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Summary 
Estimating a visual evoked potential (VEP) from the human 
brain is challenging since its signal-to-noise ratio (SNR) is 
generally very low. An optimization and eigen-decomposition-
based subspace approach has been investigated and tested to 
estimate the latencies of visual evoked potential (VEP) signals 
which are highly corrupted by spontaneous electro-
encephalogram (EEG) waveforms that can be considered as 
colored noise. This scheme termed as the generalized subspace 
approach (GSA) depends on the generalized eigendecomposition 
of the covariance matrices of the VEP and the colored EEG noise. 
The subspace algorithm jointly transforms these two correlation 
matrices into diagonal matrices, which can then be segregated 
into signal subspace and noise subspace. Enhancement is 
performed by removing the noise subspace and estimating the 
clean VEP signal from the remaining signal subspace. Further, 
GSA has been compared with a third-order correlation (TOC) 
method, using both realistic simulation and real patient data 
gathered in a hospital. The simulation results produced by the 
GSA algorithm show more faithful reproduction of VEP 
waveforms, and a higher degree of consistencies in detecting the 
P100, P200, and P300 peaks. Additionally, the results of the real 
patient data confirm the superiority of GSA over TOC in 
estimating VEP's P100 latencies, which are used by clinicians to 
assess the conduction of electrical signals from the subjects' 
retinas to the visual cortex parts of their brains.  
 
Keywords: 
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1. Introduction 

A visual evoked potential (VEP) exists when a subject 
under study is shown a visual stimulation (e.g., a pattern 
reversal checkerboard). VEP latencies such as the P100’s 
are used by clinicians to check the integrity of the visual 
pathways from the retina to the occipital cortex part of the 
brain [1]. The VEP is not immediately distinguishable 
from the brain recording because it is buried deep inside 
the ongoing electroencephalogram (EEG) noise, with a 
typical signal-to-noise ratio (SNR) of -5 to -10 dB  
[2, 3, 4, 5, 6]. The post-stimulation EEG which 
contaminates the VEP is highly colored and its correlation  
 

 
 
matrix cannot be directly obtained from the observed 
(corrupted) VEP; the pre-stimulation EEG which exists 
prior to the application of stimulation is the only sample 
that can be used to approximate the correlation matrix of 
the post-stimulation EEG.  
 
Conventionally, ensemble averaging (EA) is used to 
extract the VEPs. For this, hundreds of trials need to be 
acquired and averaged out to really produce clean VEP 
estimates; this requires very long recording time that will 
certainly cause discomfort and fatigue to the subject under 
study; exhaustion will result in inconsistent formation of 
VEPs in terms of both amplitudes and latencies. Among 
the most recent “single-trial” approaches to detect VEPs is 
a third-order correlation (TOC) technique proposed by 
Gharieb and Cichocki [7]. This technique performs well in 
handling white and colored noise whose spectrum does 
not overlap with that of the desired signal. However, when 
the signal spectrum overlaps with the highly colored noise 
spectrum, the efficiency of the TOC-based technique is 
compromised.       
 
The focus of this study is to correctly estimate VEP 
latencies, instead of VEP amplitudes. In hospitals, doctors 
are much more concerned about VEP latencies as opposed 
to VEP amplitudes; the latencies are used by clinicians to 
assess the visual pathway integrity of the patient under 
investigation. In general, an approach based on a signal 
subspace principle performs well in estimating the desired 
peak positions (i.e., latencies) of a given waveform.  
 
The VEP extraction method presented here is inspired by 
work from a speech enhancement area, originally 
proposed by Ephraim and Van Trees [8]; the original work 
dealt primarily with white noise. The incorporation of 
universal optimization schemes in [8] makes them suitable 
for our single-trial estimation of VEPs. However, to deal 
with colored noise, we introduce generalized eigen-
decomposition instead of normal eigen-decomposition 
operation in the underlying signal subspace estimator.    
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The paper is organized as follows. The proposed 
generalized eigendecomposition technique is thoroughly 
discussed in section 2. Then, the TOC method is briefly 
outlined in section 3. Section 4 describes the results of 
VEP latency estimation in simulated and real 
environments. Section 5 concludes the paper.  
 
To ensure common understanding and consistencies, all 
mathematical symbols, operators, notations and 
terminologies used are in compliance with the acceptable 
styles and conventions normally adopted worldwide. 
Lower case boldface characters will generally refer to 
vectors. Upper case BOLDFACE characters will 
generally refer to matrices. Vector or matrix transposition 
will be denoted using (.)T, and MxMℜ  denotes the real 
vector space of M × M dimensions. 

