
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

96

Manuscript received January 5, 2010
Manuscript revised January 20, 2010

Parallelization of Noise Reduction Algorithm for Seismic Data on
a Beowulf Cluster

Izzatdin Aziz , Thayalan Sandran, Nazleeni Haron, Mohd Hilmi Hasan and Mazlina Mehat,

Universiti Teknologi PETRONAS, Tronoh, Perak, MALAYSIA

Summary
This paper presents the parallelization of a sequential
noise reduction algorithm for seismic data processing into
a parallel algorithm. The parallel algorithm was developed
using C language with the utilization of the Message
Passing Interface (MPI) library. The proposed algorithm
has been implemented on an experimental Beowulf cluster
which consists of 12 nodes operating on Linux Ubuntu
platform. The system was tested with various test
scenarios to gauge its performance. Based on the results
obtained, it can be concluded that parallel implementation
of the noise reduction algorithm has significantly reduced
the processing time.
Key words:
Beowulf cluster, Fast Fourier Transform, F-k Filter, MPI,
Parallel Programming

1. Introduction

The existence of noise or unwanted signal in seismic
data has always posed a major challenge in the seismic
data processing field. There are two stages to reduce noise
in the seismic data which is during the seismic acquisition
itself and the other is the post-acquisition. Eliminating
noise after seismic acquisition often requires enormous
computing power which translates to long processing
duration with the conventional sequential algorithms. For
the oil and gas industry, long duration means higher cost
since it will lead to development delays. At the same time,
improper suppression of noise would contribute towards
misinterpretation of the data thus causing economic
disaster to the industry concerned.

Even though the data processing field has discovered
and continuously experimenting new noise filters to be
used in the seismic processing, there seem to be one
common problem which is the processing duration. The
most common remedy for such problem is the usage of
high performance mainframe or supercomputers.
Acquiring such systems do not however justify the cost
involved. The problem now is to efficiency suppress noise

in seismic at shorter time without high financial
investment.

According to [1], we must make sense of the
recorded seismic 'squiggles' to produce the truest possible
image of the Earth's sub-surface geologic structure.
Reflected seismic response is a mixture of our output
pulse, the effect of the Earth upon that pulse, and
background noise, all convolved together. We must
remove the output pulse and the noise to leave just the
'Earth model'. This is the role of seismic data processing,
which requires accuracy, reliability, speed and substantial
computing power. The advanced mathematical algorithms
and complex geophysical processes applied to 3D seismic
data require enormous computing resources. Not to
mention the massive volumes of data involved. For
example, the amount of seismic data recorded by
CGGVeritas during just ONE medium-sized marine 3D
survey would fill more than 20,000 compact disks,
forming a stack over 650 feet high.

It has become very difficult for a processing facility
to build around a serial architecture machine to cope up.
Because serial computers have their physical limitations
and they cannot go beyond certain speed, all over the
world it has been physically realized that parallel
processing is the only answer to this challenging
application [2]. Serial computers present severe limitations
in certain applications involving large data volumes. It
simply takes too much time to cycle the data through a
single central processor. If the application requires both a
large data volume and a large amount of computation,
serial computer limitations are especially acute [3].

The implementation of the converted sequential
algorithm into parallel processing environment has
foreseen to accelerate up the process mainly because of
divide and conquer concept in parallel processing. This
concept enables a large task to be further breakdown into
smaller pieces which are going to be processed
concurrently by multiple processors or nodes. There are a
few types of parallel computers that can be choose from to
perform the parallelization namely grids, clusters or
massively parallel processors (MPPs). In this research, we
have opted for Beowulf cluster which consists of
commercial off-the-shelf computers that are linked by

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

97

TCP/IP Ethernet local area networks under a single
administration domain. The chosen parallel architecture
offers a cost-effective approach due to xxxxxx

The aim of this work is to parallelize noise reduction
algorithm and to present the implementation of the parallel
algorithm using master/slave architecture and MPI on a
Beowulf cluster.

