other hand,
can be in a state which is a mixture of all the classically
allowed states. The particular state is determined by 8
complex numbers. In quantum mechanics notation we
would write:

|Q> = a |000> + b |001> + c |010> + d |011> + e |100>
 + f |101> g |110> + h |111>

Where a, b, c, d, e, f, g, and h are complex.

A complex number (α+βi) is called (complex

valued) amplitude, and each probability (|α|2+|β|2) is the
absolute square of the amplitude, because it equals |α+ βi|2.
The probabilities must sum to 1 [1, 2, 3].

2. Transformation Matrices [4, 9]

 It is often the case in quantum computation that
we know what the operation we want to perform is, in
terms of its effect on the state vector of our system, but we
don’t know how to express the operation as a matrix. In
this short note, we demonstrate how this can be done quite
easily.
 Let’s consider a simple example: the truth table
for the controlled-NOT gate is

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

86

to express this as a matrix operator so that we can apply it
easily to our qubit states. In the usual language, the CNOT
gate transforms our basis vectors in the following way:

|00> → |00>; |01> → |01>; |10> → |11>; |11> → |10>

or, in vector form

The key to deducing the matrix which performs

these transformations is to appreciate how we multiply
matrices together. It is most convenient to express this in
component notation, where write

The bi is the components of the new vector, the ai are the
components of the original vector, and the Mij are the
elements of the matrix operator M. In this notation i label
the rows of M and j labels the columns. Expanding the
summation, yields

Applying this to the example of the CNOT gate, gives

and since b1 = a1 = 1, we must have M11 = 1. Similarly,
we find that M22 = M34 = M43 = 1, with all other Mij = 0.
We write the matrix down as:

A useful way of looking at this is to label the
rows and columns of the matrix with the basis states they
correspond to. You simply label each row and column with
the basis states in the usual order. The row labels label the
basis states of the new vector; the column labels label the
basis states of the old vector. So, for example:

can be translated into matrix form as follows:

So we have that

and so

and so on. Other gates are equally easy. For the Hadamard
gate:

We have

and for the more complex example of

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

87

We have

3. Quantum Bits Representation

 In this section, we describe how the bits are
represented in quantum computer.

3.1. One-Quantum Bits [6, 7, 8, 9]

 A qubit can exist in an arbitrary superposition
state, a measurement on it will always find it in one of the
two eigenstates, |0>　 or |1>, according to the
measurement postulate of quantum mechanics.

|Q> = a0 |0> + a1|1>

|a> = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

0

a
a

|0> = ,
0
1

1

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
a
a

this is a superposition matrix for Dirac |0>

|1> = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1
0

1

0

a
a

,

this is a superposition matrix for Dirac |1> 　

3.2. Two-Quantum Bits [6, 7, 8, 9]

 If we have more than one qubit in our quantum
system, we can express its state in terms of product
eigenstates. For example, a two-qubit system has the basis
states, |00>, |01>, |10>, |11>, which are the quantum
analogs of the input lines in the truth table for a classical
logic gate. Unlike classical bits however, two or more
qubits can interfere with one another, creating a
macroscopically coherent superposition, of the form

c00|00> + c　 01|01> + c　 10|10> + c　 11|11>.

|Q> = a00|00> + a01|01> + a10|10> + a11|11>

 |Q>=
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

11

10

01

00

a
a
a
a

 |00>= 10,

0
0
1
0

01,

0
0
0
1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0
1
0
0

 ,|11> =
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1
0
0
0

3.3. Representation of the QuBit

 In this section, we will explain how Dirac
representations convert to the superposition representation
to deal it as quantum bits (QuBit) in quantum computers.
 Below, we illustrate our algorithm for convert Dirac
qubits representations to the superposition qubits
representation.

Algorithm 1 convert

Input:

- qubit as a Dirac representation (QD).
- n= number of bits.

Output:
 - qubit as a superposition matrix representation

(QB).
Process:
 Step1: set the superposition matrix (QB) by zero
 according to 2n
 Step2: let t= 1.
 k= 1
 Step3: Determine the position (t) of the superposition

of the matrix.
 Step4: compute this position (t) by the forloop as

below

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

88

 For i=n downto 1 do
 Begin
 t= t+QD[i] *k;
 k=k*2;
 End;

 Step5: set the value of position (t) by one in QB like QB[t]

=1.
 Step6: Output the superposition matrix (QB).
 Step7: Finish.

Below, we illustrate our algorithm for converting
superposition qubits representations to the Dirac qubits
representation.

Algorithm 2 deconvert

Input:

- qubit as a superposition matrix
representation (QB).

