
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

112

Manuscript received January 5, 2010

Manuscript revised January 20, 2010

Evolving A New Model (SDLC Model-2010) For Software

Development Life Cycle (SDLC)

PK.Ragunath, S.Velmourougan #, P. Davachelvan * ,S.Kayalvizhi, R.Ravimohan
†

Department of Bioinformatics, Sri Ramachandra University, Porur, Chennai , India,

Centre For Reliability (CFR), STQC Directorate (Govt. of India),Chennai. India

*Pondicherry University , Pondicherry, India

Summary

Structured project management techniques (such as an

SDLC) enhance management’s control over projects by

dividing complex tasks into manageable sections. A

software life cycle model is either a descriptive or

prescriptive characterization of how software is or should

be developed. But none of the SDLC models discuss the

key issues like Change management, Incident management

and Release management processes within the SDLC

process, but, it is addressed in the overall project

management. In the proposed hypothetical model, the

concept of user-developer interaction in the conventional

SDLC model has been converted into a three dimensional

model which comprises of the user, owner and the

developer. In the proposed hypothetical model, the concept

of user-developer interaction in the conventional SDLC

model has been converted into a three dimensional model

which comprises of the user, owner and the developer. The

―one size fits all‖ approach to applying SDLC

methodologies is no longer appropriate. We have made an

attempt to address the above mentioned defects by using a

new hypothetical model for SDLC described elsewhere. The

drawback of addressing these management processes under

the overall project management is missing of key technical

issues pertaining to software development process that is,

these issues are talked in the project management at the

surface level but not at the ground level.

.

Key words:

Sofware Development ,SDLC Model-2010,

Project Management, SDLC models, SDLC Phases.

1. Introduction

PROJECT MANAGEMENT IN SDLC

Organizations may employ an SDLC model or alternative

methodology when managing any project, including

software development, or hardware, software, or service

acquisition projects. Regardless of the method used, it

should be tailored to match a project’s characteristics and

risks. Boards, or board-designated committees, should

formally approve project methodologies, and management

should approve and document significant deviations from

approved procedures.

Structured project management techniques (such as an

SDLC) enhance management’s control over projects by

dividing complex tasks into manageable sections.

Segmenting projects into logical control points (phases)

allows managers to review project phases for successful

completion before allocating resources to subsequent phases.

The number of phases within a project’s life cycle is based

on the characteristics of a project and the employed project

management methodology. A five-step process may only

include broadly defined phases such as prepare, acquire, test,

implement, and maintain. Typical software development

projects include initiation, planning, design, development,

testing, implementation, and maintenance phases. Some

organizations include a final, disposal phase in their project

life cycles. The activities completed within each project

phase are also based on the project type and project

management methodology. All projects should follow well-

structured plans that clearly define the requirements of each

project phase. Iteration enhances a project manager’s ability

to efficiently address the requirements of each party (end

users, security administrators, designers, developers, system

technicians, etc.) throughout a project’s life cycle. Iteration

also allows project managers to complete, review, and

revises phase activities until they produce satisfactory

results (phase deliverables).[1]

What is SDLC

A software cycle deals with various parts and phases from

planning to testing and deploying software. All these activities

are carried out in different ways, as per the needs. Each way is

known as a Software Development Lifecycle

Model(SDLC)[2].A software life cycle model is either a

descriptive or prescriptive characterization of how software is

or should be developed. A descriptive model describes the

history of how a particular software system was developed.

Descriptive models may be used as the basis for understanding

and improving software development processes or for building

empirically grounded prescriptive models. [3]

http://en.wikipedia.org/wiki/Waterfall_model#cite_note-0
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-0

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

113

SDLC models

* The Linear model (Waterfall)

- Separate and distinct phases of specification and

development.

- All activities in linear fashion.

- Next phase starts only when first one is complete.

* Evolutionary development

- Specification and development are interleaved (Spiral,

incremental, prototype based, Rapid Application

development).

