
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

126

Manuscript received January 5, 2010
Manuscript revised January 20, 2010

Concurrent Approach to Flynn’s MPSD Classification through
Java

Bala Dhandayuthapani Veerasamy

Department of Computing, Mekelle University, Ethiopia

Summary
Parallel programming models exist as an abstraction of hardware
and memory architectures. There are several parallel
programming models in commonly use; they are shared memory
model, thread model, message passing model, data parallel
model, hybrid model, Flynn’s models, embarrassingly parallel
computations model, pipelined computations model. These
models are not specific to a particular type of machine or
memory architecture. This paper focuses the concurrent approach
to Flynn’s MPSD classification in single processing environment
through java program.
Key words:
Concurrent, Flynn’s Taxonomy, Single processor Environment,
Java Development Kit, Parallel.

1. Introduction

Parallel programming and distributed programming [1] are
two basic approaches for achieving concurrency with a
piece of software. They are two different programming
paradigms that sometimes intersect. In the past
programming life, we were mostly using sequential
programming. But, today’s life style is going with more
faster than the past decades. Also, solving problems on the
computers are enormous. Parallel computer [1] can
executes two or more job within a same period of time.

Two events are said to be concurrent if they occur within
the same time interval. Two or more tasks executing over
the same time interval are said to execute concurrently.
Tasks that exist at the same time and perform in the same
time period are concurrent. Concurrent tasks can execute
in a single or multiprocessing environment [2]. In a single
processing environment, concurrent tasks exist at the same
time and execute within the same time period by context
switching. In a multiprocessor environment, if enough
processors are free, concurrent tasks may execute at the
same instant over the same time period. The determining
factor for what makes an acceptable time period for
concurrency is relative to the application.

Concurrency techniques [3] [6] are used to allow a
computer program to do more work over the same time
period or time interval. Rather than designing the program

to do one task at a time, the program is broken down in
such a way that some of the tasks can be executed
concurrently. In some situations, doing more work over
the same time period is not the goal. Rather, simplifying
the programming solution is the goal. Sometimes it makes
more sense to think of the solution to the problem as a set
of concurrently executed tasks. This technique is used in
the parallel computer architectures.

Java is just a computer language [5] that has secure,
portable, object-oriented, multithreaded [3] [4] [6],
interpreted, byte-coded, garbage-collected, language with
a strongly typed exception-handling mechanism for
writing distributed programs [4]. Java is an object-oriented
programming language, which added the new features
such as overriding, interface and etc. Java supports
multithreaded programming, which allows you to do many
things simultaneously on the same time interval. Java
enables the creation of cross-platform programs by
compiling into an intermediate representation called java
byte code. JVM (Java Virtual Machine) is an interpreter
for java. Java is designed for the distributed environment
on the Internet. Java has technology called RMI (Remote
Method Invocation) that brings unparalleled level of
abstraction to client / server programming. Byte code is a
highly optimized set of instructions designed to be
executed by the java run-time system, which is called Java
Virtual Machine (JVM). Java handles de-allocation for
you automatically, this technique called garbage collection.
The Java Developers Kit (JDK) is a set of command-line
tools that can be used to create Java programs. The current
release of the JDK is version 1.6.

2. Flynn’s Classical Taxonomy

Parallel computers can be divided into two main
categories of control flow and data flow. Control-flow
parallel computers are essentially based on the same
principles as the sequential or von Neumann computer,
except that multiple instructions can be executed at any
given time. Data-flow parallel computers sometimes
referred to as “non-von Neumann,” is completely different
in that they have no pointer to active instruction(s) or a

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

127

locus of control. The control is totally distributed, with the
availability of operands triggering the activation of
instructions. In what follows, we will focus exclusively on
control-flow parallel computers.

There are different ways to classify parallel computers.
One of the more widely used classifications, in use since
1966, is called Flynn's Taxonomy [2]. The Flynn’s
taxonomy distinguishes multi-processor computer
architectures according to how they can be classified along
the two independent dimensions of Instruction and Data.
Each of these dimensions can have only one of two
possible states called Single or Multiple. There are four
possible classifications according to Flynn’s that is shown
in Fig. 1.