- n= number of qubits
Output:
 qubit as a Dirac representation (QD).
Process:
 Step1: let t=0.
 Step2: find the position (t) in the
 superposition of the matrix (QB)
 by the repeat until loop below.
 Repeat
 t=t+1;
 Until QD[t]=1;
 Step3: compute the a Dirac matrix (QD) by
 the forloop below
 For i=n downto 1 do
 Begin
 QD[i] =t mod 2;
 t=t div 2;
 End;

 Step4: Output the Dirac matrix (QD).
 Step5: Finish.

4. Quantum Not and XOR Gates [8, 9, 10]

 The problem of universality can be posed for
quantum computation as well, in asking whether arbitrary
unitary operations can be broken down into simpler ones.
Similar to classical logic, quantum logic gates exist that
operate on a handful of qubits at a time, and that are able
to simulate arbitrary unitary operations. Note that it is a
property of unitary matrices that a product of two of them
remains unitary; hence a product of unitary logic gates will
also be unitary. Before we describe the universal quantum
logic gates, we introduce the terminology with two well
known quantum gates, the NOT, and the XOR gates. We

have already described the NOT and XOR gates in
classical reversible logic. A straight-forward quantum
generalization of these gates is the unitary matrices.

Which describes the evolution of the two product
eigenstates of the one-qubit NOT gate, and the four
products eigenstates of the two-qubit XOR gate. Note that
unlike their classical counterparts, these quantum gates can
transform superposition states as well. For example,
operations of the form, UNOT: c0|0> + c　 1|1>

c　　　　 0|1> + c　 1|0>, are also possible with the
quantum NOT gate, we will describe the quantum Not
Gate and quantum XOR Gate with details and algorithms
in the next section.

4.1. One Input Quantum Bit Gate

The behavior of quantum Not Gate is:-

But the unitary matrix of quantum Not Gate is:-

This is the block diagram of quantum Not Gate is:-

 Here, we multiply the unitary matrix of
quantum Not Gate with |0> that represent with

superposition ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
1

 or with |1> that is represented with

superposition ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
0

 to get the output of this gate.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0

1

1

0

a
a

a
a

Unot = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
10

Not |X> |X>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∴

1
0

0
1

01
10

i.e Unot |0> = |1>

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

89

Bellow, we illustrate our algorithm of quantum

Not gate:-

Algorithm 3 Quantum Not Gate

Input:

qubit as a Dirac representation (QD).
Output:
 quantum Not gate result.

Process:
 Step1: set the unitary matrix transformation

 Step2: represent the sequence of qubit as one
 dimension (QB[i]) by using algorithm 4.1 convert.

 Step3: compute the quantum Not of qubit by
 multiplying

 The UQNot matrix by QB
 NQB = QB * UQNot .

 Step4: Output the (NQB).
 Step5: Finish.

4.2. Two Input Quantum Bit Gate

When we use two input quantum Bit in gate,

this case is called controlled not (CNOT) gate, this
process is equivalent to XOR gate in classical computer,
below we present the unitary matrix of quantum XOR
Gate or quantum controlled Not Gate (CNOT) with its
coefficients.

Here, we multiply the unitary matrix of quantum
controlled Not

Gate with ⎜00> is represented in superposition

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
0
0
1

Here, we multiply the unitary matrix of quantum
Controlled Not

Gate with ⎜10> that is represented in superposition

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
1
0
0

Here, we multiply the unitary matrix of quantum
Controlled Not

Gate with ⎜11> that is represented in superposition

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1
0
0
0

Here, we multiply the unitary matrix of quantum
Controlled Not

Gate with ⎜01> that is represented in superposition

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
0
1
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
1

1
0

01
10

 i.e. Unot |1> = |0>

UQNot =
0 1
10 Ucnot ⎜10> = ⎜11>

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1
0
0
0

0
1
0
0

0100
1000
0010
0001

 Ucnot ⎜11> = ⎜10>

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
1
0
0

1
0
0
0

0100
1000
0010
0001

Ucnot =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0100
1000
0010
0001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

11

10

01

00

a
a
a
a

 =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

10

11

01

00

a
a
a
a

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

90

This is the block diagram of quantum Controlled Not Gate
when it has the two inputs (|x> , |y>) and we can get from
it two outputs (|x> , |x> ⊕ |y>).

Now, we illustrate our algorithm of quantum Control Not
gate:-

Algorithm 4 Quantum Control Not Gate

Input:

qubit as a Dirac representation (QD).

Output:
 quantum control Not gate result.

Process:
 Step1: set the unitary matrix transformation

 Step2: represent the sequence of qubit as one
 Dimension(QB[i]) by using algorithm 4.1 convert.