- Incremental Model (Waterfall in iteration),

- RAD(Rapid Application Development) - Focus is on

developing quality product in less time,

- Spiral Model - We start from smaller module and keeps

on building it like a spiral. It is also called Component

based development.

* Formal systems development

- A mathematical system model is formally transformed to

an implementation.

* Agile Methods.

- Inducing flexibility into development.

* Reuse-based development

- The system is assembled from existing components.

The General Model

Software life cycle models describe phases of the software

cycle and the order in which those phases are

executed. There are tons of models, and many companies

adopt their own, but all have very similar patterns. The

general, basic model is shown below:

General Life Cycle Model

Fig 1 General Life Cycle Model

Each phase produces deliverables required by the next

phase in the life cycle. Requirements are translated into

design.[4] Code is produced during implementation that is

driven by the design. Testing verifies the deliverable of the

implementation phase against requirements.

Waterfall Model

The waterfall model is a sequential software development

process, in which progress is seen as flowing steadily

downwards (like a waterfall) through the phases of

Conception, Initiation, Analysis, Design (validation),

Construction, Testing and maintenance. Small to medium

database software projects are generally broken down into

six stages:

Fi

g 2. Waterfall Model

The unmodified "waterfall model". Progress flows from the

top to the bottom, like a waterfall. The waterfall

development model has its origins in the manufacturing and

construction industries; highly structured physical

environments in which after-the-fact changes are

prohibitively costly, if not impossible. Since no formal

software development methodologies existed at the time,

this hardware-oriented model was simply adapted for

software development.

 The first formal description of the waterfall model is often

cited to be an article published in 1970 by Winston W.

Royce (1929–1995),[5] although Royce did not use the term

"waterfall" in this article. Royce was presenting this model

as an example of a flawed, non-working model (Royce

1970). This is in fact the way the term has generally been

used in writing about software development—as a way to

criticize a commonly used software practice.[6]

Waterfall Lifecycle Model

Fig 3 Waterfall Lifecycle Model

Advantages

http://en.wikipedia.org/wiki/Waterfall_model#cite_note-0
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Waterfall
http://en.wikipedia.org/wiki/Analysis
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Construction
http://en.wikipedia.org/wiki/Winston_W._Royce
http://en.wikipedia.org/wiki/Winston_W._Royce
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-0
http://en.wikipedia.org/wiki/Waterfall_model#CITEREFRoyce1970
http://en.wikipedia.org/wiki/Waterfall_model#CITEREFRoyce1970
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

114

a) Simple and easy to use.

b) Easy to manage due to the rigidity of the model –

each phase has specific deliverables and a review

process.

c) Phases are processed and completed one at a time.

d) Works well for smaller projects where requirements

are very well understood.

Disadvantages

a) Adjusting scope during the life cycle can kill a

project

b) No working software is produced until late during

the life cycle.

c) High amounts of risk and uncertainty.

d) Poor model for complex and object-oriented projects.

e) Poor model for long and ongoing projects.

f) Poor model where requirements are at a moderate to

high risk of changing.

V-Shaped Model

Just like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must

be completed before the next phase begins. Testing is

emphasized in this model more so than the waterfall model

though. The testing procedures are developed early in the

life cycle before any coding is done, during each of the

phases preceding implementation. Requirements begin the

life cycle model just like the waterfall model. Before

development is started, a system test plan is created. The

test plan focuses on meeting the functionality specified in

the requirements gathering.

The high-level design phase focuses on system architecture

and design. An integration test plan is created in this phase

as well in order to test the pieces of the software systems

ability to work together. The low-level design phase is

where the actual software components are designed, and

unit tests are created in this phase as well. The

implementation phase is, again, where all coding takes

place. Once coding is complete, the path of execution

continues up the right side of the V where the test plans

developed earlier are now put to use. [7]

V-Shaped Life Cycle Model

Advantages

a) Simple and easy to use.

b) Each phase has specific deliverables.

c) Higher chance of success over the waterfall model

due to the development of test plans early on during the

life cycle.

d) Works well for small projects where requirements

are easily understood.