2. Model Development 

2.1 VEP Model 

It is assumed that a VEP is actually a “known" waveform 
which can be artificially produced. The created VEP will 
then be added to much higher power “colored noise” that 
represents EEG and other background noise. The resultant 
waveform will be treated as a composite signal that needs to 
be processed and extracted using the developed technique 
to get back the desired VEP. Thus, the following model is 
defined. 
 

 y = x + n                      (1) 
 
where, y is the M-dimensional vector of the corrupted 
(noisy) VEP signal; x is the M-dimensional vector of the 
original (clean) VEP signal; n is the M-dimensional vector 
of the additive EEG noise which is assumed to be  
uncorrelated with x. Further, H is defined as the M x M-
dimensional matrix of the VEP time-domain constrained 
linear estimator.  

 
Next, x̂  is defined as the M-dimensional vector of the 
estimated VEP signal. The estimated VEP signal x̂  is  
related to H and y in the following way [8]: 
 

 x̂   = H.y                     (2) 
 
The estimated VEP signal x̂  will never be exactly equal to 
the original VEP signal x; the error signal ε defined by [8] 
is written as: 
 

( )
( ) Hnε    xIHεεε

HnxIHxHyxxε
    

 
==+=

+=−==

nxnx , -       where
 -   - ˆ

       (3) 

 

The εx represents the VEP distortion and εn represents the 
residual noise. If the VEP signal correlation matrix Rx is 
known, then the energies of the signal distortion can be 
written as 

 
{ }( ) ( )T

x
T
xxE )()(tr tr2 IHRIHεεεx −−==        (4) 

 
Similarly, if the EEG noise correlation matrix Rn is known, 
the energies of the residual noise can be expressed as 
  

{ }( ) ( )T
n

T
nnn E HHRεεε tr tr2 ==       (5) 

 
Both energies in Eqs. (4) and (5) lead to the total residual 
energies given as 
 

222
nx εεε +=                   (6) 

 
The EEG noise correlation matrix Rn can be obtained from 
the pre-stimulation EEG samples, during which the VEP 
signals are absent. If the VEP and EEG noise are 
independent, the following relationships can be established: 
 

Ry = Rx + Rn
                                    (7) 

  
where, Ry is the correlation matrix of the corrupted VEP. 
Using Eq. (7), we can calculate Rx by subtracting Rn from 
Ry.  
 

2.2 Estimator Optimization 

An optimal time-domain constrained linear estimator H 
that minimizes the VEP signal distortion and maintains the 
residual noise within a permissible level, is mathematically 
formulated by [8] as 
 

222 :subject to    
            
min Mσnxopt ≤= εε
H

H                (8) 

 
where M is the dimension of the noisy vector space and σ 
2 is a positive constant noise threshold level. The σ2 in  
Eq. (8) dictates the amount of the residual noise allowed to 
remain in the linear estimator. Next, the Lagrangian 
function in association with the “Kuhn-Tucker necessary 
conditions for constrained minimization” [8] are applied to 
Eq. (8) to obtain Hopt. The formed Lagrangian function 
can be expressed as 
 

)(  ),( 222 Mσμμ nx −+= εεHL                       (9) 
 
where μ is the Lagrange multiplier. It follows that the 
filter matrix H is a stationary feasible point if it satisfies 
the  
following gradient equation ∇HL(H, μ) = 0: 
  

0  )]([  ),( 222 =−+
∂
∂

=
∂
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nx εε
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HL          (10) 
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Subsequently, the gradient equation in Eq. (10) can be 
solved to yield H. 
 

( ) ( )

1)( 

002)-2(

0  ]tr[])()-([tr

−+=⇒

=−+

=
∂
∂

+−
∂
∂

nxx

nx

T
n

T
x

μ

μ

μ

RRRH

HRRIH

HHR
H

IHRIH
H

(11)    

 
The filter matrix H stated in Eq. (11) functions as a fixed 
filter, which performs well to estimate the VEP at a 
relatively high SNR. As the SNR degrades, it is desirable 
if H can be adjusted and manipulated accordingly to 
minimize the noise residues while keeping the signal 
distortion at an acceptable level. A difficulty arises since 
lowering noise energies means increasing the distortion 
energies, and vice versa. Therefore, a proper balance 
needs to be determined so that the noise residues can be 
reasonably reduced without introducing significant 
distortion to the processed signal. The excessive amount 
of the residual noise prohibits the discrimination between 
the desired VEP peak (e.g., the P100) and the noise peaks 
themselves, even if the desired signal is successfully 
extracted. On the other hand, the excessive distortion 
means the desired VEP peak may have shifted either to the 
left or right of its original position, resulting in an 
inaccurate measurement of the VEP latency. 
 