Fig. 1 Flynn’s Taxonomy

SPSD is simplest type of computer performs one
instruction per cycle, with only one set of data or operand.
SPSD is serial computer architecture. Such a system is
called a scalar computer. SPSD will have one program and
one set of data. Single instruction: only one instruction
stream is being acted on by the CPU during any one clock
cycle. Single data: only one data stream is being used as
input during any one clock cycle. It will execute by only
one processor as a sequential manner. Hence it is not a
parallel programming model rather it is a sequential
programming model. It can be executed by a single
processor based system by sequential way.

MPSD is a single data stream is fed into multiple
processing units. Each processing unit operates on the data
independently via independent instruction streams. Few
actual examples of this class of parallel computer have
ever existed. MPSD will have more than one program with
same values will be used by all the programs. All the
programs will execute in different processors with the
same values. If all task or threads are executed in different
processor means, it will take the same values.

SPMD is actually have a single program is executed by all
tasks simultaneously. At any moment in time, tasks can be
executing the same or different instructions within the
same program. SPMD programs usually have the
necessary logic programmed into them to allow different
tasks to branch or conditionally execute only those parts of
the program they are designed to execute. That is, tasks do
not necessarily have to execute the entire program perhaps
only a portion of it. Here all tasks may use different data.

MPMD is actually a "high level" programming model.
MPMD applications typically have multiple executable
object files (programs). While the application is being run
in parallel, each task can be executing the same or
different program as other tasks. All tasks may use
different data.

3. Flynn’s MPSD Implementation

MPSD will have more than one program with same values
will be used by all the programs. All the programs will
execute in different processors with the same values. We
can have an example program 1 for this, which has four
threads (tasks) called add, sub, mul, and div (assume as
four programs/task) using same value with 5. If all task or
threads are executed in different processor means, it will
take the same values.

Single processing environment can have concurrent tasks
exist at the same time and execute within the same time
period by context switching (time limits). This paper only
focuses on Flynn’s MPSD classification in single
processing environment using concurrent approach.

Program 1. A Sample program for Flynn’s MPSD

class MPSD implements Runnable{
Thread t;
String name;
int a,b,sum;

MPSD(String str, int val1,int val2){
 t=new Thread(this,str);
 name=str;
 a=val1;
 b=val2;
 t.start(); }

public void add(){ //task1
 sum=a+b;
 System.out.println("the sum is "+ sum + "
produced by " + name +" task");
}

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

128

public void sub(){//task2
 sum=a-b;
 System.out.println("the sub is "+ sum + "
produced by " + name +" task ");
}

public void mul(){//task3
sum=a*b; // program 3
System.out.println("the mul is "+ sum + " produced by " +
name +" task ");
}

public void div(){//task4
 sum=a/b; // program 4
System.out.println("the div is "+ sum + " produced by " +
name +" task ");
}

public void run(){
try{
if(name.equals("add")){
 add();
 t.sleep(200);}

if(name.equals("sub")){
 sub();
 t.sleep(200);}

if(name.equals("mul")){
 mul();
 t.sleep(200);}

if(name.equals("div")){
 div();
 t.sleep(200);}

}catch(Exception e){}
}
public static void main(String BDP[]){
MPSD b1=new MPSD("add",5,5); // value 1
MPSD b2=new MPSD("sub",5,5); // value 1
MPSD b3=new MPSD("mul",5,5); // value 1
MPSD b4=new MPSD("div",5,5); // value 1 }}
}}

4. Results and Discussion

Sequential programming also called serial programming. It
is normally a computer programs, which involves
consecutive process or sequential process. It can uses only
single processing environment. There are drawbacks in
sequential programming. It can be executed in a sequential
manner. It will take more time for execution because

instruction will execute by the processor one after another.
It will have less clock speed. Biggest problems cannot be
solved. The concurrent programming is also a computer
program, which involves more than one process within the
same time interval. Two or more tasks executing over the
same time interval are said to execute concurrently.
Parallel and distributed programmings are two approaches
for achieving concurrency.