Disadvantages

a) Very rigid, like the waterfall model.

b) Little flexibility and adjusting scope is difficult and

expensive.

c) Software is developed during the implementation

phase, so no early prototypes of the software are

produced.

d) Model doesn’t provide a clear path for problems

found during testing phases.

Incremental Model

In the incremental model, you construct a partial

implementation of a total system. Then you slowly add

increased functionality. The incremental model prioritizes

requirements of the system and then implements them in

groups. Each subsequent release of the system adds function

to the previous release, until all designed functionality has

been implemented. [8]

Incremental Life Cycle Model

Advantages

a) Generates working software quickly and early during

the software life cycle.

b) More flexible – less costly to change scope and

requirements.

c) Easier to test and debug during a smaller iteration.

d) Easier to manage risk because risky pieces are

identified and handled during its iteration.

e) Each iteration is an easily managed milestone.

Disadvantages

a) Each phase of an iteration is rigid and do not overlap

each other.

b) Problems may arise pertaining to system architecture

because not all requirements are gathered up front for

the entire software life cycle.

Spiral Model

The spiral model was defined by Barry Boehm in his 1988

article A Spiral Model of Software Development and

Enhancement. This model was not the first model to discuss

iterative development, but it was the first model to explain

why the iteration matters. As originally envisioned, the

iterations were typically 6 months to 2 years long. Each

phase starts with a design goal and ends with the client (who

may be internal) reviewing the progress thus far. Analysis

and engineering efforts are applied at each phase of the

project, with an eye toward the end goal of the project. [9]

The spiral model is similar to the incremental model, with

more emphases placed on risk analysis. The spiral model

has four phases: Planning, Risk Analysis, Engineering and

Evaluation. A software project repeatedly passes through

these phases in iterations (called Spirals in this model). The

baseline spirals, starting in the planning phase, requirements

are gathered and risk is assessed. Each subsequent spiral

http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

115

builds on the baseline spiral. Requirements are gathered

during the planning phase. In the risk analysis phase, a

process is undertaken to identify risk and alternate

solutions. A prototype is produced at the end of the risk

analysis phase. Software is produced in the engineering

phase, along with testing at the end of the phase. The

evaluation phase allows the customer to evaluate the output

of the project to date before the project continues to the
next spiral. In the spiral model, the angular component

represents progress, and the radius of the spiral represents

cost.

Spiral Lifecycle Model

Advantages

a) High amount of risk analysis.

b) Good for large and mission-critical projects.

c) Software is produced early in the software life cycle.

Disadvantages

a) Can be a costly model to use.

b) Risk analysis requires highly specific expertise.

c) Project’s success is highly dependent on the risk

analysis phase.

d) Doesn’t work well for smaller projects.

Disadvantages of existing SDLC Model

But none of the SDLC models discuss the key issues like

Change management, Incident management and Release

management processes within the SDLC process, but, it is

addressed in the overall project management.

a) The drawback of addressing these management processes

under the overall project management is missing of key

technical issues pertaining to software development process

that is, these issues are talked in the project management at

the surface level but not at the ground level.

Example: For the functional requirement changes and its

associated software requirement, design, code and default

maintenance are addressed in the project level change

management will be at document level not the technical

aspects which are essential to the implementation of the

functions or the module.

b) Each and every incident/failure/bugs that come across

during the development are not mostly recorded and

escalated to the project

 management until and unless otherwise it results in major

mission losses.

c) There is a lack of understanding that these are vital data

may be used to establish performance and reliability of the

product being developed.

d) Finally the release management is at present looked from

the project management angle, but there are weaknesses due

to non-linking of certain issues which are driven to rip

during development and only the surface level issues like

configuration, setup creation, registration of components are

addressed but the compatibility between existing

components and newer components added after installation

and default screens (hidden) and hidden parameters, test

stubs used during testing, components unused for future

modification and relevant vulnerabilities are not addressed.