Equation (11) can be simplified by attempting eigenvalue 
decomposition operation on Rx and Rn. Theoretically, the 
decomposition process separates the noisy VEP space into 
the signal subspace and noise subspace; the signal subspace 
segment is preserved for further manipulations, while the 
noise portion is totally discarded. The challenge is to 
actually be able to fully and simultaneously diagonalize 
both Rx and Rn to achieve absolute decorrelation, before 
any rank reduction in the signal subspace component can 
be performed. 
 

2.3 Karhunen-Loeve Transform 

The Karhunen-Loeve Transform (KLT) is a unitary linear 
transform widely applied in signal processing areas. The 
KLT scheme exploits the statistical properties of a discrete-
time stochastic process; KLT optimally decorrelates the 
process by means of diagonalizing its correlation matrix. 
 
Theorem 1 (Karhunen-Loeve Transform [9]). Let Ra be the 
MxM symmetric correlation matrix of a discrete-time 
stochastic process a(n). Further, let Va and Da be the 
corresponding MxM unitary eigenvector and eigenvalue 
matrices of Ra. Then KLT is defined as the unitary 
transform of the following form: 

 

a
T
aa

T
aaaaaaa VVVVDVVDVR unitary  for    , 11 === −−   (12) 

 
The relationships among various parameters established in 
Eq. (12) can be achieved by taking eigendecomposition on 
Ra. It follows that Eq. (12) above can be rearranged and 
simplified accordingly to compute the diagonal eigenvalue 
Da = diag [d1, d2, ..., dM];  that is  
  

aa
T

aaa
T
a

T
aaaa , V  VV   VRVVRVD unitaryfor 1 === −−− (13) 

 
Equation (13) reveals that Ra is transformed by the Va

T (i.e., 
KLT matrix) and Va (i.e., inverse KLT) terms into the 
diagonal matrix Da, resulting in the optimal decorrelation of 
the stochastic process.  
 
Proof: The KLT and IKLT concept involving a column 
vector a and its symmetric correlation matrix Ra, is 
represented by a block diagram shown in Fig. 1 below. 

 

 
Fig. 1  KLT and IKLT schemes involving an original vector a and its 

unitary eigenvector Va. 
 

With reference to Fig. 1, let b represent a column vector 
after the KLT of a, and let c represent a column vector after 
the IKLT block. The transformation of a into b is achieved 
using the KLT matrix Va

T: 
 

aVaVb T
aa == −1                                 (14) 

 
To obtain decorrelation, the correlation matrix of b is 
computed as the expectation of the outer product of b by 
itself, written as 

 
{ } { } aaa

T
a

TT
a

T
a

T
b EE DVRVaVaVbbR ====  )(       (15) 

 
The matrix Ra is linearly transformed into Rb by the 

aa
T
a VRV  term; the correlation matrix Rb of b is actually the 

eigenvalue matrix Da of Ra. Since Rb is fully diagonal, it 
can be concluded that the cross-correlation has been 
removed. In order to return to the original space (with a 
reduced rank) prior to the transform in the KLT domain, the 
inverse transform using the IKLT matrix Va needs to be 
performed on b; that is, 

 
aaV Vb Vc ===   T

aaa               (16) 
 
From Eq. (16), it is clear that the original vector a has been 
recovered. Furthermore, the correlation matrix of c is 
computed as the expectation of the outer product of c by 
itself, written as 

 

IKLT KLT 

Va
T
 

 a 

Va 

c = Va b  

Rb Ra Rc (2nd Order) 

(1st Order) b = Va
T
 a 
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From Eq. (17), it is clear that the correlation matrix Ra has 
been recovered by taking the linear inverse transform of Rb 
denoted by the T

aba VRV term. Alternatively, the KLT 
expansion is termed as a subspace estimator when some of 
the decomposed orthogonal components are truncated to 
reject noise. The truncation means some eigenvalues and 
corresponding eigenvectors carrying unwanted elements are 
removed; only the components deemed to be significant are 
retained in the process. The reduced matrix is then 
reconstructed to estimate the required signal. In brief, the 
decomposition and decorrelation of a noisy observation can 
be performed using eigenvalue decomposition (EVD). 
 