 Step3: compute the quantum control Not of qubit
 by multiplying

 The UCNot matrix by QB

CNQB = QB * UCNot .

 Step4: Output the (CNQB).

 Step5: Finish.

4.3. Three Input Quantum Bits Gate

 This section, represents and describes the three
inputs of quantum bits, which are used in controlled
CNOT (CCNOT), below we present the unitary matrix of
quantum controlled CNot Gate with its coefficients. It is
also called controlled controlled NOT (CCNOT) or called
Toffoligate.

The superposition of this qubits, is represented in the next
description:

Here, we multiply the unitary matrix of quantum
Controlled CNot

Gate with ⎜000> that is represented in superposition
(1 0 0 0 0 0 0 0)T

Here, we multiply the unitary matrix of quantum
Controlled CNot

Gate with ⎜000> that is represented in superposition
(0 1 0 0 0 0 0 0)T

Here, we multiply the unitary matrix of quantum
Controlled CNot

Gate with ⎜000> that is represented in superposition
(0 0 1 0 0 0 0 0)T

Here, we multiply the unitary matrix of quantum
Controlled CNot

Gate with ⎜000> that is represented in superposition
(0 0 0 1 0 0 0 0)T

Here, we multiply the unitary matrix of quantum
Controlled CNot

Gate with ⎜000> that is represented in superposition
(0 0 0 0 1 0 0 0)T

Ucnot ⎜01> = ⎜01>

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0
0
1
0

0
0
1
0

0100
1000
0010
0001

CNO
T

⎜x>
⎜Y>

⎜x>
⎜x⊕Y>

UCNot =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Uccnot ⎜000> = ⎜000>

Uccnot ⎜001> = ⎜001>

Uccnot ⎜011> = ⎜011>

Uccnot ⎜010> = ⎜010>

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

91

Here, we multiply the unitary matrix of quantum
Controlled CNot

Gate with ⎜000> that is represented in superposition
(0 0 0 0 0 1 0 0)T

Here, we multiply the unitary matrix of quantum
Controlled CNot
Gate with ⎜000> that is represented in superposition
(0 0 0 0 0 0 1 0)T

Here, we multiply the unitary matrix of quantum
Controlled CNot

Gate with ⎜000> that is represented in superposition
(0 0 0 0 0 0 0 1)T

Below, the block diagram of quantum CCNot Gate
represents:

-Three inputs: (⎥ X 〉,⎥ Y 〉,⎥ Z 〉).
-Three outputs: (⎥ X 〉, ⎥ Y 〉, ⎥ X Y ⊕ Z 〉).

Now, we illustrate our algorithm of quantum Control
Control Not gate:-

Algorithm 5 Quantum Control Control Not Gate

Input:

qubit as a Dirac representation (QD).

Output:
 quantum control Not gate result.

Process:
 Step1: set the unitary matrix transformation

 Step2: represent the sequence of qubit as one
 dimension(QB[i]) by using algorithm 4.1 convert.

 Step3: compute the quantum control controNot
 of qubit by

 Multiplying The UCCNot matrix by QB
 CCNQB = QB * UCCNot .

 Step4: Output the (CCNQB).
 Step5: Finish.

5. Quantum Circuits Gate Representation

 In this section, we describe the quantum circuits
gate that is represented by Half Adder quantum circuit and
Full Adder quantum circuit.

5.1. Half Adder Quantum Circuits

 We design the Quantum Half-Adder Circuits, which
consists of quantum control control not gate (CCNot) and
quantum control not gate (CNot), below is the structure
design of Quantum Half-Adder Circuits with its table.

This Circuit represents the three inputs (⎥ X0 〉, ⎥ X1 〉, ⎥ Y
〉) and three outputs (⎥ X0 〉, Sum, Carry1) .

⎥X 〉

⎥ X Y ⊕ Z 〉

⎥ Y 〉

⎥ Z 〉

CCNOT

⎥X 〉

⎥ Y 〉

UCCNot =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

Uccnot ⎜100> = ⎜100>

Uccnot ⎜101> = ⎜101>

Uccnot ⎜110> = ⎜111>

Uccnot ⎜111> = ⎜110>

⎥ X0 〉

Carry1

⎥ X1 〉

⎥ Y 〉

CCNOT

Toffoli

⎥ X0 〉

Sum

CNOT

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

92

The result of the Half-Adder:-
Sum = ⎥ X0 〉 ⊕ ⎥ X1 〉
Carry1 = Carry ⊕⎥ Y 〉
 = ⎥ X0 X1 ⊕ Y 〉
Let ⎥ Y 〉 = zero
Carry1 = ⎥ X0 X1 ⊕ 0 〉