We have made an attempt to address the above mentioned

defects by using a new hypothetical model for SDLC

described elsewhere.

Material and Methods

New features proposed in the SDLC model-2010:

a) The hypothetical model proposed addresses all these

issues by embedding the core control which is mapped to

the project management and traceable to the surface level

data existing to the project management and the ground

level technical data additionally present to address quality

attributes such as security, safety and performance and

installability etc, issues during or after the deployment of

the software.

b) In addition to this it has modified the concept of user-

developer interaction in the conventional model to a three

dimensional model which comprises of the user, owner and

developer. It also establishes a clear guideline to address

who has to do what in the various stages in SDLC? and

when in SDLC?, so that the conflicts among the developer

and user is removed also enables the timely completion of

projects by removing the hidden overheads that occur due to

conflicts or lack of knowledge.

c) Moreover the outer circle of the model depicts the

various quality attributes pertaining to the various actions

and the activities to be done by everyone involved in the

development activities from requirement gathering to

maintenance in the SDLC phases.

d) In the proposed hypothetical model, the concept of user-

developer interaction in the conventional SDLC model has

been converted into a three dimensional model which

comprises of the user, owner and the developer.

e) It also defines clearly a set of guidelines as to who has to

do what in SDLC? and when in the various stages in SDLC?

Or in other words the roles and responsibilities are clearly

defined in these guidelines.

This ensures that conflicts among the developer and the user

are eliminated or reduced to a manageable level. Hence,

timely completion of software projects within the set

timelines is made possible by removing the hidden

overheads that arise due to lack of knowledge.

f) To ensure that the quality attributes of a software project

are adhered to, an outer circle has been added to ensure that

these quality attributes are embedded in the various

activities and actions done by everyone involved in the

development activities from requirement gathering to

maintenance in various phases of SDLC.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

116

Fig 4 SDLC Model-2010.

Lightweight methodologies were developed to efficiently

manage software projects subjected to short timelines and

excessive uncertainty and change. Reducing the time-to-

market is a way of life for most companies. [10] Shrinking

cycle times are commonplace in the software industry. Web

development efforts are an excellent example of reduced

cycle timing. [11] They differ from the development of

traditional applications in many ways. Lightweight SDLC

methodologies seek to balance these two extremes.[12]

They are an example of the application of the risk-reward

approach to investing time and resources in various

development activities. Lightweight methodologies explore

the line of bare sufficiency. [13] A recent study by the

Cutter Consortium found that traditional SDLC

methodologies ―fall short in the new e-business environment.

They are unable to keep up with fast-paced, ever-changing

e-business projects‖. [14] Perhaps the greatest strength of

the new lightweight methodologies is that they provide a

palatable alternative to the code and fix mentality that

permeates today’s environment. [15] On the other hand, one

of the biggest limitations of lightweight SDLCs is their

inability to handle large development teams. [16] As

expected, lightweight methodologies are strong in some

areas and weak in others. On the negative side, when a

project falls short of being barely sufficient, failure occurs.

[17] On the positive side is the example of the Chrysler

Compensation System discussed earlier. After a 26-person

development team failed to complete what was considered a

large system that required heavy SDLC, an eight-person

team using XP successfully completed the project in one

year. [18] Key to success when employing lightweight

methodologies is their application to projects with one or

more of the following enablers.

a) Small co-located development teams (i.e. two to

eight people in a room).

b) On-site customer or usage expert.

c) Short increments between deliverables.

d) Fully automated regression tests.

e) Experienced developers.

As the number of the above characteristics increase, so does

the probability of success for a project employing

lightweight SDLCs.

The ―one size fits all‖ approach to applying SDLC

methodologies is no longer appropriate.[19] Each SDLC

methodology is only effective under specific conditions.

Traditional SDLC methodologies are often regarded as the

proper and disciplined approach to the analysis and design

of software applications. [20] Examples include the code

and fix, waterfall, staged and phased development,

transformational, spiral, and iterative models. Lightweight

methodologies on the other hand are a compromise between

no process and too much process.