2.4 Non-Unitary Linear Transform 

The symmetric basis matrix Ra discussed in the previous 
subsection can be the result of a linear summation between 
two symmetric matrices such as Rx and Rn. We have also 
shown that KLT and IKLT can always be applied on a basis 
matrix which is symmetric. However, if the chosen basis 
matrix Rd  is not symmetric (e.g., xnd RRR 1−= , given that 
individual Rx or Rn is symmetric), then the EVD of dR  
results in a non-unitary eigenvector matrix dV . In this case, 

the KLT concept cannot be applied; T
dV  and dV are no 

longer the KLT and IKLT matrices.  
 
For the non-unitary eigenvector matrix dV  stated above, 
the proper matrices for the linear forward (non-KLT) and 
linear inverse (non-IKLT) transform blocks are T

dV  and 
T

d
−V , respectively.  
 
Proof: A transformation of column vector d and its 

non-symmetric correlation matrix Rd is represented by a 
block diagram shown in Fig. 2 below. 
 
 

 
 
 
 
 

 
 
 

Fig. 2  Non-KLT and non-IKLT transforms involving a  non-symmetric 
basis matrix d and its corresponding non-unitary eigenvector matrix Vd. 
 

With reference to Fig. 2, let e represent a column vector 
after the linear forward transform of d, and let f represent 

a column vector after the linear inverse transform block. 
The transformation of d into e is achieved using the linear 
transform matrix T

dV . 
 

dVe T
d=                               (18) 

 
The correlation matrix of e is computed as the expectation 
of the outer product of e by itself, written as 

 
{ } { } d

TT
d

T
d

T
e EE TdVdVeeR === )(             (19) 

 
The matrix Rd is linearly transformed into Re by the 

dd
T
d VRV  term; this time, the diagonal Re is equal to the 

eigenvalue Td of Rd—this is a clear case of decorrelation. 
Further, the inverse transform using T

d
−V is performed on 

e to get back d. 
 

deVf == −T
d                          (20) 

 
The correlation matrix of  f  is given as 

 
{ } { } d

TT
d

T
d

T
f EE R eVeVffR === −− )(            (21) 

 
With reference to Eq. (21), Rf is equal to Rd; this implies 
that the inverse transform restructures Re back into Rd. 
 
In short, a non-KLT linear transform and a non-IKLT 
linear inverse transform are still possible using non-
unitary eigenvectors – providing that great care is taken in 
the selection of a basis matrix, the formation of transform 
and inverse transform matrices from the resulting non-
unitary eigenvectors, and the choice of a matrix or 
matrices to be decorrelated.  
 
Next, the forward non-KLT expansion to decompose and 
decorrelate a noisy observation can be performed using 
EVD. Later, manipulations can be performed on the 
decorrelated components. For example, certain 
decomposed orthogonal components considered as 
belonging to the dominant noise subspace may be omitted. 
The elimination means the dimensions of the eigenvalues 
and their corresponding eigenvectors are reduced; the 
matrices with the reduced dimensions should then 
represent the dominant signal subspace which consists of 
significant components. Eventually, the rank-reduced 
matrix is reconstructed to estimate the required VEP signal.  

2.5 Generic Concepts of a Subspace Method 

With reference to Eq. (11), eigenvalue decomposition is to 
be performed on Rx and Rn. By assuming that Rx = UΔxUT 
and Rn = UΔnUT exist (as in the case of white noise), we 
rewrite Eq. (11) as 
 

f = Vd
−T

 e  
 
Linear 
Transform 
(non-
KLT) 

Vd T 

e = Vd
T
d d 

Vd
−T 

Re Rd Rf (2nd Order) 

(1st Order) 
 
Linear 
Inverse 
Transform 
(non-
IKLT) 
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Hopt = UΔx(Δx + μΔn)
−1U T                (22) 

   
where, Hopt denotes an optimal estimator; U is the unitary 
eigenvector matrix produced from a symmetric basis matrix 
Σ which is to be computed from the proper combinations of 
Rx and Rn terms; Δx is the diagonal eigenvalue matrix of Rx; 
Δn is the diagonal eigenvalue matrix of Rn; μ is the 
Lagrange multiplier which has to be set to a proper value. 
The higher value of μ  eliminates more noise residues at the 
expense of higher distortion in the recovered VEP.   