2. Background of Study

2.1 Seismic Acquisition

Seismic acquisition process is basically consists of 2
crucial components which are namely the seismic source
and the receivers known as geophones on land and
hydrophones in marine. Figure 1 illustrates a marine
seismic acquisition activity with a seismic ship
propagating sound waves to the seabed while the streamer
consisting of hydrophones records the reflected and
refracted signals. In a typical acquisition activity as many
as 6 sets of streamers could be attached to the vessel with
each as long as 6 meters. The vessel contains 2 ultrasound
generators which alternatively transmits sound waves at
every designated position.

Fig. 1 Marine seismic acquisition [1]

During each of the sound wave transmission, the
signal travels horizontally and also downwards. The
vertical signals are reflected and refracted according to the
various densities of the earth strata as illustrated in
Figure 2.

Fig. 2 Subsurface seismic characteristics [4]

 The recorded signals are collected in the form of
Shot Records as shown in Figure 3. It illustrates clearly
that in the Time-Offset Domain the noise is overlapping
the required signal thus, making noise separation more
difficult.

Fig. 3 Shot record [5]

2.2 Noise Reduction Algorithm

The noise reduction algorithm can be summarized in
three steps as shown in Figure 4. The following sub-
sections discuss the steps involved in the chosen algorithm.

 Fig. 4 Process flow of noise filter [5]

2.2.1 Fourier Transform

According to [6], the process of obtaining the
spectrum of frequencies H(f) comprising a time-dependent
signal h(t) is called Fourier Analysis and it is realized by
the so-called Fourier Transform (FT). In most cases, when
a signal is recorded it is displayed in the form of x-y axis
whereby x represents the time while y the amplitude of the
signal. This form of signal representation is known as the
time domain spectrum. However, in order to filter the
signal, it has to be converted into the frequency domain.

Time

Offset(x)
x0 x2 x3 x5 x6 x1 x4

t0

t1

Linear Noise

Fourier Transform

F-k Filter

Inverse Fourier Transform

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

98

In the case of this research however, according to [5],
a 2-Dimensional Fourier Transformation has to be
performed. This means that the time-space graph needs to
be converted to that of frequency-wavenumber. The above
concept can be further analyzed with the Seismic Shot
Record as shown in Figure 3. The offset(x) indicates the
distance between the source and the receivers
(hydrophones/geophones) with x0 being the location of the
source. The y-axis shows the time taken for the waves to
travel from the source to the receivers.
Figure 3 can be represented by the following mathematical
function:

S(t,x)

By applying Fourier Transform, Figure 3 would be
converted into the following Figure 5:

Fig. 5 Fourier transform of Seismic Shot Record [5]

Figure 5 can be represented by the following

mathematical function:

 S(f,kx)

Therefore the conversion process can be mapped in
the following mathematical model:

 S(t,x) => S(f,kx)

2.2.2 F-K Filter

With the Seismic Shot Record in the form of Fourier
Transform or in the frequency domain, the noise can be
easily identified and removed with the F-k filter.

2.2.3 Inverse Fourier Transform

Upon removal of noise, the data would be Inverse
Fourier Transformed and the result would be as illustrated
in Figure 6:

 Fig. 6 Filtered inverse Fourier transform result [5]

2.3 Parallel Processing

Traditionally, parallel programs are designed using
low-level message passing libraries, such as PVM or MPI.
Message Passing (MP) provides the two key aspects of
parallel programming: (1) synchronization of processes
and (2) read/write access for each processor to the
memory of all other processors [7]. The earliest (MP)
library created for parallel processing is PVM or Parallel
Virtual Machine. The main feature of this library is that it
allowed portability. HPC from different vendors were able
to be put to work together with the compatibility issues
resolved. Later the MPI library was created. This API was
developed for improved performance and was packed with
richer communication functions. The primary goal of both
MPs has always been to facilitate communication in the
form of IO among the nodes in the cluster.

 According to [8], massively parallel processing
(MPP) vendors need to be able to deliver high
performance which thus became a focus in the design of
the MPI API. Given this design focus, MPI is expected to
be always faster than Parallel Virtual Machine (PVM) on
any parallel hosts. Therefore, MPI is used as the
programming language in this research to create the
parallel algorithm. Brief description of MPI and PVM
libraries is given in Table 1 [9].