The following details explain the applicability of the new

proposed SDLC model. The details given below explain

how the newly proposed SDLC model has the strength of

improving Reliability of the software. This new SDLC

Model has been applied to both these software.

(a). Spare Parts Cost Optimisation Software.

(b). Academic HR Manager.

Implementation of the’ Proposed SDLC Model-2010’:-

Software 1(Spare Parts Cost Optimisation Software)

This software is used for optimising the cost of parts for

manufacturing. The language used was Microsoft Visual

Basic 6.0 as front end and Microsoft Access as the database.

This software is a tool to estimate the optimum number of

spare parts required to be stocked in order to improve the

availability of the electronic systems, cost effectively, based

on scientific approach. Fig.5 and Fig.6 illustrate the logical

diagram of the software and flow diagram respectively.

The estimated reliability of software developed was

compared with and without the use of the proposed new

SDLC model and the results are compared and have been

tabulated below (Table 1 and Table 2).While designing this

software, the new hypothetical SDLC model has been used.

http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1
http://en.wikipedia.org/wiki/Waterfall_model#cite_note-1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

117

Fig. 5.Logical flow diagram of the software

Fig. 6. Functional diagram of Spare Parts Software

Software 2 (Academic HR Manager)

The Department of Bioinformatics (which is an ISO

9001:2000 certified) in Sri Ramchandra University

(www.srmc.edu), Chennai, India have developed a new

Human Resource software. (Academic HR Manager)

This software helps in

A) Workload allocation of academic staff in the department,

B) Monitoring of workload allocation of academic staff in

the department, and

C) Analysis of total work carried out by the academic staff

of the Department.

While designing this software, the new hypothetical SDLC

model has been used.

RESULT

This SDLC model-2010 has been applied while developing

both the software. viz., Spare parts cost Optimisation and

Academic-HR Manager. The following are the results of

applying the new software model to the following software.

viz.,

a)Spare parts cost Optimisation and

b)Academic-HR Manager.

 The estimated reliability of software developed was

compared with and without the use of the proposed new

SDLC model and the results are compared and have been

tabulated below (Table 1 and Table 2).While designing this

software, the new hypothetical SDLC model has been used.

TABLE 1 THE FAILURE RATE WITH THE EXISTING SDLC MODEL

Name of the cell
Projected no.

of failure (r)

Security cell 4

File based cell 6

S/w in accordance with std. 6

Fixed database 4

Report/Analysis 3

Error Handler 7

Repetitive failures 13

Configuration errors 23

Version conflict errors 3

Failures due to lack

infrastructure

7

Awareness Failure 3

Total No . of failure 79

(f=R/r*15) (15 similar test benches were created to test the

product)

TABLE 2 THE FAILURE RATE WITH THE NEW SDLC MODEL

Name of the cell

No. of

failures

(N)

Security cell 0

File based cell 0

S/w in accordance with std. 1

Fixed database 0

Report/Analysis 0

Error Handler 1

Repetitive failures 0

Configuration errors 2

Version conflict errors 0

Failures due to lack infrastructure 1

Awareness Failure 1

Total No . of failure 6

 (f=R/r*15) (15 similar test benches were created to test the

product)

Discussion

But none of the SDLC models discuss the key issues like

Change management, Incident management and Release

management processes within the SDLC process, but, it is

addressed in the overall project management.

The drawback of addressing these management processes

under the overall project management is missing of key

technical issues pertaining to software development process

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

118

that is, these issues are talked in the project management at

the surface level but not at the ground level.

This drawback in the existing SDLC model is rectified by

the hypothetical new SDLC model by embedding the core

control which is mapped to the project management and

traceable to the surface level data existing to the project

management and the ground level technical data

additionally present to address quality attributes such as

security, safety and performance and installability etc,

issues during or after the deployment of the software.