 
Theoretically, the linear estimator in Eq. (22) functions  
optimally if the unitary eigenvector matrix U derived from 
the eigendecomposition of Σ is able to simultaneously 
diagonalize both Rx and Rn. For white noise cases, this 
simultaneous diagonalization can be perfectly achieved by 
treating Σ = Ry = Rx + Rn; U diagonalizes not only Ry, but 
also Rx and Rn. However for colored noise, Δx and Δn in Eq. 
(22) are no longer diagonal if they are equated with 

URU x
T and URU n

T , respectively. For colored noise 
scenarios, if U is the eigenvector matrix of Ry, it 
diagonalizes only Ry and not Rx or Rn. Moreover, for 
colored noise sources such as EEGs, full diagonalization 
can no longer be obtained if further manipulation on Eq. 
(22) is not performed.  
 
Mathematically, the full diagonalization of their eigenvalues 
can be obtained if and only if Rx and Rn multiplication is 
commutative (i.e., Rx Rn = Rn Rx). In reality, complete 
diagonalization (i.e., without any pre-whitening 
mechanism) is not possible since their multiplication is non-
commutative. To reduce the colored noise case to the 
estimator in [8], we may prewhiten the noise by using 
inverse filtering or look for transformation that 
simultaneously diagonalizes Rx and Rn  as 
 

FFERE    == xx
T                                   (23) 

IFERE == nn
T                                    (24) 

 
where E and F  are the pertinent eigenvector and 
eigenvalue matrices of a non-symmetric basis matrix 

xn RRΨ 1−= . We obtain the eigendecomposition of the 

matrix xn RRΨ 1−=  as  
 

EFVRR  1 =−
xn                                     (25) 

 
after relating Eq. (23) to Eq. (24). 
 
 
2.6 Generalized Subspace Approach 
 
An explicit pre-whitening scheme shown in Eq. (25) 
inverses a matrix; the inversion introduces a drawback and 

is critical from a numerical point of view when the matrix 
is ill-conditioned. Alternatively, the explicit pre-whitening 
approach can be replaced by implicit pre-whitening which 
can be performed by the generalized eigen-decomposition 
[10] of the matrix pair (Rx, Rn), as follows:  
 

VΛRVR nx =                                     (26) 
 
where Λ is a diagonal M × M matrix that contains the 
generalized eigenvalues and V contains the generalized 
eigenvectors. In fact, we replaced the unitary eigenvectors 
U in Eq. (22) with the generalized eigenvectors V; this 
time, V in Eq. (26) is a non-unitary eigenvector matrix 
which transforms jointly both Rx and Rn to the following 
diagonal matrices. 
 

ΛΛVRV    == xx
T                                   (27) 

IΛVRV == nn
T                                    (28) 

 
An optimal estimator HGEIG based on the generalized 
eigendecomposition of (Rx, Rn) can then be obtained by 
applying Eqs. (26), (27) and (28) to Eq. (11):  
 

( )
( ) T1T

T1
nGEIG

V I μΛ ΛV

V I μΛVΛRH
−

−

+−=

+=

           
                     

 (29) 

 
Equation (29) can now be used to replace Eq. (22) to 
estimate a signal which is corrupted either by white or 
colored noise. Based on Eqs. (2) and (29), the estimated 
VEP is then calculated as 
 

1where    

  ˆ
-TT

T
nGEIG

μ )(          

  

IΛΛGyGVV

yVGVRyHx

+=•=

•=•=
−        (30) 

 
The corrupted VEP signal y in Eq. (30) is decorrelated by 
the KLT matrix VT. Then, the transformed signal is 
modified and enhanced by a signal subspace gain matrix G. 
Next, the modified signal is retransformed back into the 
original state (at a reduced rank) by the inverse KLT matrix 
V−-T to approximate the desired VEP signal. 

2.7 Algorithm Implementation 

The proposed approach can be formulated in the following 
ten steps: 
 

Step 1. Compute the correlation matrix of the brain 
background colored noise Rn, using the pre-
stimulation EEG sample. 

  
Step 2. Compute the noisy VEP correlation matrix Ry, 

using the observed (corrupted) sample. 
 
Step 3. Estimate the correlation matrix of the noiseless 

VEP sample as Rx = Ry – Rn.  
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Step 4. Perform the generalized eigendecomposition 
on Rx and Rn using Eq. (26). Extract the 
eigenvector matrix V and eigenvalue matrix Λ 
from the computation.  