See the table below

X0 X1 Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Below, we illustrate our algorithm of Half

Adder Quantum Circuits:-

Algorithm 6 Quantum Half-Adder Circuit

Input:

Two qubit as a Dirac representation (|X0>, |X1>).
Output:
 Two qubit result (Sum,Carry).
Process:
 Step1: let ⎥ Y 〉 = ⎥ 0 〉

 Step2: compute the output of Quantum Control
 Control Not by using algorithm 4.5 to get the
 carry carry = |X0X1 ⊕ Y >

 Step3: compute the output of Quantum
 Control Not by using algorithm 4.4 to get the
 sum
 Sum = ⎥ X0 〉 ⊕ ⎥ X1 〉

 Step4: output the result of Quantum Half-Adder
 represented by
 Sum and Carry.

 Step5: Finish.

5.2. Full Adder Quantum Circuits

We design the Quantum Full-Adder Circuits,
which consists of two Quantum Half-Adder Circuits and
one control not gate (CNot), below is the structure design
of Quantum Full-Adder Circuits.

The result of the Half-Adder one (AH1):-

Sum (S0) = ⎥ X0 〉 ⊕ ⎥ X1 〉
Carry (C0) =⎥ X0 X1 ⊕ Y 〉
Let ⎥ Y 〉 = zero
∴ Carry = ⎥ X0 X1 ⊕ 0 〉

The result of the Half-Adder two (AH2):-

Sum (S1) = ⎥ B0 〉 ⊕ ⎥ S0 〉
Carry (C1) =⎥ B0 S0 ⊕ Y 〉
Let ⎥ Y 〉 = zero
∴ Carry = ⎥ B0 S0 ⊕ 0 〉

The result of the full-Adder:-

Sum (S1) = ⎥ B0 〉 ⊕ ⎥ S0 〉
Carry =⎥ C0 ⊕ C1 〉

Below, we illustrate our algorithm of Full Adder

Quantum Circuits:-

Algorithm 7 Quantum Full-Adder Circuit

Input:

Two qubit as a Dirac representation (|X0>, |X1>).

Output:
 Two qubit result (Sum,Carry).

Process:
 Step1: let ⎥ Y 〉 = ⎥ 0 〉

 Step2: compute the output of Quantum Half-Adder1
 (HA1) by using algorithm 4.6 to get

 Sum (S0) = ⎥ X0 〉 ⊕ ⎥ X1 〉
 carry (C0) = |X0X1 ⊕ Y >

 Step3: compute the output of Quantum
 Half-Adder2 (HA2) by using algorithm 4.6 to get

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

93

 Sum (S1) = ⎥ B0 〉 ⊕ ⎥ S0 〉
 carry (C1) = |B0S0 ⊕ Y >

 Step4: compute the output of Quantum Control
 Not by using algorithm 4.4 to get

 Sum = S1
 Carry = ⎥ C0 ⊕ C1 〉

 Step5: output the result of Quantum Full-Adder
 represented by

 Sum and Carry.

 Step6: Finish.

6. Quantum Arithmetic Operations on
Quantum Computer

 This section describes and represents how we
can design and implement the basic arithmetic operations
to quantum basic arithmetic operations to be suitable for
use in the quantum computer, these operations are
(Addition, Subtraction, multiplication and Division).

6.1. Quantum Addition Operation

The quantum addition operation can be
performed by converting each number into sequence of
qubit then adding these two sequences by using our
algorithm of Quantum Addition Operation

Algorithm 8 Quantum Addition Operation

Input:

Two decimal numbers

Output:
 The result of Addition as a decimal number.

Process:
 Step1: Convert the first decimal number into
 dirac representation
 A= ⎥ a1,, a2 , , an〉

 Step2: Convert the second decimal number into
 Dirac Representation

 B= ⎥ b1,, b2 , , bn〉
 Step3: compute the addition process by
 Quantum Full-Adder By using algorithm 4.7.

 Step4: convert the dirac result of addition into
 decimal number.

 Step5: Output the result.
 Step6: Finish.

6.2. Quantum Subtraction Operation

The quantum subtraction operation can be
performed by converting each number into sequence of
qubit. Then take 2's complement of the second number.
This process is performed by using our algorithm of
Quantum Subtraction Operation

 Algorithm 9 Quantum Subtraction Operation

Input:

Two decimal numbers
Output:
 The result of subtraction as a decimal number.