Each and every incident/failure/bugs that come across

during the development are not mostly recorded and

escalated to the project management unless otherwise it

results in major mission losses.

To ensure that the quality attributes of a software project are

adhered to, an outer circle has been added to ensure that

these quality attributes are embedded in the various

activities and actions done by everyone involved in the

development activities from requirement gathering to

maintenance in various phases of SDLC.

We have modified the user-developer interaction in the

existing SDLC model, from a two dimensional one to a

three dimensional model in the new proposed SDLC model

which comprises of the user, owner and developer. It also

establishes a clear guideline to address who has to do what

in SDLC? and when in the various stages of SDLC?

There is a lack of understanding that these are vital data

may be used to establish performance and reliability of the

product being developed.

This defect of the existing SDLC model has been addressed

in the proposed new SDLC model by eliminating the

conflicts among the developer and user and also enables the

timely completion of projects by removing the hidden

overheads that occur due to conflicts or lack of knowledge.

Advantages of the New Model

a) The hypothetical model proposed addresses all these

issues by embedding the core control which is mapped to

the project management and traceable to the surface level

data existing to the project management and the ground

level technical data additionally present to address quality

attributes such as security, safety and performance and

installability etc, issues during or after the deployment of

the software.

b) In addition to this it has modified the concept of user-

developer interaction in the conventional model to a three

dimensional model which comprises of the user, owner and

developer. It also establishes a clear guideline to address

who has to do what in SDLC? and when in the different

stages of SDLC?. So that the conflicts among the developer

and user is removed also enables the timely completion of

projects by removing the hidden overheads that occur due to

conflicts or lack of knowledge.

c) Moreover the outer circle of the model depicts the

various quality attributes pertaining to the various actions

and the activities to be done by everyone involved in the

development activities from requirement gathering to

maintenance in the SDLC phases.

d) In the proposed hypothetical model, the concept of user-

developer interaction in the conventional SDLC model has

been converted into a three dimensional model which

comprises of the user, owner and the developer.

e) Very clear definition of roles and responsibilities ensures

that conflicts among the developer and the user are

eliminated or reduced to a manageable level. Hence, timely

completion of software projects within the set timelines is

made possible by removing the hidden overheads that arise

due to lack of knowledge.

f) To ensure that the quality attributes of a software project

are adhered to, an outer circle has been added to ensure that

these quality attributes are embedded in the various

activities and actions done by everyone involved in the

development activities from requirement gathering to

maintenance in various phases of SDLC.

Scope for further study

The dependent processes like incident management,

configuration management and release management could

be explored within the scope of development and

maintenance. Further one to one mapping between the

phases of SDLC with these processes can be established.

Bibliography

[1] following standards were used as guides to develop this

SDLC description. The standards were reviewed and tailored

to fit the specific requirements of small database projects.

 ANSI/IEEE 1028: Standard for Software Reviews and

Audits

 ANSI/IEEE 1058.1: Standard for Software Project

Management Plans

 ANSI/IEEE 1074: Standard for Software Lifecycle

Processes

 SEI/CMM: Software Project Planning Key Process Area.

[2] Raymond Lewallen - CodeBetter.Com - Stuff you need to

Code Better! Published 08-01-2008 10:27 AM.

[3] Craig Larman, Victor R. Basili, "Iterative and Incremental

Development: A Brief History," Computer, vol. 36, no. 6, pp.

47-56, June 2003, doi:10.1109/MC.2003.1204375.

[4] www.coders2020.com/what-is-sdlc-what-are-the-various-

sdlc-models-explain-them.

[5] Curtis, Krasner, Iscoe, 1988.

[6] Dr. Winston W. Royce(1929 - 1995) at www.informatik.uni-

bremen.de. Retrieved 27 Oct 2008.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

119

[7] Conrad Weisert, Information Disciplines, Inc., Chicago, 8

February, 2003

[8] Craig Larman, Victor R. Basili (June 2003). "Iterative and

Incremental Development: A Brief History.