 
Step 5. Assuming that the generalized eigenvalues of 

Λ are ordered as λ1 ≥ λ 2 ≥  …  ≥ λ M, estimate 
the dimension of the VEP signal subspace as 
follows: 

d = arg{
Mk ≤≤   1

max
 λk > 0}           (31) 

Step 6. Form a diagonal matrix, ΛM, from the largest 
M diagonal values of Λ.  

 
Step 7. Form a matrix VM using eigenvectors of V that 

correspond to the largest M eigenvalues. 
 
Step 8. Choose a proper value for µ as a compromise 

between signal distortion and noise residues. 
Experimentally, µ = 2 was found to be ideal in 
reducing the EEG noise to a certain level, 
while minimizing the VEP signal distortion at 
the same time.   

 
Step 9. Compute the optimal linear estimator using  

Eq. (29). 
 

Step 10. Estimate the desired VEP signal using  
Eq. (30).  

3. Third Order Correlation Approach 

A third-order correlation (TOC)-based filtering approach 
has been proposed by Gharieb and Cichocki [7] to extract 
VEPs from noisy observations. Reference [7] noted that 
higher order statistics, also known as cumulants, preserves 
the signal structure of a noise free signal. Further, 
cumulants exhibit high tolerance to white or colored 
Gaussian noise and other symmetrically distributed white 
or colored non-Gaussian noise [7].  
 
The philosophy behind the TOC is to feed the noisy 
observations through a finite impulse response (FIR) filter 
and obtain a good estimate of the VEP at the filter’s output. 
For this purpose, the TOCs are utilized to compute the 
impulse response of the filter; the bandpass of the FIR 
filter is to be matched with the shape of the clean VEP 
alone. However, since the actual VEP signal is not a priori 
known, [7] proposed the impulse response of the FIR to be 
proportional with “an estimate of the selected TOCs of the 
noisy signal” . 
 
For finite data length, the one dimensional TOC slice of 
the noisy signal y(n), is given by the following equation: 
 

( ) ∑
=
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in which N is the number of available data points and  
N1 = min[N–1, N–1–τ, N–1–τ0], τ ≥ 0, τ0 is a positive 
constant. Given a filter order P, the impulse response h(m), 
can be estimated as 
 

⎩
⎨
⎧

++=−
=−

=
P, , , PP       mP)(mc

, P, ,        mm)(Pc
m

y

y

221,ˆ
10,ˆ

)(
L

L
h       (33) 

 
Finally, the enhanced signal x̂  which is available at the 
output of the FIR filter is given by 
 

( ) ∑
=

−=
P

m

mnmn
2

0

)( )( ˆ yhx                     (34) 

4. Experiments, Results and Discussions 

4.1 Simulated Data 

In this subsection, the performances of the GSA and TOC 
in estimating the P100, P200, and P300 are tested in 
statistical forms using artificially generated VEP signals 
corrupted with colored noise at different SNR values. 

 
Artificial VEP and EEG waveforms are generated and 
added to each other in order to create a noisy VEP. The 
clean VEP x(k) ∈ Mℜ , is generated by superimposing J 
Gaussian functions [11], each of which having a different 
amplitude (A), variance (σ2) and mean (μ) as given by the 
following equation: 

 
TJ

n
n kk

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

)()(
1

gx                            (35) 

 
where gn(k) = [gn1, gn2, …, gnM], for k = 1, 2, …, M, with 
the individual gnk given as  

  
2

2

2
)(

22
n

nk

n

n
nk e

A
g σ

μ

πσ

−−

=                       (36) 

The values for An, σn and μn for each gn vector are 
experimentally tweaked to create precise peaks  
(i.e., latencies) with progressively descending amplitudes 
at 100, 200, and 300 ms simulating the real P100, P200 
and P300, respectively. By the same token, valleys at 75 
and 145 ms are created to represent the N75 and N145, 
respectively. A generated VEP sample with realistically 
simulated amplitudes, showing precisely the N75, P100, 
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N145, P200 and P300 components are shown in Fig. 3(a) 
below. 

         
The pre-stimulation EEG colored noise e(k) is generated 
using autoregressive (AR) model [12, 13, 14] given by the 
following equation. 

 
  e(k) = 1.5084e(k – 1) – 0.1587e(k – 2) – 

   0.3109e(k – 3) – 0.0510e(k – 4) + u(k)          (37) 
 

where u(k) is the input driving noise of the AR filter and 
e(k) is the filter output. The artificial post-stimulation EEG 
noise n is generated by changing the variance of e. Since 
noise is assumed to be additive, the artificially-corrupted 
VEP signal y is then produced by adding together x and n.  
 