Process :
 Step1: Convert the first decimal number into
 dirac representation

 A= ⎥ a1,, a2 , , an〉

 Step2: Convert the second decimal number into
 dirac representation

 B= ⎥ b1,, b2 , , bn〉

 Step3: convert the second dirac number into 2’S
 complement representation
 　
 B = B + 1

 Step4: compute the addition process by
 Quantum Full-Adder By using algorithm 4.7.

 Step5: convert the dirac result of addition into
 decimal number.

 Step6: Output the result.
 Step7: Finish.

6.3. Quantum Multiplication Operation

The multiplication operation can be performed by
converting each number into sequence of qubit then
multiplying these two sequences by using our algorithm of
Quantum Multiplication Operation

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

94

Algorithm 10 Quantum Multiplication

Input:

Two decimal numbers

Output:
 The result of multiplication as a decimal number.

Process :
 Step1: Convert the first decimal number into
 dirac representation

 A= ⎥ a1,, a2 , , an〉

 Step2: Convert the second decimal number into
 dirac representation

 B= ⎥ b1,, b2 , , bn〉

 Step3: set C = ⎥ 0 〉

 Step4: compute the multiplication process by
 Following:
 Step4.1: if dirac digit = ⎥ 1 〉 then
 compute the addition process
 by Quantum Addition By using
 algorithm 4.8.

 Step4.2: Shift A to the left by zero
 according to case of Dirac of B.

 Step4.3: goto to the Step4.1.

 Step5: convert the dirac result of Multiplication
 into decimal number.

 Step6: Output the result.

 Step7: Finish.

6.4. Quantum Division Operation

The division operation can be performed by
converting each number into sequence of qubit then
dividing these two sequences by using our algorithm of
Quantum Division Operation

Algorithm 11 Quantum Division Operation

Input:

Two decimal numbers

Output:
 The result of division as a decimal number
 without reminder.

Process:
 Step1: Convert the first decimal number into
 dirac representation

 A= ⎥ a1,, a2 , , an〉

 Step2: Convert the second decimal number into
 dirac representation

 B= ⎥ b1,, b2 , , bn〉

 Step3: set C = ⎥ 0 〉

 Step4: compute the division process by
 following
 Setp4.1: do while A > = B
 Step4.2: compute the subtraction
 process by Quantum subtraction By
 using algorithm 4.9.
 Step4.3: increment C by one: C=C+1

 Step5: convert the dirac result of Division into
 decimal number.

 Step6: Output the result.

 Step7: Finish.

7. Conclusions

This work introduces the quantum computer and
computation principles and properties. It gives the
implementation of the quantum circuits, such as the Quantum
Half-Adder Circuits, which consists of quantum control control
not gate (CCNot) and quantum control not gate (CNot). Also, it
describes and implements the Quantum Full-Adder Circuits,
which consists of two Quantum Half-Adder Circuits and one
control not gate (CNot). The steps of implementation of
quantum basic operations (addition, subtraction,
multiplication division) with its algorithms are an essential
step toward building the hardware and software of
quantum computer.

Reference
[1] Wikipedia, the free encyclopedia, Quantum Computer,

Center For Quantum Computation (CQC), 2005.
[2] Jacob West, The Quantum Computer, Published in

Scientific of America, 2000.
[3] Eleanor Rieffel & Wolfgarg Polak, An Introduction to

Quantum Computer for Non-Physicists,
www.rieffelpal.xerox.com& &
www.Polak.pal.xerox.com, 1998.

[4] John Preskill, Reliable Quantum Computers, California
Institute of Technology,1997.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

95

[5] Mohammad Inayatullah Babari, Shakell Ahmad,
Sheeraz Ahmed, Iftikhar Ahmed Khani, and Bashir
Ahmad, Implementing Dimensional-View of 4X4 Logic
Gate/Circuit for Quantum Computer Hardware using
Xylinx, JSSST Vol. 9 No. 5, December 2008.

[6] A.D. Manzano & L. Steinberg, Idea of Quantum
Computation, Center for Quantum
Computation(CQC), 1999.

[7] David Deutsch & Artur Ekert, Machines, Logic and
Quantum Physics, Center for Quantum Computation
(CQC), University of Oxford, 1999.

[8] Xinlan Zhou, Dabbie W. Leung & Isaac L. Chuang,
Methodology for quantum logic gate construction,
Stanford university, IBM Research and Stanford
university, 2000.

[9] Ashok Muthukrishnan, Classical and Quantum Logic
Gates, Rochester Center for Quantum Information
(RCQI), 1999.

[10] Vipin Mishra, Developing Innovative Programs for
Quantum Computers and Algorithms for Interpretation
of Complex Calculations, Amity University, Amity
Institute of Nanotechnology, Project Guide, 2006.