Wavenumber
(kx)

Frequency (f)

Linear
Noise

Desired Signal Time

Offset(x)
x0 x2 x3 x5 x6 x1 x4

t0

t1

FT

(1)

(2)

(3)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

99

Table 1 : Brief description of MPI and PVM [9].
Libraries Description Remarks

MPI A message passing
interface, generally
language independent
even though binding are
included in the standard
for C and FORTRAN

One of the most
popular libraries
for cluster
computing

PVM Permits a heterogeneous
collection of machines to
be joined together to
produce Parallel Virtual
Machine

Trade some
speed for the
virtual machine
ideal

According to [8], the main issue pertaining to

parallelization is how efficient it is compared to the
sequential system. If the overhead of parallel processing is
larger than the processing time, then it is a clear indication
that a parallel process is either not needed in that particular
situation or it is not optimized to harness the full capability
of the parallel architecture. This particular point places is
vital to the load balancing aspect of the program. If the
slave nodes are able to complete the process before the
data is completely loaded into the neighboring slave nodes
then the usage of parallel system in such scenario will not
justify the performance.

3. Motivation

This section presents the scenario and the analysis
that we have conducted in form of arithmetic cost that
motivates our work to parallelize the noise reduction
algorithm using cluster computing.

3.1 Arithmetic Cost for Transformation

In the effort to compute the arithmetic cost for
transforming the input data into a via Fourier Transform, a
total of 1000 Shot Record data with 6 sec long recording,
2 millisecond sampling rate, 480 traces per shot, 12.5 m
trace spacing were envisioned. This step is crucial to
determine the computation requirement for a particular
scenario. It is important to note though that the actual
scenario may vary since it is dependent on the nature of
seismic acquisition. The seismic data would be F-K
filtered on a 10 node High Performance Computer cluster.
Each of the shot-records would be filtered on a single
compute node. The following illustrates the computation
requirements for the project case which is similarly
represented in diagram form as in Figure 7.

1 shot record = 480 traces (receivers)
1 recording = 6 seconds long

Sampling rate = 500Hz (Every 2 milliseconds)
Trace spacing = 12.5 meters

Fig. 7. Seismic Acquisition Streamers

Total samples at each hydrophone per shot record
6sec / (2 x 10-3) = 3000 samples

Total samples from all hydrophones every 2millisec
 480 samples

Total samples from all hydrophones per second
480 traces x 500Hz = 240 000samples

Total samples from all hydrophones per shot record
 3000 samples x 480 traces = 1.44M samples

Based on the above parameters, each f the shot record can
be presented by the matrix shown in Figure 8. The value i
shows the number of channels or receivers used in the
acquisition while the value j is the number of samples
collected in each of the shot records.

 i = 1 i = 480

j = 1 t11 t12 t13 … t1j

 t21 t22 t23 … t2j

 t31 t32 t33 … t3j

 t41 t42 t43 … t4j

 … … … … …

ti1 ti2 ti3 … tij
j = 3000

Fig. 8 Shot record in the form of matrix

12.5
meters

hydrophones
6 seconds

signal
travel time

Each sensor
records at

500Hz

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

100

D(i,j) => D1(i,ω) => D2(kx,ω)

Number of FLOPS to compute 1-D FFT (D1) for a shot
record:
5Nlog2N x 3000 samples = 5(480) log2(480) x 3000
 = 64.13 M Flops

The above calculation determines the computation
requirement to do a 1-D FFT horizontally.

Number of FLOPS to compute the second phase of the 1-
D FFT (D2) for a shot record:
5Nlog2N x 480channels =5(3000) log2(3000) x 480
 = 83.17 Mega Flops

The above calculation determines the computation
requirement to do a 1-D FFT vertically. The combination
of 1-D FFT horizontally and 1-D FFT vertically results in
2-D FFT as required in the algorithm.

Total flops to compute FFT for all samples in a shot
record:
64.13 Mega Flops + 83.17 Mega Flops =147.3 Mega
Flops

Upon completion of the filtering process, the shot
records have to be reverted to their original dimension
which is the time-space domain. This process is known as
the inverse Fast Fourier Transform or abbreviated as
inverse FFT. The number of floating point operation for
inverse FFT is exactly the same as the FFT.

Total flops to compute the FFT and Inverse FFT for all
samples in a shot record:
147.262 Mega Flops x 2 = 294.6 Mega Flops.