Java provides Thread class to create concurrent execution
of tasks. Thread class has constructors and method, which
are helping to create concurrent execution of tasks. The
Program 1 developed to execute in a single processing
environment using Flynn’s classification with MPSD. In
this program, MPSD (String str, int val1, int val2)
constructor has an argument with “String str” will receive
name of the task, “int val1, val2” will receive values for
addition, subtraction, multiplication and division. In the
main function b1, b2, b3, b4 are objects; once it has
created constructor will be automatically called. The
t=new Thread(this, str) creates tasks such as “add”, “sub”,
“mul” and “div”. The t.start() method has been starting all
the tasks. After starting the tasks, it will be automatically
called run() method. The run() method will execute add(),
sub(), mul() and div() methods concurrently by using
t.sleep(200) method (context switching). The t.sleep(200)
method pause any task for 200 milliseconds during
execution and it will allow to execute waiting of any other
task. Until completing all the tasks, run() method
permitted to execute tasks concurrently using sleep()
method and it enabled to exploit the processor idle time.
Here all the tasks will use different program respectively
sum=a+b, sum=a-b, sum=a*b and sum=a/b. And it will
use same data for all the tasks such as "add" task has 5,5;
"sub" task has 5,5; "mul" task has 5,5; "div" task has 5,5;
Finally, this program will produce the following result.

the sum is 10 produced by add task

the sub is 0 produced by sub task

the div is 1 produced by div task

the mul is 25 produced by mul task

Hence, this research finding introduced to use for Flynn’s
MPSD classification to execute on the single processing
environment using concurrent approach.

5. Conclusion

Flynn’s classical taxonomy has four classifications, except
the first classification all other classification will utilize
multiprocessing environment. While executing a single
program over processor, it executes one task at a time.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010

129

Concurrent approaches can execute multiple tasks using
context switching in single processor environments. It
enabled to execute Flynn’s MPSD classification in single
processing environment. This finding also initiated to have
high performance and throughput on single processing
environment. Hence, this paper recommending you to
have concurrent execution of multiple tasks with single
values on single processing environment.

References
[1] Tobias Wittwer, (2006) An Introduction to Parallel

Programming, VSSD.
[2] Hesham El-Rewini, Mostafa Abd-El-Barr, 2005, Advanced

Computer Architecture and Parallel, A John Wiley & Sons,
Inc Publication.

[3] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,
David Holmes, Doug Lea, (2006) Java Concurrency in
Practice, Addison Wesley Professional.

[4] Charles W. Kann, (2004) Creating Components: Object
Oriented, Concurrent, and Distributed Computing in Java,
Auerbach Publications.

[5] Peter Norton & Wiliam Stanek, (1996) Java Programming,
Sams Publishing.

[6] Stephen J. Hartley, (1998) Concurrent Programming Using
Java, Oxford University Press.

Bala Dhandayuthapani Veerasamy
was born on Tamil Nadu, India in 1979.
The author received his first master
degree M.S in Information Technology
from Bharathidasan University in 2002
and he received his second master
degree M.Tech in Information
Technology from Allahabad
Agricultural Institute of Deemed

University in 2005. He has published peep reviewed research
papers on various international conferences and journals. He
managed as technical chairperson of international conference. He
was also participated as program committee members in
international conferences. He is working as a review editing
board on several international journals and conferences.

He has taught several courses to Computer Science and
Engineering, Information Systems and Technology over 7 years
in academia. Earlier, he has been employed in several reputed
Engineering Colleges in India. At presently, he is working as a
Lecturer in Department of Computing, College of Engineering,
Mekelle University, Ethiopia. His teaching interests includes
web development and technologies, Object oriented
programming, parallel and distributed programming and
multimedia systems. As well, his research interests include
multimedia, e-learning, and parallel and distributed computing.
He has acquired life member of ISTE (Indian Society of
Technical Education).