As a preliminary illustration, Fig. 3 below shows, 
respectively, a sample of artificially generated VEP 
according to Eqs. (35) and (36), a noisy VEP at  
SNR = -10 dB, and extracted VEPs using both the GSA and 
TOC techniques.  
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Fig. 3  (a) Clean VEP; (b) Noisy VEP with SNR = -10 dB; (c) Extracted 

VEP using GSA; (d) Extracted VEP using TOC. 

 
From Fig. 3 above, it can be observed that GSA manages 
to extract and bring the P100, P200 and P300 peaks much 
closer to the their reference values (i.e., 100, 200 or  
300 ms) compared to TOC. Further, to compare the 
performances of the two algorithms in statistical forms, the 
SNR was varied from 0 to -13 dB and the algorithms were 
run 500 times for each value. Failure rate and average 
errors are used in this paper as vital test tools in assessing 
the performance of the filters in single-trial estimation.  
 
To measure failure rate, visual inspections were performed 
to judge whether or not the estimators’ processed 
waveforms are acceptable. The three highest peaks within 
100 ±10, 200 ±10 and 300 ±10 ms are considered as the 
wanted P100, P200 and P300 components. Any trial is 
noted as a failure with respect to a certain peak if the 

waveform fails to show clearly the pertinent peak within 
the stated ±10 ms tolerance. The failure rate for each 
algorithm with respect to a certain peak and SNR is 
expressed in terms of a percentage. It is calculated 
according to the following formula: 
 

100%x failures ofnumber  rate failure
N

=        (38) 
 
where N is the number of runs (trials) per SNR which in this 
case equals to 500.  
 
The average error in estimating P100 is obtained as follows: 
 

N
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100
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100)(ˆ 
ε                (39) 

where )(ˆ 100 itP  is the estimated latency (for each run) of 
the P100 in milliseconds. The average errors for P200 and 
P300 components can be calculated in the same way. The 
failure rates and average errors for the simulated data are 
shown in Table 1 below.  

Table 1: The failure rate and average errors of GSA and TOC as a 
function of SNR. 

 
SNR 
[dB]

Failure Rate [%] Average error 
Peak GSA TOC Peak GSA TOC 

-13 
P100 9.3 71.3 P100 5.6 12.6
P200 12.7 75.8 P200 6.3 14.1
P300 23.1 74.2 P300 7.4 16.2

-11 
P100 8.4 68.4 P100 4.6 10.7
P200 11.6 74.8 P200 5.7 12 
P300 18.2 72.4 P300 5.8 14.3

-9 
P100 8 69.6 P100 5 8.9 
P200 8.8 69.2 P200 4.9 11.2
P300 20.2 74.2 P300 6.2 13.6

-7 
P100 6.8 68.6 P100 4.5 7.4 
P200 7.2 71.2 P200 4.7 8.8 
P300 22.4 76.6 P300 6.9 12.8

-5 
P100 3.1 69 P100 4.2 5.7 
P200 18.4 73 P200 4.5 7.3 
P300 61.4 72.4 P300 6.5 12.1

-3 
P100 2.9 72.2 P100 4.1 5 
P200 2.4 72 P200 4.3 5.5 
P300 19.4 71 P300 6 11.3

0 
P100 0.6 73 P100 3.7 4.1 
P200 0.4 70.8 P200 3.9 4.3 
P300 17.8 70.6 P300 6.5 9.8 

From Table 1 it is clear that the proposed GSA algorithm 
outperforms TOC in terms of failure rates and accuracies 
over the considered range of SNRs. The GSA method 
shows performance that is relatively independent of SNR 
values. On the contrary, TOC's performance is poor. In 
general, both algorithms show better efficiencies in 
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estimating the latencies of P100's than they are with the 
other P200 and P300 peaks.  
 
The strength of GSA is that it utilizes optimization and 
includes pre-stimulation EEG as one of its important 
parameters. As for TOC, it relies only on the observed 
(corrupted) VEP which comprises the clean VEP signal that 
is added to the post-stimulation EEG. In other words, TOC 
does not make use of the pre-stimulation EEG at all.  
 
The TOC technique works on a basis that the encountered 
post-stimulation EEG resembles white or colored Gaussian 
noise. However, TOC performs well in handling white or 
colored noise whose spectrum does not directly overlap 
with that of the desired VEP signal. 
 