In the defined scenario, a total of 1000 shot records
are provided as input data. If they are equally distributed
to all the nodes (assuming all nodes have similar
processing capacity), then each of the slave node would
receive precisely 100 shot records. The total number of
calculations that each node would have performed after
filtering all the 100 shot records is as follows:
294.6 Mega Flops x 1000 shot records = 294.6 Giga Flops.

Good to note that in a typical seismic acquisition the
total number of shot records collected is in the range of
200,000 to 500,000. Assuming close to half a million shot
records are to be filtered the amount of computation
required is as follows:

294.6 Mega Flops x 500,000 shot records = 147.3 Tera
Flops.

The above computation strongly justifies the need of

parallel processing in the quest to filter seismic data.

4. Proposed Approach

4.1 Program Work Flow

4.1.1 Existing Sequential Algorithm
The following pseudo code illustrates the

conventional sequential noise filtering algorithm:

Start

Node stores multiple seismic shot records in the
secondary memory.
Node loads a shot record into the primary memory.
Node processes the shot record

Converts shot record converted from time domain to
frequency domain via Fast Fourier Transform

Filters the noise
Applies Inverse Fast Fourier Transform to the

filtered data
Store result in the secondary memory
Node repeats the above process to fetch the

following shot record.
Node then combines all the filtered outputs and

produces the final results.
End

4.1.2 Proposed Parallel Algorithm

The following pseudocode illustrates the proposed parallel
noise filtering algorithm:
Start

Master fetches of shot record input from the
memory.

Master distributes the shot record one by one to
each of the nodes.

Each slave will receive the shot record
and begin processing it.
Each slave will convert the shot record
from time domain to frequency domain
via Fast Fourier Transform.
Each slave will then apply filter to
truncate the noise form the shot record.
Each slave will perform inverse Fast
Fourier Transform to revert the filtered
data back to time domain.
Each slave will return the output to the

Master.

1-D FFT 1-D FFT

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

101

Master receives the individual processed data and
stores them.
 Master fetched the next data in the memory to be
distributed to the completed slave node.
Master repeats the above process till there is no
more data in the memory.

Master then signals the slave of the completion
and terminates the process.
Master displays the summary of the processes.

End

Fig. 9 Master-Slave Architecture

4.2 Master-Slave Architecture

The pseudocode mentioned in 4.1.2 was implemented
on the Master-Slave architecture. In this setup, the master
node acts as the coordinator in terms of load distribution to
the other nodes and eventually gathers and stores all the
processed data. The slave nodes primary task is to receive
the input from the master node and execute the codes
destined for the slave nodes. The illustration of the
architecture is as shown in Figure 9.

5. Results and Discussion

5.1 Experimental Setup

The experiment was conducted on a Beowulf cluster
that is consists of 12 SGI computers powered by the Intel
i386 based dual processor Pentium 3 – 733MHz
processors with 512MB memory. They are inter-
connected via a Fast Ethernet 100Mbps switch. The
cluster is operated on Linux Ubuntu 5.10 operating system,
MPICH-1.2.7p1, parallel High Performance Linpack
(HPL) version 1.0a and Flops.c version 2.0 both for
parallel benchmark and individual node flops benchmark,

GCC-3.3.6 with Basic Linear Algorithm Subroutine
(BLAS) version 3.0 as the program compiler and its
supporting math library [10].

As for the test data, since the seismic data exists in
the SEG-Y format, pseudo data was generated. However,
it is important to note that the seismic data no matter in
what format it is captured can be basically disintegrated
into a series of complex and imaginary mathematical
numbers. It is on this basis that the pseudo test data
resembles the actual data [5]. The variables in the testing
process can be basically divided into 3 categories namely,
the number of nodes used for the computation, the amount
of data set, and lastly the size of each of the data set since
the actual size of the seismic data can vary according to
requirements. As for the nodes the test were conducted in
groups of even quantity and the maximum number of
slave nodes tested were 12 nodes due to the limitation of
the system architecture. The data size is basically in the
multiples of 10. The data generated were in the form of 2
dimensional arrays with the number of rows being the
variable. The number of rows was varied from 213 till 218
which is also the threshold that the clusters could handle.
The number of rows is also in the base 2 denomination to
emulate the actual data. The test scenarios for each of the
test cases are stated for each of the tests in the next section.