[9] Using Both Incremental and Iterative Development.Dr.

Alistair Cockburn, Humans and Technology, Crosstalk May

2008.

[10] Sims, D. (1997). Vendors struggle with costs, benefits of

shrinking cycle times. IEEE Computer, 30(9), 12-14.

[11] Strigel, W. (2000, February). Is Web Development a New

Creature? Software Productivity Center. Retrieved March 11,

2001, from the World Wide Web:

http://www.spc.ca/resources/essentials/feb2300.htm#three.

[12] Yourdon, E. (2000, October). The Emergence of "Light"

Development Methodologies. Software Productivity Center.

Retrieved March 11, 2001, from the WorldWideWeb:

http://www.spc.ca/resources/essentials/oct1800.htm#3.

[13] Cockburn, A. (2001). Just-In-Time Methodology

Construction. Humans and Technology. Retrieved March 11,

2001, from the World Wide Web:

http://www.crystalmethodologies.org/articles/jmc/justintime

methodologyconstruction.html

[14] Cutter. (2000, October). Light Methodologies Best for E-

business Projects. Cutter Consortium. Retrieved March 11,

2001, from the World Wide Web:

http://cutter.com/consortium/research/2000/crb001003.html.

[15] Fowler, M. (2000, December). Put Your Process on a Diet.

Software Development Online. Retrieved March 11, 2001,

from the World Wide Web:

http://www.sdmagazine.com/articles/2000/0012/0012a/0012a

.htm.

[16] Fowler, M. (2000, November). The New Methodology.

ThoughtWorks. Retrieved March 11, 2001, from the World

Wide Web:

http://www.martinfowler.com/articles/newMethodology.html.

[17] Cockburn, A. (2000, July/August). Selecting a project's

methodology. IEEE Software, 17(4), 64-71.

[18] Cockburn, A. (2000, September). Balancing Lightness with

Sufficiency. American Programmer. Retrieved March 11,

2001, from the World Wide Web:

http://www.crystalmethodologies.org/articles/blws/balancingl

ightnesswithsufficiency.html.

[19] Lindvall, M., & Rus, I. (2000, July/August). Process diversity

in software development. IEEE Software, 17(4), 14-18.

[20] Rothi, J., & Yen, D. (1989). System Analysis and Design in

End User Developed Applications. Journal of Information

Systems Education. Retrieved April 7, 2001, from the

WorldWideWeb:http://www.gise.org/JISE/Vol1-5/SYSTE

MAN.htm.

Dr.PK.Ragunath, Professor and Head of

Department of Bioinformatics(ISO

9001:2000), Sri Ramachandra University ,

Chennai , India. He has done his PhD in

Madras Medical College, Chennai in Patho-

informatics of Human Lymphoma. Moreover,

he has completed several IT courses and

having rich experience in Software Project

Management.

Ravimohan Rajmohan received the B.Com

degree from Loyola College in 1986 and

M.B.A. degree in Business Administration

from PSG College of Technology,

Coimbatore in 1988. During 1988-1997, he

has been working in various sales and

marketing positions with various companies

in Tamilnadu. From 1997 onwards he

switched over to a career in IT in the

specialised field of ERP solutions and has worked with various

MNC’s like HP and Accenture. He has a flair for teaching and has

been handling classes in the subject of Hospital Management

Information Systems for MBA students. He is also a member of

the Board of Studies, in the Department of Bioinformatics, Sri

Ramachandra University.

S. Velmourougan is presently working as

Scientist at Centre For Reliability (CFR-

Chennai), STQC Directorate, Ministry of

Information Technology, Govt. of India.ty

Analysis, Failure Analysis, and Reliability

development/Growth testing. He is a

―Certified Ethical Hacker (CEH)‖ certified

by Eccouncil, USA, Qweb Lead assessor,

IQNET, ISMS-Lead Auditor, IRCA-UK also

he is a ―Certified Reliability Professional (CRP)‖ and ―Certified

Software Test Manager (CSTM)‖.