To validate the performance of the two estimators, the next 
experiments will deal with real patient data. Nevertheless, 
the performance outcome and evidence collected in the 
simulated experiments above are the utmost crucial in 
proving the true capabilities of the filters as single-trial 
estimators; this is because the true forms of the individual 
VEPs from real patient data are not known a priori.   
 

4.2 Real Patient Data 

In this subsection, the accuracies of GSA and TOC as 
single-trial estimators of the P100 latencies, used in the 
objective assessment of the visual pathways from the 
retina to the visual cortex of the human brain, are tested. 
Real patient experiments were conducted at Selayang 
Hospital, Kuala Lumpur using RETIport32 equipment. 
The experiments were carried out on normal subjects 
without any neurological deficit or medication known to 
affect the EEG.  
 
Subjects were asked to watch a checkerboard pattern  
(1o full field), the stimulus being a checker reversal  
(N = 50 stimuli). Scalp recordings were made according to 
the International 10/20 System, with one eye closed at any 
given time. The active electrode was connected to the 
middle of the occipital (O1, O2) area while the reference 
electrode was attached to the middle of the forehead.  
 
In this paper, we will show the results for artefact-free 
trials of six subjects taken from their left eyes only; for 
this purpose, each subject's left eye was left open while 
his/her right eye was shaded by an eye patch. Each trial 
was pre-filtered in the range 0.1 to 70 Hz and sampled 
accordingly, creating 512 data points within a 333 ms span.  
 
Each subject underwent two separate recording sessions. 
In the first session, fifty trials for each subject were 
obtained and automatically averaged (using ensemble 

averaging) by the RETIport32 equipment to get the VEP 
signal and accordingly the latency of P100, which is the 
peak of interest of doctors at the Ophthalmology 
Department, Selayang Hospital.  
 
Since averaging is a multi-trial technique, it is expected to 
produce good estimation of the VEP latency that can be 
used as a baseline for comparing the performances of GSA 
and TOC. 
  
In the second session, 333 ms (machine dependent) of 
recording time was allocated to capture the brain activity 
just before a visual stimulation was applied to the subject. 
The recorded data for the entire 333 ms duration pertain to 
the pre-stimulus EEG signal which basically describes the 
brain background colored noise.  
 
Then, the next 333 ms was used to record the post-
stimulus waveform which comprises the VEP and post-
EEG signals. These pre- and post-stimulation signals are 
required by the GSA algorithm.  
 
As for TOC, there is no need for any pre-stimulus EEG 
signal; therefore, only the 333 ms of the post-stimuli 
waveform is considered for further processing. 
 
The P100 latencies of six different subjects estimated by 
the single-trial GSA and TOC estimators, together with 
the corresponding P100 values approximated by the multi-
trial ensemble averaging (EA) are shown in Figs. 4(a) 
through 4(f) below.  
 
From Figs. 4(a) through 4(f), it can be stated that GSA 
outperforms TOC in estimating the latencies of the P100 
components. The GSA method manages to extract the 
required P100 peaks; the latency values generated by GSA 
are closer to those generated by EA compared to those 
produced by TOC. 
 
In brief, the simulated and real data experiments exhibit 
the capability of the subspace-based technique such as 
GSA in VEP latency estimation. Most importantly, the 
results of both experiments prove higher reliabilities (i.e., 
lower failure rate) and higher accuracies (lower average 
errors) of the proposed GSA algorithm over the third order 
correlation approach such as TOC.   
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Fig. 4 The latency of P100 for six subjects estimated using the GSA and 

TOC, and 50-trials based EA techniques. 
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5. Conclusion 

A signal subspace technique for extracting VEP signals 
degraded by colored EEG noise has been suggested and 
thoroughly tested. The algorithm which avoids an explicit 
pre-whitening stage utilizes an optimization procedure to 
develop an estimator which reduces a noise level below a 
certain threshold and maintains VEP distortion to a 
minimal value. As further enhancement, the proposed 
technique employs a generalized subspace scheme to 
simultaneously diagonalize both VEP signal and colored 
EEG noise correlation matrices.  
 
The performance of the proposed GSA is compared with 
the TOC using simulated and real data. For simulated data, 
GSA shows better performance over TOC in detecting the 
latencies for P100, P200, and P300 peaks. Also, the results 
of the real patient experiments show better accuracy, less 
failure rate and closer results to the multi-trial ensemble 
averaging (EA) by GSA in comparison to TOC, in the 
P100 estimation. The performance reflects the capability 
of the single-trial GSA technique to replace the multi-trial 
EA technique in estimating VEP latencies, leading to the 
reduction in both recording time and user fatigue.  
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