Store
Distribute
Assemble

MASTER

SLAVE

Receive
Process
Submit

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

102

372.40

372.50

372.60

372.70

372.80

372.90

TE
ST

 1

TE
ST

 2

TE
ST

 3

TE
ST

 4

TE
ST

 5

TE
ST

 6

TE
ST

 7

TE
ST

 8

TE
ST

 9

TE
ST

 10

Se
co

nd
s

The tests were devised to illustrate the performance
status and also the efficiency and speedup aspects in
comparison of sequential process versus parallel execution.

5.2 Performance Test

5.2.1 Consistency Test
The consistency test was conducted to determine the

consistency of the processing time for a repeated test. The
following is the test case and the test result in the form of
chart highlighted in Figure 10.

Fig. 10 Processing time versus repeated tests.

The consistency test result was expected to show a
consistent reading given a same process repeated several
times. From the test result illustrated in Figure 10, the
computed standard deviation among all the 10 tests is
0.041876 which suggests that the average deviations
among the tests are very minimal. This suggested that the
test results are very consistent and therefore the result
from this program is reliable.

5.2.2 Variable Data Amount

The performance test was conducted with 2 sets of
data. The main objective of this test is to observe the
pattern of performance gain by processing a total of 100
data in the first test and 1000 data in the second test while
at the same time varying the number of nodes used. Two
data sets were used as to check the consistency of the
result and at the same time consolidate the conclusion
from the test results.

Number of Nodes vs Performance (Data Set : 100)

0

20

40

60

80

No. of Nodes
Se

co
nd

s

Nodes 73.934191 45.227610 38.668685 37.879205 37.276939

4 6 8 10 12

Fig. 11 Processing time versus number of processors for 100 input data

Number of Nodes vs Performance (Data Set : 1000)

0

200

400

600

800

No. of Nodes

Se
co

nd
s

1000 731.937963 438.295747 373.998692 373.358803 372.901048

4 6 8 10 12

Fig. 12 Processing time versus number of processors for 1000 input data

Based on the result in Figure 11 and Figure 12, it can
be concluded that by increasing the number of processors,
the total processing time is reduced significantly. It is also
important to note from both Figure 11 and Figure 12 that
the performance improvement reaches a saturation point as
the number of nodes is increases especially between 8
nodes and 12 nodes test. The underlying reason for such
phenomena is basically due to the high communication
overhead between master node and slave nodes when the
number of nodes is increased and also the dynamic load
balancing feature incorporated in the system. This is
because when more nodes are involved, by the time the
master fetches input data and communicates it to the next
computer in the queue, the other nodes would have
completed the processing task and waits for the master for
the next input.

TEST CASE
Data : 1000 sets of data
Array Dimension : [131072][2]
Number of Nodes : 1 Master + 12

TEST CASE
Data : 100 set, 1000 set
Array Dimension : [131072][2]
Number of Nodes : 1 Master + 12

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

103

Since the data is dynamically distributed on a first
come first serve basis and coupled by the communication
overhead, some nodes will be processing less load then the
others and significant performance improvement cannot be
observed. However, for the same experimental setup as
above, if the size of the data which is the array length were
to be increased from 217 to 219, we can expect a significant
boost of performance by between 8 nodes and 12 nodes
since now the communication cost is still higher but the
complexity of each data has been also increased
proportionally. The test was conducted for array sized at
219 however due to system limitations, the cluster
terminated and crashed.

5.2.3 Variable Length Array

The following test was conducted by varying the size of
the input data which is in the form of two dimensional
arrays. The objective of this test is to prove that the
increment in the size of the array is directly proportional to
the increase in the processing duration. To reinforce the
point, the test was done on a set of 12 slave nodes and 6
slave nodes to illustrate the difference in duration when
the number of or nodes varied. The test case and the test
result are depicted in Figure 13.

0
5

10
15
20
25
30
35
40
45
50

8192 16384 32768 65536 131072

Array Length

12 6

Fig. 13 Processing time versus variable array length

Based on Figure 13, the duration of the processing
increases as the size of the arrays are increased. However,
the pattern of duration increment is exponential. The
underlying cause for such symptom is because when the
size of the array is increased, the overhead of the
processing increases and as such the duration will follow
an exponential pattern of increment.

5.2.4 Speedup Test

This part of the test benchmarks the speedup value of
parallel executing in multi-nodes against sequential
executing on a single node. The test case is as follows:

Table 3 Speedup results

Number of Execution Time Speedup
Nodes (Second)

1 220.013503 NA
4 73.934191 2.97580
6 45.227610 4.86458
8 38.668685 5.68971

10 37.879205 5.80829
12 37.276939 5.90213

Based on the data collected Table 3, it is apparent that

the speedup factor increases as the number of nodes
involved in the computation is increased. This result
basically assists in achieving the objective of the project
which suggests that the seismic processing time can be
reduced if done in a parallel processing environment. To
further illustrate the pattern of the speedup, the graph in
Figure 14 was plotted.

Fig. 14 Speedup pattern in multi processor environment

TEST CASE
Data : 100 set.
Array Dimension : [131072][2]
[65536][2]
[32768][2]
[16384][2]
[8192][2]
Number of Nodes : 1 Master + 12 Slaves,
1 Master + 6 Slaves

TEST CASE
Data : 100 set.
Array Dimension : [131072][2]
Number of Nodes : 1 Single Node

1 Master + 4 Slaves,
 1 Master + 6 Slaves

1 Master + 8 Slaves
1 Master + 10 Slaves
1 Master + 12 Slaves

4

6
8 10 12

0
1
2
3
4
5
6
7

0 5 10 15
Number of Nodes

Nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

104

It is apparent that there is saturation in performance at
node 8 till 12 as the speedup is less significant. This is
mainly due to the higher communication cost and can be
eliminated by increasing the size of the array.

5.3 Discussion

5.3.1 Dynamic Load Balancing

Throughout the test processes where multiple test
cases were executed in the developed system, there were
several observations that are worth noting. One such
aspect is the elements of dynamic load balancing. It was
observed through the cluster management system during
runtime that the slave nodes were actively switching from
high utilization to low and vice versa. This is a very good
indication that the load distribution is done dynamically.
This is because whenever a particular node is highly
utilized, the under utilized nodes will be fed with input
data more frequently thus after a period of time, the
initially under utilized node increases in processing load
while the highly utilized machines drops in load. This can
also be observed based on the color codes of the nodes in
the cluster management software known as Rocks Linux
HPC Distribution. During runtime all the machines are
almost equally loaded with input data which is illustrated
by the uniform color which indicates the amount of load.
Figure 15 below shows that all the 5 slave nodes involved
in the processing are equally loaded as discussed earlier.
The green shade on compute0-0 till compute 0-4 indicates
equality in the load that is being processed. As the
processing load increases the color shade would change to
yellow and finally red indicating 100% utilization of the
processor power of the nodes. The yellow shade in Figure
15 depicts that the master node is handling higher amount
of load as compared to the slaves. This is because the
master has to actively fetch, distribute and gather date
from all the processing slave nodes.

To further consolidate the discussion above, the
screen shot of 6 nodes processing summary is presented in
Figure 16. In this screen shot the master node indicated as
Node 0 has distributed 1000 input data. However, the
slave nodes involved in the processing seems to have
processed various amounts of data. Node 1 for instance
processed 143 data while Node 3 only 72. This means that
the dynamic balancing feature that was coded in the
system is working effectively. This is because the system
distributes more loads to the compute node that finished
processing faster than the others. In the static balancing
programming paradigm, all the nodes would receive equal
amount of data and such is not the case in this system.

In addition to that, the real advantage of the dynamic
balancing aspect can be harnessed optimally in a
heterogeneous environment rather than the homogenous
environment such as the UTPHPC cluster. This is because
in the heterogeneous environment, the resources are of
various capabilities and as such those with higher
processing capacity which will obviously complete a task
faster than its slower counterpart, will be relatively fed
with more data.

5.3.2 Memory Swapping

A system bottleneck that was detected in the cluster is
the insufficient memory on the whole. This was detected
when an array of size 131072 with a total data of 1000 set
being fed into the system. The entire operation was
estimated to take approximately an hour but after 15
minutes, the total memory available in the system was
fully utilized and the nodes started using the swap memory
in their secondary memory. This is when the system
crashed prematurely. The codes were then examined to
find out any memory leaks. The examination reveals that
the memory used were of dynamic and were de-allocated
after usage. From there it was concluded that the operation
requires high amount of memory especially when the size
of each individual array is extremely large or exceeds
100000 in dimension to be specific. Figure 17 illustrates
the acute usage of memory during execution of large data
set.

 Fig. 17 High memory utilization

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

105

Fig. 15 Dynamic load balancing illustration

Fig. 16 Program execution summary

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

106

6. Conclusion and Future Work

The parallel implementation of the seismic noise
reduction program underwent vigorous testing. Based on
the results obtained, it can be concluded that there is a
decrease in processing duration when the same noise
filtering process is implemented in a parallel manner as
opposed to sequential. In the effort to consolidate the
results, the system was tested for consistency initially and
followed by speedup tests in order to observe the degree
of performance improvement.
 In the future, we are going to design and investigate
the performance of parallel implementation of noise
removal algorithms using different filters such as band
pass filter or Tau –p filter.

References
[1] Data Processing,

http://www.cggveritas.com/popup_page.aspx?cid=1-24-163,
accessed on 10 April 2008.

[2] Sudhakar Y., Chakraborty S., Bhandare S. and Rastogi R.
(2002), Seismic Data Processing Initiatives in High
Performance Computing, Tata McGraw Hill, pp. 164.

[3] Fricke J. R. (1988), Reverse-time migration in parallel : A
tutorial, Society of Exploration Geophysicists, pp. 1143-
1144.

[4] Seismic Data Processing,
http://www.geo.arizona.edu/geophysics/rseis/resources/Lec-
1-569-06.pdf , accessed on 28 February 2008.

[5] Dr Mehmut Ferruh Akalin, Staff Seismic Imaging &
Processing, Exploration Geoscience Department,
Exploration Division, Discussion session at PETRONAS
CARIGALI, Level 15, Tower 2, PETRONAS Twin Towers,
Kuala Lumpur City Center, 50088 Kuala Lumpur, Malaysia.
<Meeting on 28 March 2008>

[6] Fourier Analysis and Signal Filtering by Constantinos E.
Efstathiou,
http://www.chem.uoa.gr/applets/AppletFourAnal/Appl_Fou
rAnal2.html, accessed on 20 March 2008.

[7] Laurence T. Y. and Guo M. (2006), High Performance
Computing Paradigm and Infrastructure, John Wiley & Sons
Inc. Publication..

[8] Needham S. and Hansen T. (2002), Cluster Programming
Environments.

[9] Mustafar A. N. , Aziz I. A. , Mehat M. , Haron N. S. , Jung
L. T. (2008) , Solving Traveling Salesman Problem on
High Performance Computing Using Message Passing
Interface, CIMMACS’08, December 28-31, 2008, Cairo,
Egypt.

[10] Adhipta D. , Aziz I. A. , Haron N. S. , Jung L. T. (2006),
Performance Evaluation On Hybrid Cluster: The
Integration Of Beowulf And Single System Image, ICTS’06,
November 10, 2006, Surabaya, Indonesia.

Nazleeni Samiha Haron graduated from
University College London, U.K. for her
MSc Data Comm, Networks and
Distributed Systems and Universiti
Teknologi PETRONAS, Malaysia for her
BTech (Hons.) in Information Technology.
Currently, she is a lecturer at the
Department of Computer and Information
Sciences, Universiti Teknologi
PETRONAS. Her research areas include

distributed and grid computing.

Mohd Hilmi Hasan obtained his Master
of Information Technology from
Australian National University and
BTech (Hons.) in Information
Technology from Universiti Teknologi
PETRONAS, Malaysia. Currently, he is a
lecturer at the Department of Computer
and Information Sciences, Universiti

Teknologi PETRONAS. His research areas include mobile
applications development and agent-based computing.

Anis Afzan Ab Rahman graduated with BTech (Hons.) in
Business Information System from Universiti Teknologi
PETRONAS. This paper is part of her final year project as
requirement for her final year study.

